JP4093747B2 - Method for converting waste building materials into soil - Google Patents

Method for converting waste building materials into soil Download PDF

Info

Publication number
JP4093747B2
JP4093747B2 JP2001342073A JP2001342073A JP4093747B2 JP 4093747 B2 JP4093747 B2 JP 4093747B2 JP 2001342073 A JP2001342073 A JP 2001342073A JP 2001342073 A JP2001342073 A JP 2001342073A JP 4093747 B2 JP4093747 B2 JP 4093747B2
Authority
JP
Japan
Prior art keywords
building material
soil
waste
vermiculite
converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001342073A
Other languages
Japanese (ja)
Other versions
JP2003145100A (en
JP2003145100A5 (en
Inventor
恭彬 福田
利彦 三田
和雄 石原
博文 塩地
Original Assignee
三菱商事建材株式会社
三菱マテリアル建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001342073A priority Critical patent/JP4093747B2/en
Application filed by 三菱商事建材株式会社, 三菱マテリアル建材株式会社 filed Critical 三菱商事建材株式会社
Priority to PCT/JP2001/009847 priority patent/WO2002038516A1/en
Priority to EP01982752A priority patent/EP1340728A4/en
Priority to CN01803611A priority patent/CN1395548A/en
Priority to US10/181,216 priority patent/US20030010258A1/en
Priority to AU14272/02A priority patent/AU780369B2/en
Priority to TW90127878A priority patent/TWI228445B/en
Publication of JP2003145100A publication Critical patent/JP2003145100A/en
Publication of JP2003145100A5 publication Critical patent/JP2003145100A5/ja
Priority to AU2005200501A priority patent/AU2005200501A1/en
Priority to US11/300,546 priority patent/US20060090674A1/en
Priority to US11/932,569 priority patent/US20080060316A1/en
Application granted granted Critical
Publication of JP4093747B2 publication Critical patent/JP4093747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Of Plants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃建材の土壌化方法に関する。
【0002】
【従来の技術】
従来、建材の製造に際しては、種々の目的で基材が選択され、さらにそれらの各種基材に種々の材料が配合されることが多い。
【0003】
そのなかで、鉱物系材料の一つとしてバーミキュライトがある。このバーミキュライト(ヒル石)は、黒雲母に類似した粘土鉱物であり、高温で脱水により層に垂直の方向に著しく膨張して、ヒルのように伸び多孔体となる。このため、断熱性、吸音性に優れるので、基材への配合材(充填材、増量材)、さらには基材として断熱材、吸音材をはじめとする各種建材に、その軽量化の目的と併せて用いられることが多い。一方、バ―ミキュライトは吸湿能力があまり高くないため、調湿材としてはまったく顧みられていない。
【0004】
したがって、上記のように、バーミキュライトを建材に配合する場合には、軽量化等を目的とするため膨張バーミキュライトを用いるのが通常である。たとえば、モルタル、コンクリート等のセメント製品に軽量骨材として利用されている。これに対し、未膨張のバーミキュライトは、上記の軽量化等の利点が得られないため、数%程度までの少量が、その耐酸、耐アルカリ等の特性を活かす特別な目的のために基材に配合されているに過ぎない。また、基材として実質的に未膨張バーミキュライトからなるボードを、内壁の裏側部分等に固定して、火災発生時に膨張させ、延焼を防止しようとする試みもなされているが、これは耐火性を利用した特定の基材として用いられるものである。
【0005】
一方、建材自体も、競合製品との差別化を図るため、種々の機能の付与が提案されている。そのなかで、調湿(吸放湿)および/または消臭、さらには美観を備えた建材についても種々の検討がなされているが、いまだに満足すべきものは見出されていない。すなわち、これらは比表面積が大きいものを利用して一定の成果を得ているが、特に、保水および保湿力が強すぎて放湿速度に難がある場合が多い。
【0006】
そこで本発明者は、天然資源としてのバーミキュライトのさらなる有効利用を図り、調湿および/または消臭、さらには美観の要請をも満たし得る、特に吸放湿の量および速度においてバランスに優れた建材を見出すべく、種々検討を行った。
【0007】
その結果、意外にも、基材、とくに、吸湿性はあるが放湿性が不十分な水硬性材料に未膨張バーミキュライトを配合することにより放湿能力を著しく向上させ得ることを見出した。
【0008】
すなわち、未膨張バーミキュライトをケイ酸カルシウム系等の基材に配合してなり、かつその配合量が全組成物(固形分)の5〜70質量%である建材組成物を成形してなる建材を得た。
【0009】
【発明が解決しようとする課題】
本発明は、さらにこの検討の一環としてこの建材が使用済みで、廃建材となった場合に、回収・処分に多大の負荷をかけないで、その有効利用を図るものである。
【0010】
【課題を解決するための手段】
本発明の要旨は、未膨張バーミキュライトをケイ酸カルシウム系基材に配合してなる建材組成物を成形した建材からなる廃建材を破砕することによって土壌化することを特徴とする廃建材の土壌化方法にある。
【0011】
【発明の実施の形態】
本発明における建材は、未膨張バーミキュライトをケイ酸カルシウム系基材に配合してなる建材組成物を成形した建材である。ケイ酸カルシウム系基材としては、とくに制限されないが、ケイ酸質原料と石灰をオートクレーブ中で水熱反応させて得られるもの(トバモライトもしくはゾノトライト)が一般的である。
【0012】
一方、本発明において、上記基材に配合されるバーミキュライトは、SiO、MgO, AlO を主成分とする薄片状の鉱物であり、一般的な黒雲母系、緑泥石系のいずれでもよく、産地により組成等に差異があっても使用し得る。比表面積(窒素吸着法)は通常10m/g以下である。粒径も特に制限されないが、通常、5mm以下、好ましくは3mm以下,特に好ましくは0.5mm以下である。たとえば0.25mm以下のような細粒品は膨張バーミキュライトの用途には適さないためテーリングとして規格外品とされているが、意外にも原鉱石の粉砕、選鉱、乾燥、篩い分けで、細粒の方がバーミキュライトの層間水の脱水変質(層間の水2分子層が1分子層へ変化)が少ないことがわかり、本発明においてはむしろ好適に使用されうる。なぜなら層間水が水2分子のほうが吸湿、吸着特性に好適だからである。
【0013】
本発明においては、このようなバーミキュライトを実質的に未膨張の状態で使用する。すなわち、バーミキュライトは、通常10〜20%程度の水を含んでおり、高温(層間水が脱離し始める約320℃から1000℃)での急激な加熱により脱水され著しく膨張する(多くは1000℃、1〜2秒で、もとの厚さの10〜30倍)。したがって、本発明においては実質的にこのような膨張を得ていないものが使用される。
【0014】
さらに本発明においては、このバーミキュライトを基材に配合するに先立ち、活性化処理したものを用いることができる。活性化処理は、バーミキュライトが吸着している有機物もしくは無機物を離脱させ、本来有する調湿、吸着性能等を再構成・回復させることを目的とする。たとえば、加圧水蒸気処理、食塩水による煮沸処理等が挙げられるが、好ましくは105℃〜200℃の飽和蒸気圧での水蒸気処理によることができる。
【0015】
しかしながら、本発明においては、基材がケイ酸カルシウム系であるので、活性化処理されていないバーミキュライトを水熱反応前に配合しても、その後にたとえば150℃〜200℃程度の飽和蒸気圧でオートクレーブ処理を受けるので、結果的に活性化処理がなされることになる。
【0016】
基材へのバーミキュライトの配合は、その配合量が全組成物(固形分)の5〜70質量%、好ましくは10%〜50質量%になるように行われる。基材の種類、目的とする建材の性能、たとえば調湿度等、に応じて選ばれるが、好適な吸放湿の量および速度を得るためのバーミキュライトの十分なチャンネリング(ネットワーク)を形成させるには、一般的には15質量%以上が特に好ましい。
【0017】
本発明の建材組成物には、上記の未膨張バーミキュライトのほかに、その他の目的のために建材に基材珪酸カルシウムに固有に用いられる種々の配合材、さらには、その他を適宜配合し得る。たとえば、膨張バーミキュライトを含有していてもよい。それらの種類、配合量は、常法によることができる。
【0018】
得られる本発明の建材組成物は、抄造成形、押出し成形、プレス成形、鋳込み成形等の常法により、ボード等の所望の形状、大きさの建材とすることができる。一般的にはボードの場合、工業的には、いわゆる抄造機を用いた抄造成形が選ばれる。
【0019】
本発明の建材は,後述する参考例4に記載された吸放湿試験において、好適には、相対湿度を60〜90%に変化させた場合の吸放湿速度が吸湿:30分で平衡値の90%以上、放湿:25分以下、さらに好適には20分以下で平衡、を示す。
【0020】
このようにして得られる建材は、壁材、天井材、間仕切り材等の内装材として使用されるのが好適であるが、さらに軒天井材等の外装材等としても使用されうる。
【0021】
本発明の建材は、調湿および/または消臭、さらには美観の要請をも満たし得るものである。すなわち、
1.適度な放湿特性を有するので、調湿機能に優れる。たとえば、
吸湿および放湿のバランス、量および速度に優れる。
【0022】
したがって、結露、ソリ等を防止でき、さらにはカビ、ダニ等の繁殖を効果的に抑制できる。
2.消臭機能に優れる。たとえば、本発明の建材は、ホルムアルデヒド,トルエン,キシレン等の揮発性化学物質もしくは臭いのあるガス類を吸着しうる。
3.さらに、未膨張バーミキュライト粒子を表面研磨等により浮き出させて花崗岩調の表面とすることができ、美観を備えたボード材等を容易に提供し得る。
4.使用済みの本発明の建材を回収し、そのままオートクレーブで105〜150℃程度の水蒸気処理をすることにより再生することが可能である。バーミキュライトは上記の基材と反応していないからである。
5.膨張バーミキュライト用原料としては規格外の細粒品をむしろ好適に使用しうるので、資源を有効利用することができる。
【0023】
本発明の方法は、このような建材が使用された後に建材としては再利用しないで廃建材となった場合に、この廃建材を土壌化するものである。
【0024】
まず、廃建材は破砕に供されるが、この破砕は通常クラッシャー等の一般的な破砕手段によることができる。破砕に際しては、廃建材の量、破砕場所等を考慮して破砕手段の選定がなされる。破砕処理は、廃材が発生した場所で破砕手段を搬入して行うこともできる。
【0025】
破砕の程度も特に限定されず、目的とする土壌の用途により適宜選択され、たとえば、5mm以下程度とされるのが最も一般的である。
【0026】
さらに、廃建材中に含まれている可能性のある吸着物等を除去するために、必要に応じて上記破砕の前もしくは後に煮沸、もしくはオートクレーブで100〜200℃程度の水蒸気処理をすることもできる。
【0027】
このようにして破砕処理された廃建材は土壌として使用しうる。すなわち、植物の育成、土壌の改良、さらには地盤改良等の目的のために本発明で得られる水はけのよい人工土壌を使用することができる。これらの人工土壌はそのままでもケイ酸肥料としての役割を果たすが、それぞれの目的に応じて他の成分を添加することができる。たとえば、N、P,Kおよび微量元素等から選ばれる各種の肥料成分が添加されうる。
【0028】
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお部は質量部を表わす。
【0029】
【実施例】
参考例1
ケイ酸質原料としてケイ石粉末27部、石灰質原料として消石灰27部および補強繊維としてパルプ6部、さらに未膨張バーミキュライト(南ア産、粒径0.25〜0.5mm)40部を出発原料として、これらに水を添加して混合し固形分約12%のスラリーとし、抄造機により生シートを形成させた後,オートクレーブ中(160〜180℃、約10時間)で加圧養生させ、ついで80℃未満で所定の含水率になるまで乾燥させ、ケイ酸カルシウムボード(30cm×30cm×6mm)を得た。
参考例2
ケイ石粉末42部、消石灰42部、パルプ6部および未膨張バーミキュライト10部を用いて参考例1と同様にしてケイ酸カルシウムボードを得た。
参考例3
ケイ石粉末27部、消石灰33部および未膨張バーミキュライト40部に水を混合し固形分約12%のスラリーとし、これをオートクレーブ(190〜200℃、約10時間)中で加圧養生処理した。ついで,80℃未満で所定の含水率になるまで乾燥しゾノトライト系ケイ酸カルシウムボードを得た。
【0030】
参考例4に記載した方法により測定した吸放湿試験によれば、参考例1のケイ酸カルシウムと比較して、吸湿量は若干小さく,放湿速度は若干大きかった。
参考例4
(吸放湿試験)
下記の測定方法により、参考例1および2で得られた建材について吸湿率および放吸湿速度を測定した。
(1)測定方法/装置
測定装置:Heiden Analytical Ltd.社製 「IGA SORP」
測定方法:約1ccの測定バスケットに、粉末試料はそのまま、塊状試料は2〜3 mm程度に調整して、充てんして測定。
【0031】

Figure 0004093747
吸湿および放湿速度は、30分周期で繰り返し実験を行った。
(2)測定試料
参考例1および2で得られたボード
1. 未膨張バーミキュライト40wt%含有ケイ酸カルシウムボード
2. 未膨張バーミキュライト10wt%含有珪酸カルシウムボード
(3)測定結果を表1に示す。
【0032】
【表1】
Figure 0004093747
【0033】
これらの結果は,本発明の土壌化に用いる建材が、吸放湿特性において量および速度のバランスに優れていることを示す。吸湿および放湿の30分周期試験の結果、本発明の建材においては、吸放湿のバランスが良好であるため放湿時のベースラインは一定に保持されることが示された。以上のことからも本発明の建材が結露しにくいことがわかる。
実施例1〜3
参考例1〜3で得られたケイ酸カルシウム系建材を、半年間外気中に放置した後、それぞれを用いて破砕して粒径3〜5mm程度の粒状品A〜Cを得、これをケイ酸質肥料を含む、水はけのよい人工土壌として植物育成に用いた。
実施例4〜6
実施例1〜3において、得られた粒状品A〜Cを、さらに約150℃で、1時間水蒸気処理した以外は実施例1と同様にして人工土壌D〜Fを得た。
【0034】
【発明の効果】
本発明によれば、未膨張バーキュライトをケイ酸カルシウム系基材に配合してなる建材が使用済みで、廃建材となった場合に、回収・処分に多大の負荷をかけないで、土壌化してその有効利用を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for converting waste building materials into soil.
[0002]
[Prior art]
Conventionally, when manufacturing building materials, base materials are selected for various purposes, and various materials are often blended with the various base materials.
[0003]
Among them, vermiculite is one of the mineral materials. This vermiculite (hillstone) is a clay mineral similar to biotite, and expands remarkably in a direction perpendicular to the layer by dehydration at a high temperature, and becomes a porous body extending like a hill. For this reason, since it has excellent heat insulation and sound absorption properties, it is intended to reduce the weight of the building materials (fillers, fillers) to the base material, as well as various building materials such as heat insulation materials and sound absorption materials as the base material. Often used together. On the other hand, vermiculite is not considered as a humidity control material because it does not have a high moisture absorption capacity.
[0004]
Therefore, as described above, when vermiculite is blended in a building material, it is usual to use expanded vermiculite for the purpose of weight reduction and the like. For example, it is used as a lightweight aggregate in cement products such as mortar and concrete. On the other hand, unexpanded vermiculite does not provide the advantages such as the above-mentioned weight reduction, so a small amount of up to several percent is used as a base material for special purposes that make use of its acid resistance and alkali resistance characteristics. It is only blended. In addition, an attempt has been made to fix a board made of substantially unexpanded vermiculite as a base material to the back side portion of the inner wall, etc., and expand it in the event of a fire to prevent the spread of fire. It is used as a specific base material used.
[0005]
On the other hand, the building materials themselves have been proposed to be provided with various functions in order to be differentiated from competing products. Among them, various studies have been made on humidity control (moisture absorption / desorption) and / or deodorization, and also a building material with an aesthetic appearance, but no satisfactory one has been found yet. That is, these have obtained a certain result by using one having a large specific surface area, but in particular, there are many cases in which the moisture retention rate is too strong and the moisture release rate is difficult.
[0006]
Therefore, the present inventor intends to make further effective use of vermiculite as a natural resource, and can satisfy the demands of humidity control and / or deodorization, and also aesthetics, and is particularly excellent in the amount and speed of moisture absorption and desorption. Various studies were conducted to find out.
[0007]
As a result, it has been surprisingly found that the moisture releasing ability can be significantly improved by blending non-expanded vermiculite with a base material, in particular, a hydraulic material that is hygroscopic but has insufficient moisture releasing properties.
[0008]
That is, a building material obtained by blending unexpanded vermiculite with a base material such as calcium silicate and molding a building material composition whose blending amount is 5 to 70% by mass of the total composition (solid content). Obtained.
[0009]
[Problems to be solved by the invention]
Further, as a part of this study, the present invention intends to effectively use the building material when it has been used and becomes a waste building material without imposing a great burden on recovery and disposal.
[0010]
[Means for Solving the Problems]
The gist of the present invention is that a waste building material is soiled by crushing a waste building material made of a building material formed from a building material composition formed by blending unexpanded vermiculite with a calcium silicate base material. Is in the way.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The building material in this invention is a building material which shape | molded the building material composition formed by mix | blending unexpanded vermiculite with a calcium-silicate type base material. Although it does not restrict | limit especially as a calcium-silicate type base material, The thing (tobermorite or zonotolite) obtained by making a siliceous raw material and lime react hydrothermally in an autoclave is common.
[0012]
On the other hand, in the present invention, the vermiculite blended in the substrate is a flaky mineral mainly composed of SiO 2 , MgO, and Al 2 O 3 , and may be either a general biotite system or a chlorite system. Even if there is a difference in composition depending on the production area, it can be used. The specific surface area (nitrogen adsorption method) is usually 10 m 2 / g or less. The particle size is not particularly limited, but is usually 5 mm or less, preferably 3 mm or less, particularly preferably 0.5 mm or less. For example, fine-grained products of 0.25 mm or less are not suitable for tailoring because they are not suitable for expanded vermiculite, but surprisingly fine-grained by ore grinding, beneficiation, drying and sieving. This shows that dehydration and alteration of the interlayer water of vermiculite is less (change of the bilayer water between layers to a monolayer), and can be used preferably in the present invention. This is because two molecules of interlayer water are more suitable for moisture absorption and adsorption characteristics.
[0013]
In the present invention, such vermiculite is used in a substantially unexpanded state. That is, vermiculite usually contains about 10 to 20% of water, and is dehydrated and expanded significantly by rapid heating at a high temperature (about 320 ° C. to 1000 ° C. at which interlayer water begins to desorb). 1-2 seconds, 10-30 times the original thickness). Accordingly, in the present invention, a material that does not substantially obtain such expansion is used.
[0014]
Further, in the present invention, it is possible to use a product obtained by activating the vermiculite prior to blending with the base material. The purpose of the activation treatment is to remove organic or inorganic substances adsorbed by vermiculite, and to reconstitute and recover the inherent humidity conditioning, adsorption performance, and the like. For example, pressurized steaming, boiling with saline, and the like can be mentioned, but steaming at a saturated steam pressure of 105 ° C. to 200 ° C. is preferable.
[0015]
However, in the present invention, since the base material is a calcium silicate system, even if vermiculite that has not been activated is blended before the hydrothermal reaction, after that, for example, at a saturated vapor pressure of about 150 ° C. to 200 ° C. Since the autoclave treatment is performed, the activation treatment is performed as a result.
[0016]
The blending of vermiculite into the substrate is performed so that the blending amount is 5 to 70% by weight, preferably 10% to 50% by weight, based on the total composition (solid content). It is selected according to the type of base material and the performance of the intended building material, such as humidity control, etc., but to form sufficient channeling (network) of vermiculite to obtain a suitable amount and speed of moisture absorption and desorption. Is generally particularly preferably 15% by mass or more.
[0017]
In the building material composition of the present invention, in addition to the above-mentioned unexpanded vermiculite, various compounding materials that are inherently used for the base material calcium silicate for other purposes and other materials can be appropriately blended for other purposes. For example, it may contain expanded vermiculite. Their types and blending amounts can be determined by conventional methods.
[0018]
The resulting building material composition of the present invention can be made into a building material having a desired shape and size, such as a board, by conventional methods such as papermaking, extrusion, press molding, and casting. In general, in the case of a board, papermaking molding using a so-called papermaking machine is industrially selected.
[0019]
In the moisture absorption / release test described in Reference Example 4 to be described later, the building material of the present invention preferably has a moisture absorption / release rate when the relative humidity is changed to 60 to 90%. 90% or more, moisture release: 25 minutes or less, more preferably 20 minutes or less, equilibrium.
[0020]
The building material thus obtained is preferably used as an interior material such as a wall material, a ceiling material, and a partition material, but can also be used as an exterior material such as an eaves ceiling material.
[0021]
The building material of the present invention can satisfy humidity control and / or deodorization as well as aesthetic demands. That is,
1. Since it has moderate moisture release characteristics, it has excellent humidity control function. For example,
Excellent balance, amount and speed of moisture absorption and moisture release.
[0022]
Therefore, it is possible to prevent condensation, warping, and the like, and to effectively suppress the growth of mold, mites, and the like.
2. Excellent deodorant function. For example, the building material of the present invention can adsorb volatile chemicals such as formaldehyde, toluene, xylene or odorous gases.
3. Furthermore, the unexpanded vermiculite particles can be raised by surface polishing or the like to form a granite-like surface, and a board material or the like having a beautiful appearance can be easily provided.
4). It is possible to recover the used building material of the present invention by collecting it and subjecting it to steam treatment at about 105 to 150 ° C. in an autoclave as it is. This is because vermiculite does not react with the substrate.
5. As a raw material for expanded vermiculite, a non-standard fine-grained product can be used rather preferably, so that resources can be used effectively.
[0023]
The method of the present invention converts the waste building material into soil when the building material is used as a building material without being reused after the building material is used.
[0024]
First, waste building materials are subjected to crushing, and this crushing can be performed by a general crushing means such as a crusher. When crushing, the crushing means is selected in consideration of the amount of waste building materials, crushing location, and the like. The crushing process can also be performed by carrying crushing means at the place where the waste material is generated.
[0025]
The degree of crushing is not particularly limited, and is appropriately selected depending on the intended use of the soil. For example, it is generally 5 mm or less.
[0026]
Furthermore, in order to remove the adsorbate that may be contained in the waste building materials, boiling may be performed before or after the crushing as necessary, or steam treatment at about 100 to 200 ° C. may be performed in an autoclave. it can.
[0027]
The waste building material thus crushed can be used as soil. That is, the well-drained artificial soil obtained by the present invention can be used for the purpose of plant growth, soil improvement, and ground improvement. These artificial soils play a role as silicate fertilizers as they are, but other components can be added according to their respective purposes. For example, various fertilizer components selected from N, P, K, and trace elements can be added.
[0028]
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples. The part represents part by mass.
[0029]
【Example】
Reference example 1
As a starting material, 27 parts of silica powder as a siliceous material, 27 parts of slaked lime as a calcareous material and 6 parts of pulp as a reinforcing fiber, and 40 parts of unexpanded vermiculite (produced in South Africa, particle size of 0.25 to 0.5 mm), Water is added to these and mixed to form a slurry having a solid content of about 12%. After forming a green sheet by a paper machine, it is cured under pressure in an autoclave (160 to 180 ° C., about 10 hours), and then 80 ° C. And dried to a predetermined moisture content to obtain a calcium silicate board (30 cm × 30 cm × 6 mm).
Reference example 2
A calcium silicate board was obtained in the same manner as in Reference Example 1 using 42 parts of silica powder, 42 parts of slaked lime, 6 parts of pulp and 10 parts of unexpanded vermiculite.
Reference example 3
Water was mixed with 27 parts of quartzite powder, 33 parts of slaked lime and 40 parts of unexpanded vermiculite to form a slurry having a solid content of about 12%, and this was subjected to a pressure curing treatment in an autoclave (190 to 200 ° C., about 10 hours). Subsequently, it was dried at a temperature below 80 ° C. until a predetermined moisture content was obtained, thereby obtaining a zonotlite-based calcium silicate board.
[0030]
According to the moisture absorption / release test measured by the method described in Reference Example 4, compared with the calcium silicate of Reference Example 1, the moisture absorption was slightly smaller and the moisture release rate was slightly higher.
Reference example 4
(Moisture absorption / release test)
By the following measuring method, the moisture absorption rate and the moisture absorption rate were measured for the building materials obtained in Reference Examples 1 and 2.
(1) Measuring method / device Measuring device: “IGA SORP” manufactured by Heiden Analytical Ltd.
Measuring method: Measurement is performed by filling a measuring basket of about 1 cc with the powder sample as it is and adjusting the bulk sample to about 2 to 3 mm.
[0031]
Figure 0004093747
Moisture absorption and moisture release rates were repeated for 30 minutes.
(2) Board 1 obtained in Reference Samples 1 and 2 for measurement sample 1. Calcium silicate board containing 40% by weight of unexpanded vermiculite Table 1 shows the measurement results of 10% by weight of unexpanded vermiculite calcium silicate board (3).
[0032]
[Table 1]
Figure 0004093747
[0033]
These results show that the building materials used for soiling of the present invention have an excellent balance between amount and speed in moisture absorption / release characteristics. As a result of the 30-minute period test of moisture absorption and moisture release, it was shown that the building material of the present invention has a good balance between moisture absorption and release, so that the baseline during moisture release is kept constant. From the above, it can be seen that the building material of the present invention is less likely to condense.
Examples 1-3
The calcium silicate building materials obtained in Reference Examples 1 to 3 were left in the open air for six months and then crushed using each to obtain granular products A to C having a particle size of about 3 to 5 mm. It was used for plant cultivation as artificial soil with good drainage, including acid fertilizer.
Examples 4-6
In Examples 1 to 3, artificial soils D to F were obtained in the same manner as in Example 1 except that the obtained granular products A to C were further steamed at about 150 ° C. for 1 hour.
[0034]
【The invention's effect】
According to the present invention, when a building material obtained by blending unexpanded vulcanite in a calcium silicate base material has been used, and it becomes a waste building material, the soil is not applied to the collection / disposal. Can be used effectively.

Claims (7)

未膨張バーミキュライトをケイ酸カルシウム系建材に配合してなる建材組成物を成形した建材からなる廃建材を破砕することによって土壌化することを特徴とする廃建材の土壌化方法。  A method of converting waste construction material into soil by crushing waste construction material made of a building material obtained by molding a building material composition obtained by blending unexpanded vermiculite with a calcium silicate construction material. 未膨張バーミキュライトをケイ酸カルシウム系建材に配合してなる建材組成物を成形した建材からなる廃建材を破砕し、さらに水蒸気処理することによって土壌化することを特徴とする廃建材の土壌化方法。  A method for converting a waste building material into soil, comprising crushing a waste building material comprising a building material composition obtained by blending unexpanded vermiculite with a calcium silicate building material, and further subjecting it to steam treatment. 未膨張バーミキュライトをケイ酸カルシウム系建材に配合してなる建材組成物を成形した建材からなる廃建材を水蒸気処理し、さらに破砕することによって土壌化することを特徴とする廃建材の土壌化方法。  A method for converting a waste building material into soil, comprising treating a waste building material made of a building material formed by blending unexpanded vermiculite with a calcium silicate building material by steaming and further crushing it. 未膨張バーミキュライトの配合量が建材組成物(固形分)の5〜70質量%である請求項1〜3のいずれか記載の廃建材の土壌化方法。  The method for converting a waste building material into a soil according to any one of claims 1 to 3, wherein the amount of unexpanded vermiculite is 5 to 70 mass% of the building material composition (solid content). 水蒸気処理が100〜200℃で行なわれる請求項2もしくは3記載の廃建材の土壌化方法。  The method for converting a waste building material into soil according to claim 2 or 3, wherein the steam treatment is performed at 100 to 200 ° C. 請求項1記載の廃建材の土壌化方法により得られた人工土壌。  Artificial soil obtained by the soil making method for waste building materials according to claim 1. さらに肥料成分を添加された請求項6記載の人工土壌。  7. The artificial soil according to claim 6, further comprising a fertilizer component.
JP2001342073A 2000-11-10 2001-11-07 Method for converting waste building materials into soil Expired - Lifetime JP4093747B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001342073A JP4093747B2 (en) 2001-11-07 2001-11-07 Method for converting waste building materials into soil
EP01982752A EP1340728A4 (en) 2000-11-10 2001-11-09 Composition for building material and building material
CN01803611A CN1395548A (en) 2000-11-10 2001-11-09 Composition for building material and building material
US10/181,216 US20030010258A1 (en) 2000-11-10 2001-11-09 Composition for building material and building material
AU14272/02A AU780369B2 (en) 2000-11-10 2001-11-09 Composition for building material and building material
TW90127878A TWI228445B (en) 2000-11-10 2001-11-09 Composition for building material and building material obtained therefrom
PCT/JP2001/009847 WO2002038516A1 (en) 2000-11-10 2001-11-09 Composition for building material and building material
AU2005200501A AU2005200501A1 (en) 2000-11-10 2005-02-04 Construction material composition, construction material, coating composition and waste construction material soil conversion method
US11/300,546 US20060090674A1 (en) 2000-11-10 2005-12-13 Construction material composition, construction material and production method thereof
US11/932,569 US20080060316A1 (en) 2000-11-10 2007-10-31 Construction material composition, construction material, coating composition and waste construction material soil conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342073A JP4093747B2 (en) 2001-11-07 2001-11-07 Method for converting waste building materials into soil

Publications (3)

Publication Number Publication Date
JP2003145100A JP2003145100A (en) 2003-05-20
JP2003145100A5 JP2003145100A5 (en) 2004-09-16
JP4093747B2 true JP4093747B2 (en) 2008-06-04

Family

ID=19155993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342073A Expired - Lifetime JP4093747B2 (en) 2000-11-10 2001-11-07 Method for converting waste building materials into soil

Country Status (1)

Country Link
JP (1) JP4093747B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063473B2 (en) * 2008-05-12 2012-10-31 三菱マテリアル建材株式会社 Method for producing granulated artificial soil

Also Published As

Publication number Publication date
JP2003145100A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
AU780369B2 (en) Composition for building material and building material
JP4027029B2 (en) Building material composition
US6355098B1 (en) Light-weight material containing blown perlite and methods of producing the same
JP4097420B2 (en) Cosmetic building materials
JP2002154864A5 (en)
JP4684241B2 (en) Building material composition
JP4093747B2 (en) Method for converting waste building materials into soil
JP3762851B2 (en) Humidity control building materials
JP3653523B2 (en) Carbonated cured body
JPH11347341A (en) Granular moisture absorbing and releasing material and manufacture thereof
JP4204218B2 (en) Composition for building materials
JP4070446B2 (en) Building materials
JP5063473B2 (en) Method for producing granulated artificial soil
KR101611426B1 (en) A environmental-friendly surface finishing additives of buildings, surface finishing composition comprising the same and environmental-friendly surface finishing of buildings
JP3989366B2 (en) Building material composition and building material
JP4633067B2 (en) Composition for building materials
JP4027081B2 (en) Composition for building materials
JP4413005B2 (en) Insulated wall structure
JP4416500B2 (en) Insulated wall structure
JP4413004B2 (en) Thermal insulation structural panel
JP4413006B2 (en) Thermal insulation panel
JP4413007B2 (en) Thermal insulation structural panel
JP2001048634A (en) Gypsum material produced with waste gypsum plaster board as raw material and its production
JP2006175829A (en) Manufacturing method of composite material
JPH10212173A (en) Fibrous heat insulating material and rock wool board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term