JPH07156328A - Production of hydraulic inorganic laminate - Google Patents

Production of hydraulic inorganic laminate

Info

Publication number
JPH07156328A
JPH07156328A JP31031793A JP31031793A JPH07156328A JP H07156328 A JPH07156328 A JP H07156328A JP 31031793 A JP31031793 A JP 31031793A JP 31031793 A JP31031793 A JP 31031793A JP H07156328 A JPH07156328 A JP H07156328A
Authority
JP
Japan
Prior art keywords
hydraulic inorganic
laminate
cement
layers
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31031793A
Other languages
Japanese (ja)
Inventor
Eiji Kimura
英治 木村
Yoichi Ikemoto
陽一 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP31031793A priority Critical patent/JPH07156328A/en
Publication of JPH07156328A publication Critical patent/JPH07156328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PURPOSE:To provide a method of producing a dense, hydraulic inorganic laminate which, despite a low fiber content, is excellent in flexural strength, impact resistance and freezing damage resistance. CONSTITUTION:In order to obtain a hydraulic inorganic laminate consisting of a plurality of layers containing different amounts of reinforcing fibers, a plurality of unhardened forming bodies obtained from the hydraulic inorganic compositions containing different amounts of reinforcing fibers are built up to the desired layer structure and such layers are pressed into shape while being vibrated in the layered condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水硬性無機質積層体の製
造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a hydraulic inorganic laminate.

【0002】[0002]

【従来の技術】セメント、モルタル、石膏等の水硬性無
機物質と水とを押出成形又は押圧成形し、硬化して得ら
れた硬化体は古くから種々の構造材に好適に使用されて
いる。これらの水硬性無機質硬化体は高い圧縮強度を有
する反面、曲げ強度及び耐衝撃性に劣るため補強繊維等
で補強して使用されている(特公昭57−19009号
公報参照)。しかし、強度を向上させるために大量に繊
維を使用してもコスト高になるだけでなく、繊維の分散
性が低下するので、かえって強度低下につながる欠点が
あった。
2. Description of the Related Art A cured product obtained by extruding or press-molding a hydraulic inorganic substance such as cement, mortar and gypsum and water and curing it has long been suitably used for various structural materials. These hydraulic inorganic cured products have a high compressive strength, but are inferior in bending strength and impact resistance, so that they are used by being reinforced with reinforcing fibers and the like (see Japanese Patent Publication No. 57-1909). However, even if a large amount of fibers are used to improve the strength, not only the cost becomes high, but also the dispersibility of the fibers is lowered, so that there is a drawback that the strength is rather lowered.

【0003】そこで、曲げ強度、耐衝撃性に優れた水硬
性無機質成形体を作るために繊維を有効に利用する手法
が開発されてきた。このような手法として、例えば、特
開昭63−257631号公報では、積層体を作製する
ことにより補強繊維を厚み方向で分布局在化させる方法
が提案されている。
Therefore, a method for effectively utilizing fibers has been developed in order to produce a hydraulic inorganic molding having excellent bending strength and impact resistance. As such a method, for example, Japanese Patent Application Laid-Open No. 63-257631 proposes a method of producing a laminate to localize the reinforcing fibers in the thickness direction.

【0004】しかし、このような積層体を作製するとき
に問題となるのは、各層間の積層界面での接着性であ
る。すなわち、層間の接着性が悪ければ積層による曲げ
強度向上の効果は低下するとともに、層間で剥離しやす
くなるために耐凍害性が著しく低下してしまう。この欠
点を解決する方法として、例えば特開昭55−1624
7号公報においては、成形体を積層し押圧成形するとク
ラックが生じやすいため、層間に水溶性合成樹脂エマル
ジョンを塗布してクラックを防ぐことが提案されてい
る。
However, a problem when producing such a laminate is the adhesiveness at the laminate interface between the layers. That is, if the adhesion between the layers is poor, the effect of improving the bending strength due to the lamination is reduced, and the layers are easily peeled off, so that the frost damage resistance is significantly reduced. As a method for solving this drawback, for example, JP-A-55-1624
In Japanese Patent Laid-Open No. 7-76, since cracks are easily generated when the molded bodies are laminated and pressed, it is proposed to apply a water-soluble synthetic resin emulsion between layers to prevent the cracks.

【0005】しかし、上記のような方法では緻密な成形
体を得ることは難しく、強度及び耐凍害性の著しい向上
は期待できないうえ、設備面においても複雑なものが要
求されるため不利となる。
However, it is difficult to obtain a dense molded product by the above-mentioned method, and it is not possible to expect a remarkable improvement in strength and frost damage resistance, and it is also disadvantageous in that it requires complicated equipment.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みて、少ない繊維含有量で曲げ強度、耐衝撃性、耐凍
害性に優れる緻密な水硬性無機質積層体の製造方法を提
供することを目的としている。
In view of the above circumstances, the present invention provides a method for producing a dense hydraulic inorganic laminate which is excellent in bending strength, impact resistance and frost damage resistance with a small fiber content. It is an object.

【0007】[0007]

【課題を解決するための手段】本発明にかかる水硬性無
機質積層体の製造方法は、このような目的を達成するた
めに、水硬性無機物質に対する補強繊維の配合量が異な
る複数の層からなる水硬性無機質積層体を得るにあた
り、補強繊維の配合量が異なる水硬性無機質組成物から
得られた複数の未硬化成形体を所望の層構成に積層し、
この積層した状態で振動を与えながら押圧成形する構成
とした。
In order to achieve such an object, the method for producing a hydraulic inorganic laminate according to the present invention comprises a plurality of layers having different blending amounts of reinforcing fibers with respect to the hydraulic inorganic substance. In obtaining a hydraulic inorganic laminate, a plurality of uncured molded bodies obtained from hydraulic inorganic compositions having different blending amounts of reinforcing fibers are laminated in a desired layer configuration,
In this laminated state, pressure molding is performed while applying vibration.

【0008】上記構成において、積層体を構成する層の
数は、特に限定されないが、2層とすることが好まし
い。水硬性無機質組成物とは、水で練ったとき硬化性を
示す無機物質、すなわち、水硬性無機物質を主成分とし
て含むものをいう。水硬性無機物質としては、特に限定
されないが、例えば、普通ポルトランドセメント、特殊
ポルトランドセメント、アルミナセメント、ローマンセ
メント等の単身セメント、耐酸セメント、耐火セメン
ト、水ガラスセメント等の特殊セメント、石膏、石灰、
マグネシアセメント等の気硬性セメントなどが挙げら
れ、特に強度及び耐火性の点でポルトランドセメント、
アルミナセメントが好適に使用される。また、これらは
単独で使用されてもよいし、2種類以上併用されてもよ
い。
In the above structure, the number of layers constituting the laminate is not particularly limited, but it is preferable that the number of layers is two. The hydraulic inorganic composition refers to an inorganic substance that exhibits curability when kneaded with water, that is, a composition that contains a hydraulic inorganic substance as a main component. The hydraulic inorganic material is not particularly limited, for example, ordinary Portland cement, special Portland cement, alumina cement, single cement such as Roman cement, acid-resistant cement, fire-resistant cement, special cement such as water glass cement, gypsum, lime,
Air-hardening cement such as magnesia cement can be mentioned, and especially Portland cement in terms of strength and fire resistance,
Alumina cement is preferably used. These may be used alone or in combination of two or more.

【0009】水硬性無機物質に添加される水は、量を少
なくすると、水硬性無機物質の硬化が充分になされず、
組成物の分散性が低下し、量を多くすると、最終的に得
られる硬化体の強度が低下するので、水硬性無機物質1
00重量に対して25〜40重量部が好ましい。本発明
において用いられる補強繊維は、積層体に付与したい性
能に応じ任意のものが使用でき、例えば、ビニロン、ポ
リアミド、ポリエステル、ポリプロピレン、アラミド、
レーヨン等の合成繊維、カーボン繊維、ガラス繊維、チ
タン酸カリウム、鋼等の無機繊維、パルプ、麻等の天然
繊維などが使用できる。また、これらは単独で使用され
てもよいし、2種類以上併用されてもよい。
When the amount of water added to the hydraulic inorganic substance is reduced, the hydraulic inorganic substance is not sufficiently cured,
If the dispersibility of the composition is reduced and the amount thereof is increased, the strength of the finally obtained cured product is reduced. Therefore, the hydraulic inorganic substance 1
25 to 40 parts by weight is preferable with respect to 00 parts by weight. The reinforcing fiber used in the present invention may be any one depending on the performance desired to be imparted to the laminate, for example, vinylon, polyamide, polyester, polypropylene, aramid,
Synthetic fibers such as rayon, carbon fibers, glass fibers, potassium titanate, inorganic fibers such as steel, and natural fibers such as pulp and hemp can be used. These may be used alone or in combination of two or more.

【0010】上記補強繊維は、その繊維径が、細くなり
すぎると、混合時に再凝集し、交絡によりファイバーボ
ールが形成され易くなり、最終的に得られる硬化体の強
度はそれ以上改善されず、その繊維径が太くなるか、繊
維長が短くなりすぎると、引っ張り強度向上などの補強
効果が小さく、また、繊維長が長くなりすぎると、繊維
の分散性及び配向性が低下する傾向があるので、繊維径
を0.1〜40デニール、繊維長を1〜15mm程度と
することが好ましい。
If the fiber diameter of the above-mentioned reinforcing fiber becomes too thin, it will be re-aggregated during mixing and fiber balls will be easily formed by entanglement, and the strength of the finally obtained cured product will not be further improved. If the fiber diameter becomes thicker or the fiber length becomes too short, the reinforcing effect such as improvement in tensile strength is small, and if the fiber length becomes too long, the dispersibility and orientation of the fibers tend to decrease. It is preferable that the fiber diameter is 0.1 to 40 denier and the fiber length is about 1 to 15 mm.

【0011】上記補強繊維の配合量は少なくなると補強
効果が得られず、多くなると繊維の分散性及び積層界面
の接着性が低下するので、たとえば、2つの層からなる
積層体を得る場合、第1の層を構成する第1の水硬性無
機質組成物として水硬性無機物質100重量部に対して
0.5〜3.0重量部の補強繊維を添加したものを、第
2の層を構成する水硬性無機質組成物として水硬性無機
物質100重量部に対して3.5〜7重量部の補強繊維
を添加したものを用いることが好ましい。
When the amount of the reinforcing fiber is small, the reinforcing effect cannot be obtained, and when the amount is large, the dispersibility of the fiber and the adhesiveness at the laminating interface are deteriorated. Therefore, for example, when a laminated body composed of two layers is obtained, The first hydraulic inorganic composition constituting the layer 1 is obtained by adding 0.5 to 3.0 parts by weight of the reinforcing fiber to 100 parts by weight of the hydraulic inorganic substance to form the second layer. As the hydraulic inorganic composition, it is preferable to use one in which 3.5 to 7 parts by weight of the reinforcing fiber is added to 100 parts by weight of the hydraulic inorganic material.

【0012】なお、本発明において、水硬性無機質組成
物には、水溶性高分子物質、無機質充填材等を必要に応
じて添加するようにしても構わない。水溶性高分子物質
としては、水に溶解して粘性を付与し、水硬性無機物質
と水から得られる組成物の流動性を高めて賦形性を良好
なものとし、また、水硬性無機質硬化体中の過剰な水分
を吸収し、セメント粒子間の空隙を埋める接着剤となり
得る高分子物質ならば特に限定されず、例えばメチルセ
ルロース、ヒドロキシメチルセルロース、ヒドロキシエ
チルセルロース、カルボキシメチルセルロース、ヒドロ
キシプロピルメチルセルロース等のセルロースエーテ
ル、ポリビニルアルコール、ポリアクリル酸、リグニン
スルホン酸塩等が挙げられる。
In the present invention, a water-soluble polymer material, an inorganic filler, etc. may be added to the hydraulic inorganic composition as needed. As a water-soluble polymeric substance, it dissolves in water to give viscosity, and enhances the fluidity of the composition obtained from the hydraulic inorganic substance and water to improve the shapeability. It is not particularly limited as long as it is a polymer substance that can absorb excess water in the body and serve as an adhesive that fills voids between cement particles, and examples thereof include cellulose ethers such as methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and hydroxypropyl methyl cellulose. , Polyvinyl alcohol, polyacrylic acid, lignin sulfonate, and the like.

【0013】水溶性高分子物質は、その添加量が多くな
ると、最終的に得られる硬化体の耐水性が低下する傾向
があるので、添加量を水硬性無機物質100重量部に対
して5重量部以下とすることが好ましい。無機質充填材
としては、水に溶解せず、水硬性無機物質の硬化反応を
阻害せず、本発明の製造方法で用いられるあらゆる構成
材料の作用を著しく阻害しないものならば、特に限定さ
れず、例えば珪砂、川砂等のセメントモルタル用骨材、
フライアッシュ、シリカフラワー、シリカフューム、ベ
ントナイト、高炉スラグ等の混合セメント用混合材、セ
ピオライト、ウォラストナイト、マイカ等の天然鉱物、
炭酸カルシウム、珪藻土等が挙げられる。さらに軽量化
を図る目的で、シリカバルーン、パーライト、フライア
ッシュバルーン、シラスバルーン、ガラスバルーン、発
泡焼生粘土等の無機質天然発泡材等を使用してもよい。
また、これらは単独で使用されてもよいし、2種類以上
併用されてもよい。
If the amount of the water-soluble polymer substance added increases, the water resistance of the finally obtained cured product tends to decrease, so the amount added is 5 parts by weight per 100 parts by weight of the hydraulic inorganic substance. It is preferably not more than a part. The inorganic filler is not particularly limited as long as it does not dissolve in water, does not inhibit the curing reaction of the hydraulic inorganic substance, and does not significantly inhibit the action of any constituent material used in the production method of the present invention, For example, aggregates for cement mortar such as silica sand and river sand,
Mixture for mixed cement such as fly ash, silica flower, silica fume, bentonite, blast furnace slag, natural minerals such as sepiolite, wollastonite, mica, etc.
Examples include calcium carbonate and diatomaceous earth. For the purpose of further reducing the weight, inorganic natural foam materials such as silica balloons, perlite, fly ash balloons, shirasu balloons, glass balloons and foamed and baked clay may be used.
These may be used alone or in combination of two or more.

【0014】なお、無機質充填材は、平均粒径が小さく
なると成形体の製造が困難となり、大きくなると無機質
充填材の粒子が分散し難くなる傾向があるので、平均粒
径が0.03〜500μm程度のものが好ましい。さら
に、無機質充填材は、少なくなると補強繊維の分散性が
低下する傾向があるので、水硬性無機物質100重量部
に対して100重量部以下が好ましい。
When the average particle size of the inorganic filler is small, it becomes difficult to produce a molded product, and when it is large, the particles of the inorganic filler tend to be difficult to disperse, so that the average particle size is 0.03 to 500 μm. Something is preferable. Furthermore, since the dispersibility of the reinforcing fiber tends to decrease when the amount of the inorganic filler decreases, 100 parts by weight or less is preferable with respect to 100 parts by weight of the hydraulic inorganic substance.

【0015】未硬化成形体を製造する方法としては、特
に限定されないが、一般に、まず、水硬性無機物質、
水、補強繊維及び必要に応じて水溶性高分子物質、無機
質充填材を混合して水硬性無機質組成物を得る。つぎ
に、この水硬性無機質組成物を押出機で押出すことで得
ることができる。押圧成形の際に振動を与える方法とし
ては、一般に、押圧金型で押圧成形しながら押圧金型を
振動させる方法が用いられ、たとえば、振動モータ、バ
イブレーター、振動子等を押圧金型に取り付けて押圧金
型を振動させる方法が挙げられる。
The method for producing the uncured molded body is not particularly limited, but generally, first, a hydraulic inorganic substance,
Water, a reinforcing fiber and, if necessary, a water-soluble polymer substance and an inorganic filler are mixed to obtain a hydraulic inorganic composition. Next, the hydraulic inorganic composition can be obtained by extruding it with an extruder. As a method of giving vibration during press molding, generally, a method of vibrating the press mold while press molding with a press mold is used, for example, by attaching a vibration motor, a vibrator, a vibrator or the like to the press mold. A method of vibrating the pressing die may be used.

【0016】押圧金型に与える振動の振動数は、低すぎ
ると組成物の金型内での流動性が不良になり、高すぎる
と振動を与えるために多くのエネルギーが必要となる傾
向があるので、100〜10000Hz程度の振動数が
好ましい。また、その振動の振幅は、小さすぎると押出
された組成物の金型内での流動性が不良となり、大きす
ぎると得られる成形体の直線性を低下させる傾向がある
ので、1〜500μm程度の振幅とすることが好まし
い。
If the vibration frequency of the vibration applied to the pressing die is too low, the fluidity of the composition in the die tends to be poor, and if it is too high, a large amount of energy tends to be required to apply the vibration. Therefore, a frequency of about 100 to 10,000 Hz is preferable. If the amplitude of the vibration is too small, the fluidity of the extruded composition in the mold tends to be poor, and if it is too large, the linearity of the obtained molded article tends to be deteriorated, so about 1 to 500 μm. Is preferable.

【0017】押圧金型を振動させる方向は、特に限定さ
れず、上下方向、左右方向でもよいし、斜め方向でもよ
い。因に、このような振動押圧成形に用いられる装置と
しては、例えば、昭和63年度常滑窯業技術センター研
究成果報告書に記載されている「振動プレス成形機」な
どが挙げられる。
The direction in which the pressing die is vibrated is not particularly limited, and may be the vertical direction, the horizontal direction, or the diagonal direction. Incidentally, as an apparatus used for such vibration pressure molding, for example, there is a "vibration press molding machine" described in the Tokoname Ceramics Technology Center Research Results Report in 1988.

【0018】押圧成形後の積層体から所望の硬化体を得
るには、時間をかけて自然養生を行っても構わないが、
硬化反応の遅い例えばポルトランドセメントのような水
硬性無機物質を使用する場合には積層体を加熱、加湿す
るオートクレープ養生を施すなど、従来公知の方法によ
り硬化反応を促進でき、機械的物性を向上することがで
きる。
In order to obtain a desired cured product from the press-molded laminate, natural curing may be carried out for a long time.
Slow curing reaction For example, when using a hydraulic inorganic substance such as Portland cement, the curing reaction can be promoted by conventionally known methods, such as heating and humidifying the laminate for autoclave curing, improving mechanical properties. can do.

【0019】[0019]

【作用】上記構成によれば、複数の未硬化成形体を積層
し、振動を与えながら押圧成形すると、各未硬化成形体
の積層界面において、各層の成分が振動によって混ざり
合った積層体となる。
According to the above construction, when a plurality of uncured molded bodies are laminated and pressure-molded while applying vibration, the components of each layer are mixed by vibration at the laminated interface of each uncured molded body. .

【0020】[0020]

【実施例】以下に、本発明の実施例を、比較例と対比さ
せつつさらに詳しく説明する。 (実施例1〜7、比較例1〜5)表1または表2に示し
た配合組成の第1層または第2層となる水硬性無機組成
物を得たのち、この組成物をそれぞれ押出方向に100
mmの平行部を有する金型が設置されたスクリュウ径1
00mmの真空押出成形機(MV−FM−A−1型)で
押出成形し、幅200mm、厚み6mmの繊維量の異な
る板状の第1及び第2の未硬化成形体を成形した。
EXAMPLES Examples of the present invention will be described in more detail below in comparison with comparative examples. (Examples 1 to 7, Comparative Examples 1 to 5) After obtaining a hydraulic inorganic composition to be the first layer or the second layer having the blending composition shown in Table 1 or Table 2, the composition was extruded in the respective extrusion directions. To 100
Screw diameter 1 with a die having a parallel part of mm
It was extrusion-molded with a 00 mm vacuum extrusion molding machine (MV-FM-A-1 type) to form plate-shaped first and second uncured molded bodies having a width of 200 mm and a thickness of 6 mm and different fiber amounts.

【0021】得られた2枚の未硬化成形体を150mm
×150mmの大きさに切断した後、振動プレス成形機
(アサヒエンジニアリング社製、商品名:SA−50)
に積層して供給し、30kg/cm2 の圧力で5秒間、
振動数1000Hz、振幅10μmの振動を与えながら
押圧成形し、300mm×300mm×6mmの平板状
の積層体を得た。但し、比較例1〜3については振動を
与えなかった。
150 mm of the two uncured molded bodies obtained
After cutting into a size of 150 mm, a vibration press molding machine (Asahi Engineering Co., Ltd., trade name: SA-50)
Layered on and supplied at a pressure of 30 kg / cm 2 for 5 seconds,
Press-molding was performed while applying a vibration with a frequency of 1000 Hz and an amplitude of 10 μm to obtain a flat plate-shaped laminate of 300 mm × 300 mm × 6 mm. However, no vibration was applied to Comparative Examples 1 to 3.

【0022】そして、得られた積層体を60℃、90%
RHにおいて6時間養生硬化して硬化体を得た。このよ
うにして得られた硬化体を、以下の物性評価試験に供
し、その結果を表1,2に併せて示した。なお、表1,
2中の各成分、すなわち、セメントとしては、普通ポル
トランドセメント(小野田セメント社製)、フライアッ
シュとしては、JIS A 6201相当品(真比重
2.3、嵩比重0.6:関電化工社製)、ビニロン繊維
としては、繊維径15μm、繊維長3mmのもの、ポリ
プロピレン繊維としては、繊維径20μm、繊維長3m
mのもの、ヒドロキシプロピルメチルセルロースとして
は、20℃における2%水溶液の粘度が30000cp
sのものを示す。
Then, the obtained laminated body is treated at 60 ° C. and 90%.
Curing was carried out in RH for 6 hours to obtain a cured product. The cured product thus obtained was subjected to the following physical property evaluation tests, and the results are also shown in Tables 1 and 2. In addition, Table 1,
Each component in 2, ie, cement is ordinary Portland cement (manufactured by Onoda Cement Co., Ltd.), and fly ash is JIS A 6201 equivalent (true specific gravity 2.3, bulk specific gravity 0.6: manufactured by Kanden Kako). The vinylon fiber has a fiber diameter of 15 μm and a fiber length of 3 mm, and the polypropylene fiber has a fiber diameter of 20 μm and a fiber length of 3 m.
The viscosity of a 2% aqueous solution at 20 ° C. is 30000 cp.
s is shown.

【0023】また、各層の組成物は、各成分を容量70
リットルのアイリッヒミキサー(アイリッヒ社製)で3
分間混合し、得られた混合物に所定量の水を添加して、
さらに2分間混合することによって得た。さらに、押出
成形するにあたって得られた水硬性無機質組成物を土練
機(宮崎鉄工社製、MP−100型)で予め混練した。
Further, the composition of each layer contains each component in a volume of 70
3 in a liter Erich mixer (made by Erich)
Mix for minutes, add a predetermined amount of water to the resulting mixture,
Obtained by mixing for an additional 2 minutes. Further, the hydraulic inorganic composition obtained upon extrusion molding was previously kneaded with a clay kneader (MP-100 type, manufactured by Miyazaki Iron Works Co., Ltd.).

【0024】〔物性評価試験〕 (1)曲げ強度 得られた硬化体を切断して試験片を得、曲げ強度をJI
S A 1408の方法に準じて測定した。 (2)落球試験 得られた硬化体を300mm角に切断して試験片を得、
JIS A 5423の方法に準じて測定し、試験片に
水をかけて透水の有無によりクラックの発生を判断し、
クラックの発生が観察された最も低い落球高さを示し
た。 (3)凍結融解性 得られた硬化体を切断して試験片を得、ASTM C
666Aの方法に準じて凍結融解を行い、300サイク
ル後に試験片を取り出して、上記曲げ強度と同様にして
曲げ強度を測定し、強度保持率を示した。
[Physical Property Evaluation Test] (1) Bending Strength The obtained cured product was cut to obtain a test piece, and the bending strength was measured by JI.
It was measured according to the method of S A 1408. (2) Drop ball test The obtained cured product was cut into 300 mm square pieces to obtain test pieces.
It is measured according to the method of JIS A 5423, water is applied to the test piece to determine the occurrence of cracks depending on the presence or absence of water permeability,
It showed the lowest falling ball height at which cracking was observed. (3) Freeze-thaw property A test piece was obtained by cutting the obtained cured product, and
Freezing and thawing was performed according to the method of 666A, and after 300 cycles, the test piece was taken out, and the bending strength was measured in the same manner as the above bending strength, and the strength retention was shown.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明にかかる水硬性無機質成形体の製
造方法は、以上のように構成されているので、押圧成形
時の振動によって各未硬化成形体を構成する組成物が積
層界面において混ざり合った積層体に成形される。そし
て、この積層体を硬化させれば、少ない繊維含有量で高
い強度と耐衝撃性を有し、耐久性に優れた水硬性無機質
硬化体を得ることができる。
EFFECTS OF THE INVENTION Since the method for producing a hydraulic inorganic molded body according to the present invention is constituted as described above, the composition constituting each uncured molded body is mixed at the laminating interface due to the vibration during press molding. Molded into a matched laminate. Then, when this laminated body is cured, a hydraulic inorganic cured body having a high strength and impact resistance with a small fiber content and excellent durability can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水硬性無機物質に対する補強繊維の配合
量が異なる複数の層からなる水硬性無機質積層体を得る
にあたり、補強繊維の配合量が異なる水硬性無機質組成
物から得られた複数の未硬化成形体を所望の層構成に積
層し、この積層した状態で振動を与えながら押圧成形す
ることを特徴とする水硬性無機質積層体の製造方法。
1. To obtain a hydraulic inorganic laminate comprising a plurality of layers having different amounts of reinforcing fibers mixed with respect to the hydraulic inorganic substance, a plurality of unprepared hydraulic inorganic compositions obtained by mixing different amounts of reinforcing fibers are used. A method for producing a hydraulic inorganic laminate, which comprises laminating a cured molded article in a desired layer constitution and press-molding the laminated state while applying vibration.
JP31031793A 1993-12-10 1993-12-10 Production of hydraulic inorganic laminate Pending JPH07156328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31031793A JPH07156328A (en) 1993-12-10 1993-12-10 Production of hydraulic inorganic laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31031793A JPH07156328A (en) 1993-12-10 1993-12-10 Production of hydraulic inorganic laminate

Publications (1)

Publication Number Publication Date
JPH07156328A true JPH07156328A (en) 1995-06-20

Family

ID=18003778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31031793A Pending JPH07156328A (en) 1993-12-10 1993-12-10 Production of hydraulic inorganic laminate

Country Status (1)

Country Link
JP (1) JPH07156328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175829A (en) * 2004-12-24 2006-07-06 Mitsubishi Shoji Construction Materials Corp Manufacturing method of composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175829A (en) * 2004-12-24 2006-07-06 Mitsubishi Shoji Construction Materials Corp Manufacturing method of composite material

Similar Documents

Publication Publication Date Title
RU2492054C2 (en) Method of making cement-based armor plates
KR101498986B1 (en) Low moisture content plastic composition comprising hydraulic cement and manufacturing method thereof
JP2023178311A (en) Hydraulic composite material and method for producing hardened body
CN106278051B (en) A kind of shock resistance composite board and preparation method thereof
JP3374515B2 (en) Manufacturing method of inorganic plate
JP2002292612A (en) Method for manufacturing inorganic cement composite plate
EP0670291A2 (en) Production of composites
EP3666744A1 (en) Mineral board and production method therefor
JPH07156328A (en) Production of hydraulic inorganic laminate
JPH06293546A (en) Production of hydraulic and inorganic material molding
EP2891752A1 (en) Moulded body made of a lightweight material and method of making and using same
US10800705B1 (en) Composition having plasma-treated recycled steel fibers
JPH0733492A (en) Hydraulic inorganic composition
JPH0663923A (en) Production of hydraulic inorganic molded object
JP3841472B2 (en) Porous inorganic molded product
JPH05154815A (en) Production of hydraulic inorganic molded article
JPH05329823A (en) Production of hydraulic inorganic molded object
SK115896A3 (en) Method of producing mineral wool shaped bodies
JPH10218682A (en) Cement-impregnated foam material and its production
JPH07214531A (en) Manufacture of hydraulic inorganic molding
JPH0624817A (en) Production of hydraulic inorganic molding
JPH06219795A (en) Hydraulic inorganic composition
JPH075341B2 (en) Cement-based cured product manufacturing method
JPH05186252A (en) Lightweight aggregate for hydraulic inorganic molded product and production of hydraulic inorganic molded product
JPH0524011A (en) Manufacture of hydraulic inorganic molded product