JP2006175829A - Manufacturing method of composite material - Google Patents

Manufacturing method of composite material Download PDF

Info

Publication number
JP2006175829A
JP2006175829A JP2004374092A JP2004374092A JP2006175829A JP 2006175829 A JP2006175829 A JP 2006175829A JP 2004374092 A JP2004374092 A JP 2004374092A JP 2004374092 A JP2004374092 A JP 2004374092A JP 2006175829 A JP2006175829 A JP 2006175829A
Authority
JP
Japan
Prior art keywords
composite material
green body
producing
material according
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004374092A
Other languages
Japanese (ja)
Inventor
Yasuaki Fukuda
恭彬 福田
Hirobumi Shioji
博文 塩地
Morikazu Yoshikawa
盛一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Shoji Construction Materials Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Shoji Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Shoji Construction Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004374092A priority Critical patent/JP2006175829A/en
Publication of JP2006175829A publication Critical patent/JP2006175829A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material which can have sound insulation properties (sound insulation, sound absorption), fire prevention and fire resistance, lightweight nature, outstanding compression and tensile strength (outstanding plastic deformation nature), moisture permeability or the like, and which can be used also as a structure proof strength surface material. <P>SOLUTION: In a manufacturing method of the composite material, a green body (II) is made by forming a raw material composition (II), which is rich in wood based fiber or synthetic polymer based fiber and is obtained by blending the wood based fiber or the synthetic polymer based fiber with a raw material composition (I) for obtaining an inorganic based plate or sheet, into a plate or sheet. A green body (I) which is a plate or sheet made by forming the raw material composition (I) is laminated with the green body (II). Subsequently, the hydrothermal or curing treatment of the laminate is carried out. In addition, even if a cross-head speed increases from 5 mm/minute to 50 mm/minute in a three-point bending test, the distortion plastic deformation amount of the composite material increases. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は複合材の製造法に関し、さらに詳しくは木質系繊維もしくは合成高分子系繊維の含有量が異なる層を含む複合材の製造法に関する。   The present invention relates to a method for manufacturing a composite material, and more particularly to a method for manufacturing a composite material including layers having different contents of wood-based fibers or synthetic polymer fibers.

従来、単一の板材もしくはシート材では得られない特性を得るために、異なる材質の板材もしくはシート材を積層することが数多く検討されている。しかしながら、優れた圧縮および引張り強度に加えて、優れた可塑変形性、通湿性等を有し得、構造耐力面材としても使用しうる複合材を得ることは困難であった。   Conventionally, in order to obtain characteristics that cannot be obtained with a single plate material or sheet material, many studies have been made on laminating plate materials or sheet materials of different materials. However, in addition to excellent compressive and tensile strength, it has been difficult to obtain a composite material that can have excellent plastic deformability, moisture permeability, and the like and can also be used as a structural load bearing material.

本発明は、防音性(遮音・吸音)、防火・耐火性、軽量性、優れた圧縮および引張り強度(優れた可塑変形性)、通湿性等を有し得、構造耐力面材としても使用しうる複合材の製造法を提供するものである。   The present invention can have soundproofing (sound insulation / sound absorption), fireproofing / fireproofing, light weight, excellent compression and tensile strength (excellent plastic deformation), moisture permeability, etc., and can also be used as a structural load bearing material. The present invention provides a method for producing a composite material.

本発明は、上記の課題を解決するために以下の発明を提供する。
(1)無機系の板もしくはシート材を得るための原料組成物(I)に、木質系繊維もしくは合成高分子系繊維を配合して得られる、木質系繊維もしくは合成高分子系繊維に富む原料組成物(II)を板もしくはシート状に形成したグリーンボディ(II)を得、該原料組成物(I)を板もしくはシート状に形成したグリーンボディ(I)と該グリーンボディ(II)とを積層し、ついで水熱もしくは硬化養生処理して、3点曲げ試験においてクロスヘッド速度が5mm/分から50mm/分に増加しても、ひずみ可塑変形量が増加する特性を有する複合材を得ることを特徴する複合材の製造法;
(2)無機系の板もしくはシート材が3点曲げ試験においてクロスヘッド速度が5mm/分から50mm/分に増加しても、ひずみ可塑変形量が増加する特性を有する(1)記載の複合材の製造法;
(3)原料組成物(I)が木質系繊維もしくは合成高分子系繊維を含んでいてもよい(1)もしくは(2)記載の複合材の製造法;
(4)木質系繊維がパルプもしくは植物繊維である(1)から(3)のいずれか記載の複合材の製造法;
(5)グリーンボディ(II)における木質系繊維もしくは合成高分子系繊維の含有量が2〜8wt%である(1)もしくは(2)記載の複合材の製造法;
(6)グリーンボディ(II)における木質系繊維もしくは合成高分子系繊維の含有量が3〜6wt%である(1)もしくは(2)記載の複合材の製造法;
(7)積層後に圧着される(1)もしくは(2)記載の複合材の製造法;
(8)圧着が脱水プレスである(7)記載の複合材の製造法;
(9)複合材が、クロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有する(1)記載の複合材の製造法;
(10)無機系の板もしくはシート材が、クロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有する(2)記載の複合材の製造法;
(11)少なくとも1枚のグリーンボディ(I)と少なくとも1枚のグリーンボディ(II)とを交互に積層してなる(1)〜(10)のいずれか記載の複合材の製造法;
(12)原料組成物(I)が未膨張バーミキュライトを基材に配合してなり、かつその配合量が全組成物(固形分)の3〜70質量%である組成物である(1)〜(11)のいずれか記載の記載の複合材の製造法;
(13)基材が、石膏、セメント、ケイ酸カルシウム、スラグ石膏の一種以上から選択される(12)記載の複合材の製造法;
(14)グリーンボディ(I)もしくはグリーンボディ(II)が抄造成形、押出し成形、プレス成形もしくは鋳込み成形で得られる(1)もしくは(2)記載の複合材;ならびに
(15)(1)〜(13)のいずれか記載の製造法で得られる複合材を用いてなる耐力壁構造、
である。
The present invention provides the following inventions in order to solve the above problems.
(1) Raw material rich in wood fiber or synthetic polymer fiber obtained by blending wood fiber or synthetic polymer fiber with raw material composition (I) for obtaining inorganic board or sheet material A green body (II) in which the composition (II) is formed into a plate or a sheet is obtained, and the green body (I) in which the raw material composition (I) is formed into a plate or a sheet and the green body (II) are obtained. Laminate, and then hydrothermal or curing curing treatment to obtain a composite material having the property of increasing the strain plastic deformation amount even if the crosshead speed is increased from 5 mm / min to 50 mm / min in the three-point bending test Manufacturing method of the characteristic composite material;
(2) The composite material according to (1), wherein the inorganic plate or sheet material has a characteristic that the amount of strain plastic deformation increases even when the crosshead speed is increased from 5 mm / min to 50 mm / min in a three-point bending test. Manufacturing method;
(3) The method for producing a composite material according to (1) or (2), wherein the raw material composition (I) may contain a wood fiber or a synthetic polymer fiber;
(4) The method for producing a composite material according to any one of (1) to (3), wherein the wood fiber is pulp or plant fiber;
(5) The method for producing a composite material according to (1) or (2), wherein the content of the wood fiber or the synthetic polymer fiber in the green body (II) is 2 to 8 wt%;
(6) The method for producing a composite material according to (1) or (2), wherein the content of the wood fiber or the synthetic polymer fiber in the green body (II) is 3 to 6 wt%;
(7) The method for producing a composite material according to (1) or (2), which is pressure-bonded after lamination;
(8) The method for producing a composite material according to (7), wherein the pressure bonding is a dehydration press;
(9) The composite material has the characteristics that even when the crosshead speed is increased from 5 mm / min to 50 mm / min, the strain plastic deformation amount increases and the bending strength does not substantially change or slightly increases (1 ) A method for producing the composite material described;
(10) When the inorganic plate or sheet material increases the crosshead speed from 5 mm / min to 50 mm / min, the strain plastic deformation increases and the bending strength does not substantially change or slightly increases. A method for producing the composite material according to (2) having characteristics;
(11) The method for producing a composite material according to any one of (1) to (10), wherein at least one green body (I) and at least one green body (II) are alternately laminated;
(12) The raw material composition (I) is a composition in which unexpanded vermiculite is blended with a base material, and the blending amount is 3 to 70% by mass of the total composition (solid content). (11) The method for producing a composite material according to any one of
(13) The method for producing a composite material according to (12), wherein the substrate is selected from one or more of gypsum, cement, calcium silicate, and slag gypsum;
(14) The composite material according to (1) or (2), wherein the green body (I) or the green body (II) is obtained by papermaking molding, extrusion molding, press molding or casting molding; and (15) (1) to (15) 13) Bearing wall structure using a composite material obtained by the production method according to any one of
It is.

本発明方法によれば、防音性(遮音・吸音)、防火・耐火性、軽量性、優れた圧縮および引張り強度(優れた可塑変形性)、通湿性等を有し得、構造耐力面材としても使用しうる複合材を得ることができる。   According to the method of the present invention, it can have soundproofing (sound insulation / sound absorption), fireproofing / fireproofing, lightness, excellent compression and tensile strength (excellent plastic deformation), moisture permeability, etc. A composite material that can also be used can be obtained.

本発明の複合材の製造法においては、無機系の板もしくはシート材を得るための原料組成物(I)に、木質系繊維もしくは合成高分子系繊維を配合して得られる、木質系繊維もしくは合成高分子系繊維に富む原料組成物(II)を板もしくはシート状に形成したグリーンボディ(II)を得、該原料組成物(I)を板もしくはシート状に形成したグリーンボディ(I)と該グリーンボディ(II)とを積層し、ついで水熱もしくは硬化養生処理して、3点曲げ試験においてクロスヘッド速度が5mm/分から50mm/分に増加しても、ひずみ可塑変形量が増加する特性を有する複合材を得る。   In the method for producing a composite material of the present invention, a wood fiber or a fiber obtained by blending a wood fiber or a synthetic polymer fiber with a raw material composition (I) for obtaining an inorganic board or sheet material, A green body (II) in which a raw material composition (II) rich in synthetic polymer fibers is formed into a plate or a sheet is obtained, and a green body (I) in which the raw material composition (I) is formed into a plate or a sheet; The green body (II) is laminated, then hydrothermally or hardened, and the amount of strain plastic deformation increases even when the crosshead speed is increased from 5 mm / min to 50 mm / min in a three-point bending test. To obtain a composite material having

本発明に係る原料組成物(I)は、次のような無機系の板もしくはシート材を得るための組成物である。すなわち、本発明における無機系の板もしくはシート材は、好適にはクロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有する。さらに好適には、その面材はクロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有する無機系材料からなる。この3点曲げ試験による測定はJIS A5430によることができる。本発明においては、無機系の板もしくはシート材が、クロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有しない場合でも、得られる複合材がこのような特性を有するものであればよい。   The raw material composition (I) according to the present invention is a composition for obtaining the following inorganic plate or sheet material. That is, the inorganic plate or sheet material of the present invention preferably has an increased amount of strain plastic deformation and a substantial change in bending strength even when the crosshead speed is increased from 5 mm / min to 50 mm / min. Or have slightly increasing properties. More preferably, the face material has a characteristic that the amount of strain plastic deformation increases and the bending strength does not substantially change or slightly increases even when the crosshead speed is increased from 5 mm / min to 50 mm / min. Made of inorganic material. Measurement by this three-point bending test can be performed according to JIS A5430. In the present invention, the amount of strain plastic deformation increases and the bending strength does not substantially change even when the cross-head speed is increased from 5 mm / min to 50 mm / min. Even when it does not have the property to increase, the composite material obtained should just have such a characteristic.

上記のように、本発明における好適な無機系の板もしくはシート材は木材と同様な上記の特性を有するが、無機系である点で木材と異なる。このような無機系材料としては、ケイ酸カルシウム、セメント、スラグ石膏等を主体とするものが挙げられるが、特に好適には、未膨張バーミキュライトを基材に配合してなり、かつその配合量が全組成物(固形分)の3〜70質量%である組成物を成形して得られるものが挙げられる。この基材は、後述するバーミキュライトの特性を実質的に劣化させないものであれば特に制限されないが、親水性であるのが好適である。このような親水性基材としては、たとえば、石膏、セメント、ケイ酸カルシウム、スラグ石膏またはこれらの類似物が挙げられる。これらは適宜併用することもできる。石膏は無水もしくは含水塩のいずれであってもよく、セメントもポルトランドセメントをはじめとする各種セメントを使用し得る。この場合、骨材および混和材が使用される。また、ケイ酸カルシウムとしては、とくに制限されないが、ケイ酸質原料と石灰をオートクレーブ中で水熱反応させて得られるもの(トバモライトもしくはゾノトライト)が一般的である。スラグ石膏は、高炉水砕スラグ粉末を20〜40%含み、2水石膏(排脱石膏)を60〜80%、ポルトランドセメント1〜5%混合されたものが一般的である。   As described above, a suitable inorganic board or sheet material in the present invention has the same characteristics as wood, but differs from wood in that it is inorganic. Examples of such inorganic materials include those mainly composed of calcium silicate, cement, slag gypsum, and the like, and particularly preferably, an unexpanded vermiculite is blended in a base material, and the blending amount thereof is What is obtained by shape | molding the composition which is 3-70 mass% of all the compositions (solid content) is mentioned. The substrate is not particularly limited as long as it does not substantially deteriorate the properties of vermiculite described later, but is preferably hydrophilic. Examples of such hydrophilic substrates include gypsum, cement, calcium silicate, slag gypsum, or the like. These can be used together as appropriate. The gypsum may be either anhydrous or hydrated salt, and various cements including Portland cement can be used as the cement. In this case, aggregates and admixtures are used. The calcium silicate is not particularly limited, but calcium silicate (tobermorite or zonotolite) obtained by hydrothermal reaction of a siliceous raw material and lime in an autoclave is common. The slag gypsum generally contains 20 to 40% of granulated blast furnace slag powder and 60 to 80% of dihydrate gypsum (exhaust gypsum) and 1 to 5% of Portland cement.

一方、上記基材に配合されるバーミキュライト(ヒル石)は、SiO、MgO、Alを主成分とする、黒雲母に類似した薄片状の鉱物であり、一般的な黒雲母系、緑泥石系のいずれでもよく、産地により組成等に差異があっても使用し得る。比表面積(窒素吸着法)は通常10m/g以下である。粒径も特に制限されないが、通常、5mm以下、好ましくは3mm以下,特に好ましくは0.5mm以下である。 On the other hand, vermiculite (hillstone) blended with the above base material is a flaky mineral similar to biotite mainly composed of SiO 2 , MgO, and Al 2 O 3 , and is commonly used in biotite, green mud. It may be any stone type, and can be used even if there is a difference in composition etc. depending on the production area. The specific surface area (nitrogen adsorption method) is usually 10 m 2 / g or less. The particle size is not particularly limited, but is usually 5 mm or less, preferably 3 mm or less, particularly preferably 0.5 mm or less.

本発明においては、このようなバーミキュライトを実質的に未膨張の状態で使用する。すなわち、バーミキュライトは、通常10〜20%程度の水を含んでおり、高温(層間水が脱離し始める約320℃から1000℃)での急激な加熱により脱水され、層に垂直の方向に著しく膨張して、ヒルのように伸び多孔体となる(多くは1000℃、1〜2秒で、もとの厚さの10〜30倍)。したがって、本発明においては実質的にこのような膨張を得ていないものが使用される。   In the present invention, such vermiculite is used in a substantially unexpanded state. That is, vermiculite usually contains about 10 to 20% of water, dehydrated by rapid heating at a high temperature (about 320 ° C. to 1000 ° C. at which interlayer water begins to desorb), and remarkably expands in a direction perpendicular to the layer. Then, it stretches like a hill and becomes a porous body (mostly 1000 ° C., 1-2 seconds, 10-30 times the original thickness). Accordingly, in the present invention, a material that does not substantially obtain such expansion is used.

さらに本発明においては、このバーミキュライトを基材に配合するに先立ち、活性化処理したものを用いるのが好適である。活性化処理は、バーミキュライトが吸着している有機物もしくは無機物を離脱させ、本来有する調湿、吸着性能等を再構成・回復させることを目的とする。たとえば、加圧水蒸気処理、食塩水による煮沸処理等が挙げられるが、好ましくは105℃〜200℃の飽和蒸気圧での水蒸気処理によることができる。   Furthermore, in the present invention, it is preferable to use a product that has been activated prior to blending the vermiculite into the substrate. The purpose of the activation treatment is to remove organic or inorganic substances adsorbed by vermiculite, and to reconstitute and recover the inherent humidity conditioning, adsorption performance, and the like. For example, pressurized steaming, boiling with saline, and the like can be mentioned, but steaming at a saturated steam pressure of 105 ° C. to 200 ° C. is preferable.

また、特に基材がケイ酸カルシウム系である場合には、活性化処理されていないバーミキュライトを水熱反応前に配合しても、その後にたとえば150℃〜200℃程度の飽和蒸気圧でオートクレーブ処理を受けるので、結果的に活性化処理がなされることになる。   In particular, when the substrate is a calcium silicate system, even if vermiculite that has not been activated is blended before the hydrothermal reaction, it is then autoclaved at a saturated vapor pressure of, for example, about 150 ° C. to 200 ° C. As a result, activation processing is performed.

原料組成物(I)において、基材へのバーミキュライトの配合は、その配合量が全組成物(固形分)の3〜70質量%、好ましくは10%〜50質量%になるように行われる。基材の種類、目的とする建材の性能、たとえば調湿度等、に応じて選ばれるが、好適な吸放湿の量および速度を得るためのバーミキュライトの十分なチャンネリング(ネットワーク)を形成させるには、一般的には15質量%以上が特に好ましい。   In the raw material composition (I), the blending of vermiculite into the base material is carried out so that the blending amount is 3 to 70% by weight, preferably 10% to 50% by weight of the total composition (solid content). It is selected according to the type of base material and the performance of the intended building material, such as humidity control, etc., but to form sufficient channeling (network) of vermiculite to obtain a suitable amount and speed of moisture absorption and desorption. Is generally particularly preferably 15% by mass or more.

上記の原料組成物(I)には、上記の未膨張バーミキュライトのほかに、その他の目的のために建材等の用途に応じてそれぞれの基材に固有に用いられる種々の配合材、さらには、その他を適宜配合し得る。その種類、配合量は、常法によることができ、下記の木質系繊維もしくは合成高分子系繊維等も配合しうるが、その他に、たとえば、骨材、補強材、混和剤、軽量化材等、より具体的にはガラス繊維、ヒュームドシリカ、発泡ガラス、シラスバルーン、アルミナバルーン、パーライト、ワラストナイト、セピオライト、砂利、砂、有機バインダー等が適宜選択される。   In the raw material composition (I), in addition to the unexpanded vermiculite, various compounding materials that are uniquely used for each base material depending on the use such as building materials for other purposes, Others can be appropriately blended. The kind and amount of blending can be determined by conventional methods, and the following wood fibers or synthetic polymer fibers can also be blended. In addition, for example, aggregates, reinforcing materials, admixtures, weight-reducing materials, etc. More specifically, glass fiber, fumed silica, foamed glass, shirasu balloon, alumina balloon, perlite, wollastonite, sepiolite, gravel, sand, organic binder and the like are appropriately selected.

本発明において、原料組成物(II)はこのような原料組成物(I)に、木質系繊維もしくは合成高分子系繊維を配合して得られる。木質系繊維としてはパルプ、植物繊維(麻繊維、ケフナ繊維、竹繊維等)の繊維が好適である。合成高分子系繊維としては、たとえばポリプロピレン、ポリ塩化ビニル、等の繊維が挙げられる。これらの繊維は、不織布、織物、編物等のいずれであってもよい。グリーンボディ(II)における木質系繊維もしくは合成高分子系繊維の含有量が2〜8wt%であるのが好適であり、さらに好適には3〜6wt%である。さらに、この原料組成物(II)にはレゾルシノール樹脂、水性エマルジョン樹脂等の高分子接着剤を含有していてもよい。レゾルシノール樹脂を用いる場合、木質系繊維に含まれるアルデヒドを吸着しうるので、用いるアルデヒド硬化剤の量を低減しうる。   In the present invention, the raw material composition (II) is obtained by blending such raw material composition (I) with wood fiber or synthetic polymer fiber. Pulp and vegetable fibers (hemp fiber, kefuna fiber, bamboo fiber, etc.) are suitable as the wood fiber. Examples of synthetic polymer fibers include fibers such as polypropylene and polyvinyl chloride. These fibers may be any of non-woven fabric, woven fabric, knitted fabric and the like. The content of the wood fiber or the synthetic polymer fiber in the green body (II) is preferably 2 to 8 wt%, and more preferably 3 to 6 wt%. Furthermore, this raw material composition (II) may contain a polymer adhesive such as a resorcinol resin or an aqueous emulsion resin. When the resorcinol resin is used, aldehyde contained in the wood fiber can be adsorbed, so that the amount of the aldehyde curing agent to be used can be reduced.

原料組成物(I)および(II)は、抄造成形、押出し成形、プレス成形、鋳込み成形等の常法により、板もしくはシートに形成され、グリーンボディ(I)および(II)とされる。好適には、一般的には工業的には、いわゆる抄造機を用いた抄造成形が選ばれる。   The raw material compositions (I) and (II) are formed into a plate or a sheet by conventional methods such as papermaking, extrusion, press molding, cast molding, etc., and become green bodies (I) and (II). In general, papermaking using a so-called papermaking machine is generally selected industrially.

このように未膨張バーミキュライトを用いて得られる無機系の板もしくはシート材は、通湿性を有し、適度な放湿特性を有するので、調湿機能に優れる。たとえば、吸湿および放湿のバランス、量および速度に優れる。したがって、結露、ソリ等を防止でき、さらにはカビ、ダニ等の繁殖を効果的に抑制できる。仮に、内側で結露が発生しても吸水性に優れているため、外側に水を吸水、放出しうる。さらに、消臭機能に優れる。たとえば、ホルムアルデヒド,トルエン,キシレン等の揮発性化学物質もしくは臭いのあるガス類を吸着・分解しうる。   Thus, the inorganic board or sheet material obtained by using unexpanded vermiculite has moisture permeability and appropriate moisture release characteristics, and therefore has an excellent humidity control function. For example, the balance, amount and speed of moisture absorption and moisture release are excellent. Therefore, it is possible to prevent condensation, warping, and the like, and to effectively suppress the growth of mold, mites, and the like. Even if dew condensation occurs on the inside, water absorption is excellent, and water can be absorbed and released to the outside. Furthermore, it has an excellent deodorizing function. For example, it can adsorb and decompose volatile chemicals such as formaldehyde, toluene and xylene or odorous gases.

さらには本発明の無機系の板もしくはシート材は上述のような可塑変形性を有するので、特に風圧、地震等により急激な変形(歪み)を受けても、応力吸収性に優れ、クラック、破壊等の発生しにくいという利点を有する。   Furthermore, since the inorganic plate or sheet material of the present invention has the above-described plastic deformation properties, it is excellent in stress absorption even when subjected to abrupt deformation (strain) due to wind pressure, earthquake, etc., and cracks and breaks. Etc. are less likely to occur.

本発明においては、少なくとも1枚の上記のグリーンボディ(I)と少なくとも1枚の上記のグリーンボディ(II)とを、積層する。たとえば、上記のグリーンボディ(I)と上記のグリーンボディ(II)と枚数は同数であっても異なっていてもよく、たとえば1+1、1+2、2+1、2+2、等のいずれであってもよい。これらは交互に積層されるのが通常であるが、必ずしも交互である必要はない。得られる複合材の両面は同一であっても、異なるものでもよく、目的に応じて選定しうる。積層したグリーンボディはついで圧着されるが、圧着としては脱水プレスが好適である。ついで、グリーンボディは、常法により水熱処理(ケイ酸カルシウム)もしくは硬化養生処理(セメント、石膏、スラグ石膏)して目的とする複合材を得る。得られる複合材は、木質系繊維もしくは合成高分子系繊維の含有量が異なる層を含むが、傾斜材とすることもできる。   In the present invention, at least one green body (I) and at least one green body (II) are laminated. For example, the number of green bodies (I) and the number of green bodies (II) may be the same or different, and may be any of 1 + 1, 1 + 2, 2 + 1, 2 + 2, etc. These are usually stacked alternately, but are not necessarily alternating. Both sides of the resulting composite material may be the same or different, and can be selected according to the purpose. The stacked green bodies are then pressure-bonded, and a dehydrating press is suitable for pressure bonding. Subsequently, the green body is hydrothermally treated (calcium silicate) or hardened and cured (cement, gypsum, slag gypsum) by a conventional method to obtain a desired composite material. The resulting composite material includes layers having different contents of wood fibers or synthetic polymer fibers, but can also be a graded material.

本発明の複合材の寸法は、用途により適宜選定しうる。   The dimensions of the composite material of the present invention can be appropriately selected depending on the application.

本発明の複合材は用途に応じ、常法により種々の製品形態に加工しうる。製品形態としては、たとえば、各種の内装部材、装飾用部材、外装部材等が挙げられる。   The composite material of the present invention can be processed into various product forms by a conventional method depending on the application. Examples of the product form include various interior members, decorative members, exterior members, and the like.

本発明の複合材は、木質系繊維もしくは合成高分子系繊維の含有量が異なる層を含む複合材を用いることにより、無機系と木質系繊維もしくは合成高分子系繊維との利点を生かしつつそれらの難点を補完しうるものである。たとえば、木質系の圧縮強度を向上するとともに無機系の引張り強度を向上し得;木質系を比重調整して軽量化し得;木質系を不燃化し得;剛性を高くしうるので開口部を設けたときの開口部への応力集中を緩和し得;無機系に比し締結具の保持力を向上しうるので、締結具の繰り返し使用を容易にする。さらに、本発明の複合材は、構造耐力面材としても使用し得るので、木質系材料の耐火性を向上させた耐力壁構造を提供しうる。   The composite material according to the present invention uses a composite material including layers having different contents of wood-based fibers or synthetic polymer fibers, while taking advantage of the advantages of inorganic and wood-based fibers or synthetic polymer fibers. It is possible to compensate for this difficulty. For example, the compressive strength of wood can be improved and the tensile strength of inorganic can be improved; the weight of wood can be adjusted to reduce the weight; the wood can be made non-combustible; The stress concentration at the opening can be alleviated; the holding power of the fastener can be improved as compared with the inorganic system, and thus the repeated use of the fastener is facilitated. Furthermore, since the composite material of the present invention can be used as a structural load-bearing surface material, it can provide a load-bearing wall structure in which the fire resistance of the wood-based material is improved.

本発明において得られる複合材は、締結金具で締結して用いうる。締結具としては、くぎ、小ねじ、ボルト・ナット、びょう、ステープルもしくはピンが好適に使用される。   The composite material obtained in the present invention can be used by being fastened with a fastener. As fasteners, nails, machine screws, bolts and nuts, bottles, staples or pins are preferably used.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお部は質量部を表わす。
実施例1
ケイ酸質原料としてケイ石粉末30部、石灰質原料として消石灰27部および補強繊維としてパルプ3部、さらに未膨張バーミキュライト(南ア産、粒径0.25〜0.5mm)40部を出発原料として、これらに水を添加して混合し固形分約12%のスラリーとし、抄造機によりシート状グリーンボディ(I)を形成させた。一方、上記と同一のスラリーにパルプ3部を配合し、同様にしてシート状グリーンボディ(II)を形成させた。ついで、シート状グリーンボディ(I)の両面にシート状グリーンボディ(II)を積層し、脱水プレスした。得られた複合グリーンボディをオートクレーブ中(160〜180℃、約10時間)で加圧養生させ、ついで80℃未満で所定の含水率になるまで乾燥させ、サンドイッチ構造のケイ酸カルシウムボード(910mm×1820mm×9.0mm(1.5mm/6.0mm/1.5mm))を得た。得られた珪酸カルシウムボード複合材の耐力試験を行なったところ、両面とも壁倍率(実倍率)3.6倍であった。比較のために、参考例1で得られたボード単独について耐力試験を行なったところ、壁倍率(実倍率)2.6倍であった。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples. The part represents part by mass.
Example 1
30 parts of siliceous powder as a siliceous raw material, 27 parts of slaked lime as a calcareous raw material and 3 parts of pulp as a reinforcing fiber, and 40 parts of unexpanded vermiculite (from South Africa, particle size of 0.25 to 0.5 mm) as starting raw materials, Water was added to these and mixed to form a slurry having a solid content of about 12%, and a sheet-like green body (I) was formed by a papermaking machine. On the other hand, 3 parts of pulp was added to the same slurry as above, and a sheet-like green body (II) was formed in the same manner. Next, the sheet-like green body (II) was laminated on both sides of the sheet-like green body (I) and dehydrated and pressed. The obtained composite green body was subjected to pressure curing in an autoclave (160 to 180 ° C., about 10 hours), then dried to a predetermined moisture content at less than 80 ° C., and sandwich structure calcium silicate board (910 mm × 1820 mm × 9.0 mm (1.5 mm / 6.0 mm / 1.5 mm)). When the proof stress test of the obtained calcium silicate board composite material was conducted, the wall magnification (actual magnification) was 3.6 times on both sides. For comparison, when the yield strength test was performed on the board alone obtained in Reference Example 1, the wall magnification (actual magnification) was 2.6 times.

なお、シート状グリーンボディ(I)単独で得られたケイ酸カルシウムボード(910mm×1820mm×6.0mm)は、3点曲げ試験においてクロスヘッド速度が5mm/分から50mm/分に増加しても、ひずみ可塑変形量が増加する特性を有するものであった。   In addition, the calcium silicate board (910 mm × 1820 mm × 6.0 mm) obtained by the sheet-like green body (I) alone, even if the crosshead speed is increased from 5 mm / min to 50 mm / min in the three-point bending test, The strain plastic deformation amount was increased.

本発明は、防音性(遮音・吸音)、防火・耐火性、軽量性、優れた圧縮および引張り強度(優れた可塑変形性)、通湿性等を有し得、構造耐力面材としても使用しうる複合材を提供提供しうる。   The present invention can have soundproofing (sound insulation / sound absorption), fireproofing / fireproofing, light weight, excellent compression and tensile strength (excellent plastic deformation), moisture permeability, etc., and can also be used as a structural load bearing material. Composite materials can be provided.

Claims (15)

無機系の板もしくはシート材を得るための原料組成物(I)に、木質系繊維もしくは合成高分子系繊維を配合して得られる、木質系繊維もしくは合成高分子系繊維に富む原料組成物(II)を板もしくはシート状に形成したグリーンボディ(II)を得、該原料組成物(I)を板もしくはシート状に形成したグリーンボディ(I)と該グリーンボディ(II)とを積層し、ついで水熱もしくは硬化養生処理して、3点曲げ試験においてクロスヘッド速度が5mm/分から50mm/分に増加しても、ひずみ可塑変形量が増加する特性を有する複合材を得ることを特徴する複合材の製造法。   Raw material composition (I) for obtaining an inorganic board or sheet material, which is obtained by blending wood fiber or synthetic polymer fiber, and is rich in wood fiber or synthetic polymer fiber ( II) to obtain a green body (II) formed into a plate or a sheet, and laminate the green body (I) formed from the raw material composition (I) into a plate or a sheet and the green body (II), Next, a composite characterized by obtaining a composite material having a characteristic that the amount of strain plastic deformation increases even if the crosshead speed is increased from 5 mm / min to 50 mm / min in a three-point bending test by hydrothermal or curing curing treatment. Method of manufacturing the material. 無機系の板もしくはシート材が、3点曲げ試験においてクロスヘッド速度が5mm/分から50mm/分に増加しても、ひずみ可塑変形量が増加する特性を有する請求項1記載の複合材の製造法。   The method for producing a composite material according to claim 1, wherein the inorganic plate or sheet material has a characteristic that the amount of strain plastic deformation increases even when the crosshead speed is increased from 5 mm / min to 50 mm / min in a three-point bending test. . 原料組成物(I)が木質系繊維もしくは合成高分子系繊維を含んでいてもよい請求項1もしくは2記載の複合材の製造法。   The method for producing a composite material according to claim 1 or 2, wherein the raw material composition (I) may contain wood fibers or synthetic polymer fibers. 木質系繊維がパルプもしくは植物繊維である請求項1〜3のいずれか記載の複合材の製造法。   The method for producing a composite material according to any one of claims 1 to 3, wherein the wood fiber is pulp or plant fiber. グリーンボディ(II)における木質系繊維もしくは合成高分子系繊維の含有量が2〜8wt%である請求項1もしくは2記載の複合材の製造法。   The method for producing a composite material according to claim 1 or 2, wherein the content of the wood fiber or the synthetic polymer fiber in the green body (II) is 2 to 8 wt%. グリーンボディ(II)における木質系繊維もしくは合成高分子系繊維の含有量が3〜6wt%である請求項1もしくは2記載の複合材の製造法。   The method for producing a composite material according to claim 1 or 2, wherein the content of the wood fiber or the synthetic polymer fiber in the green body (II) is 3 to 6 wt%. 積層後に圧着される請求項1もしくは2記載の複合材の製造法。   The method for producing a composite material according to claim 1 or 2, wherein the composite material is pressure-bonded after lamination. 圧着が脱水プレスである請求項7記載の複合材の製造法。   The method for producing a composite material according to claim 7, wherein the pressure bonding is a dehydration press. 複合材が、クロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有する請求項1記載の複合材の製造法。   The composite material according to claim 1, wherein the composite has a characteristic that the amount of strain plastic deformation increases and the bending strength does not substantially change or slightly increases even when the crosshead speed is increased from 5 mm / min to 50 mm / min. A method of manufacturing composite materials. 無機系の板もしくはシート材が、クロスヘッド速度が5mm/分から50mm/分に増加してもひずみ可塑変形量が増加し、かつ曲げ強度は実質的に変わらないか、もしくはやや増加する特性を有する請求項2記載の複合材の製造法。   The inorganic plate or sheet material has the characteristics that the strain plastic deformation increases and the bending strength does not substantially change or slightly increases even when the crosshead speed is increased from 5 mm / min to 50 mm / min. A method for producing the composite material according to claim 2. 少なくとも1枚のグリーンボディ(I)と少なくとも1枚のグリーンボディ(II)とを交互に積層してなる請求項1〜10のいずれか記載の複合材の製造法。   The method for producing a composite material according to any one of claims 1 to 10, wherein at least one green body (I) and at least one green body (II) are alternately laminated. 原料組成物(I)が未膨張バーミキュライトを基材に配合してなり、かつその配合量が全組成物(固形分)の3〜70質量%である組成物である請求項1〜10のいずれか記載の記載の複合材の製造法。   The raw material composition (I) is a composition obtained by blending unexpanded vermiculite with a base material, and the blending amount is 3 to 70% by mass of the total composition (solid content). A method for producing the composite material according to any one of the above. 基材が、石膏、セメント、ケイ酸カルシウム、スラグ石膏の一種以上から選択される請求項12記載の複合材の製造法。   The method for producing a composite material according to claim 12, wherein the substrate is selected from one or more of gypsum, cement, calcium silicate, and slag gypsum. グリーンボディ(I)もしくはグリーンボディ(II)が抄造成形、押出し成形、プレス成形もしくは鋳込み成形で得られる請求項1もしくは2記載の複合材の製造法。   The method for producing a composite material according to claim 1 or 2, wherein the green body (I) or the green body (II) is obtained by papermaking, extrusion, press molding or casting. 請求項1〜14のいずれか記載の製造法で得られる複合材を用いてなる耐力壁構造。   A load-bearing wall structure using the composite material obtained by the production method according to claim 1.
JP2004374092A 2004-12-24 2004-12-24 Manufacturing method of composite material Ceased JP2006175829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374092A JP2006175829A (en) 2004-12-24 2004-12-24 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374092A JP2006175829A (en) 2004-12-24 2004-12-24 Manufacturing method of composite material

Publications (1)

Publication Number Publication Date
JP2006175829A true JP2006175829A (en) 2006-07-06

Family

ID=36730379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374092A Ceased JP2006175829A (en) 2004-12-24 2004-12-24 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP2006175829A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731516A (en) * 1980-08-02 1982-02-20 Dantani Plywood Co Manufacture of inorganic board material
JPH07156328A (en) * 1993-12-10 1995-06-20 Sekisui Chem Co Ltd Production of hydraulic inorganic laminate
JP2002059504A (en) * 2000-08-17 2002-02-26 Daiwabo Co Ltd Fiber reinforced cement board
JP2004182515A (en) * 2002-12-02 2004-07-02 Mitsubishi Shoji Construction Materials Corp Building material composition and building material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731516A (en) * 1980-08-02 1982-02-20 Dantani Plywood Co Manufacture of inorganic board material
JPH07156328A (en) * 1993-12-10 1995-06-20 Sekisui Chem Co Ltd Production of hydraulic inorganic laminate
JP2002059504A (en) * 2000-08-17 2002-02-26 Daiwabo Co Ltd Fiber reinforced cement board
JP2004182515A (en) * 2002-12-02 2004-07-02 Mitsubishi Shoji Construction Materials Corp Building material composition and building material

Similar Documents

Publication Publication Date Title
JP6437568B2 (en) Dry building material mixture and thermal insulation plaster formed therefrom
JP2017502916A5 (en)
WO2002038516A1 (en) Composition for building material and building material
JP2017501322A (en) Thermal insulation panel
JP4027029B2 (en) Building material composition
JP4097420B2 (en) Cosmetic building materials
JP4684241B2 (en) Building material composition
JP2006175829A (en) Manufacturing method of composite material
JP2006175832A (en) Composite material
JP4070446B2 (en) Building materials
KR101552212B1 (en) Lec building material reducing hazardous substance and controlling humidity
JP4413005B2 (en) Insulated wall structure
JP4204218B2 (en) Composition for building materials
JP4416500B2 (en) Insulated wall structure
JP4413004B2 (en) Thermal insulation structural panel
JP4008169B2 (en) Manufacturing method of inorganic board
JP4633067B2 (en) Composition for building materials
JP2004176357A (en) Design building material
JP3989366B2 (en) Building material composition and building material
JP4413007B2 (en) Thermal insulation structural panel
JPH0112670B2 (en)
JP4027081B2 (en) Composition for building materials
JP2005194704A (en) Double-sided structural panel
JP4163367B2 (en) Wood cement board
JP2005194700A (en) Single-sided structural panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120424