JP2023178311A - Hydraulic composite material and method for producing hardened body - Google Patents

Hydraulic composite material and method for producing hardened body Download PDF

Info

Publication number
JP2023178311A
JP2023178311A JP2023166264A JP2023166264A JP2023178311A JP 2023178311 A JP2023178311 A JP 2023178311A JP 2023166264 A JP2023166264 A JP 2023166264A JP 2023166264 A JP2023166264 A JP 2023166264A JP 2023178311 A JP2023178311 A JP 2023178311A
Authority
JP
Japan
Prior art keywords
composite material
hydraulic composite
hydraulic
cement
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2023166264A
Other languages
Japanese (ja)
Inventor
大季 小倉
Daiki Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2023166264A priority Critical patent/JP2023178311A/en
Publication of JP2023178311A publication Critical patent/JP2023178311A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

To provide a hydraulic composite material that has both shape retention properties and pumpability and is hardly affected by external environments.SOLUTION: A hydraulic composite material comprises a hydraulic matrix composition and short fibers having a diameter of 100 μm or less and a length of 0.1-30 nm, wherein: a content of the short fibers is 0.5 pt.vol or more based on 100 pts.vol. of the hydraulic matrix composition; and a flow value specified by JIS R 5201(2015) "physically testing method for cement" is 120-160 mm.SELECTED DRAWING: None

Description

特許法第30条第2項適用申請有り 公開日 令和1年8月1日 公開の経緯/内容 令和元年度土木学会全国大会in四国 第74回年次学術講演会 講演概要集を収録したDVDを公益社団法人土木学会により発行、配布Application for application of Article 30, Paragraph 2 of the Patent Act Published date: August 1, 2020 Release history/content: Contains a collection of lecture summaries from the 74th Annual Academic Lecture at the 2019 Japan Society of Civil Engineers National Conference in Shikoku DVD published and distributed by Japan Society of Civil Engineers

本発明は、水硬性複合材料、及びこれを用いた硬化体の製造方法に関する。 The present invention relates to a hydraulic composite material and a method for producing a cured body using the same.

近年、モルタルなどのセメント系材料を付加製造(3Dプリンティング)して構造物を形成する方法が提案されている(例えば特許文献1、2)。この方法はセメント系材料をポンプ等で圧送してノズルから押出し、未硬化状態の材料を積層した後に硬化させて造形する方法である。設計通りに造形するためには、未硬化状態の材料を積層したときに下層の形状が保持される形状保持性が求められる。 In recent years, methods have been proposed for forming structures by additive manufacturing (3D printing) of cement-based materials such as mortar (for example, Patent Documents 1 and 2). In this method, cement material is pumped using a pump or the like and extruded from a nozzle, and uncured materials are layered and then hardened to form a model. In order to model as designed, shape retention is required to maintain the shape of the underlying layer when uncured materials are laminated.

特開2017-185645号公報Japanese Patent Application Publication No. 2017-185645 特開2018-69661号公報JP2018-69661A

前記形状保持性は、セメント系材料のチキソトロピー性や急硬性を高めることによって向上できるが、高め過ぎると圧送時に流路が閉塞しやすい。
特許文献1では、形状保持性と圧送性を両立させるために、セメント材料に、非晶質アルミノケイ酸塩、水酸化カルシウム、増粘剤など化学反応に寄与する成分を用いてセメント系材料の物性をコントロールする方法が提案されている。
しかし、この方法は外気温や湿度などの外部環境の影響を受けやすいことが考えられ、現場で再現性が得られない可能性がある。
The shape retention can be improved by increasing the thixotropy and rapid hardening of the cement material, but if it is too high, the flow path is likely to be blocked during pressure feeding.
In Patent Document 1, in order to achieve both shape retention and pumpability, components that contribute to chemical reactions such as amorphous aluminosilicate, calcium hydroxide, and thickeners are used in the cement material to improve the physical properties of the cement material. A method to control this has been proposed.
However, this method is likely to be easily influenced by the external environment such as outside temperature and humidity, and may not be reproducible in the field.

本発明は前記事情に鑑みてなされたものであり、形状保持性と圧送性を両立でき、外部環境の影響を受け難い水硬性複合材料、及びこれを用いた硬化体の製造方法を提供する。 The present invention has been made in view of the above circumstances, and provides a hydraulic composite material that is capable of achieving both shape retention and pumpability and is not easily affected by the external environment, and a method for producing a cured product using the same.

本発明は以下の態様を有する。
[1] 水硬性マトリクス組成物と、直径100μm以下かつ長さ0.1~30mmの短繊維とを含み、前記水硬性マトリクス組成物100体積部に対して、前記短繊維の含有量が0.5体積部以上であり、JIS R 5201(2015)「セメントの物理試験方法」で規定するフロー値が120~160mmである、水硬性複合材料。
[2] 前記[1]の水硬性複合材料をノズルから押出す工程と、水硬性複合材料を硬化させて硬化体を得る工程を有する、硬化体の製造方法。
The present invention has the following aspects.
[1] Contains a hydraulic matrix composition and short fibers having a diameter of 100 μm or less and a length of 0.1 to 30 mm, and the content of the short fibers is 0.1 to 100 parts by volume of the hydraulic matrix composition. A hydraulic composite material containing 5 parts by volume or more and having a flow value of 120 to 160 mm as specified in JIS R 5201 (2015) "Physical Test Methods for Cement."
[2] A method for producing a cured body, comprising the steps of extruding the hydraulic composite material of [1] above from a nozzle, and curing the hydraulic composite material to obtain a cured body.

本発明の水硬性複合材料は、形状保持性と圧送性を両立でき、外部環境の影響を受け難い。
本発明の硬化体の製造方法によれば、水硬性複合材料をノズルから押出す工程を有する製造方法で、所望の形状の硬化体を安定して製造できる。
The hydraulic composite material of the present invention can achieve both shape retention and pumpability, and is not easily affected by the external environment.
According to the method for producing a cured body of the present invention, a cured body having a desired shape can be stably produced using a production method that includes a step of extruding a hydraulic composite material from a nozzle.

本発明の一実施形態に係る硬化体の製造方法を説明するための概略斜視図である。FIG. 1 is a schematic perspective view for explaining a method for manufacturing a cured body according to an embodiment of the present invention. 図1の一部断面正面図である。FIG. 2 is a partially sectional front view of FIG. 1;

<水硬性複合材料>
本実施形態の水硬性複合材料は、水硬性マトリクス組成物と短繊維を含む。
[水硬性マトリクス組成物]
水硬性マトリクス組成物(以下、単にマトリクス組成物ともいう。)としては、公知の水硬性材料を用いることができる。例えば、セメント含有組成物(例えば、セメントペースト、モルタル、コンクリート)、ジオポリマー組成物が挙げられる。
マトリクス組成物は水を含む。マトリクス組成物中の固形分(水分以外の成分)の組成は、硬化体の用途に応じて設計することが好ましい。
<Hydraulic composite material>
The hydraulic composite material of this embodiment includes a hydraulic matrix composition and short fibers.
[Hydraulic matrix composition]
As the hydraulic matrix composition (hereinafter also simply referred to as matrix composition), known hydraulic materials can be used. Examples include cement-containing compositions (eg, cement paste, mortar, concrete), geopolymer compositions.
The matrix composition includes water. The composition of the solid content (components other than water) in the matrix composition is preferably designed depending on the use of the cured product.

セメント含有組成物に用いるセメントとしては、白色ポルトランドセメント、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、シリカフューム含有セメント、高炉セメント、フライアッシュセメント、およびエコセメント等の公知のセメントを用いることができる。セメントは1種でもよく2種以上を併用してもよい。 Examples of the cement used in the cement-containing composition include known cements such as white Portland cement, ordinary Portland cement, early strength Portland cement, moderate heat Portland cement, low heat Portland cement, silica fume-containing cement, blast furnace cement, fly ash cement, and ecocement. Cement can be used. One type of cement may be used or two or more types may be used in combination.

[短繊維]
短繊維の材質は、化学的に合成された高分子からなる合成繊維、又は無機物からなる繊維が好ましい。前者としては、ポリプロピレン繊維、ポリビニルアルコール繊維、ポリエチレン繊維、ポリエステル繊維、アラミド繊維等が挙げられる。後者としては、ガラス繊維、鋼繊維、炭素繊維、岩石繊維(バサルトなど)、セラミック繊維、シリカ繊維等が挙げられる。
特に、ポリエチレン繊維、アラミド繊維、ポリプロピレン繊維、ポリビニルアルコール繊維、鋼繊維は、セメント系材料との親和性に優れる点で好ましい。
[Short fiber]
The material of the short fibers is preferably synthetic fibers made of chemically synthesized polymers or fibers made of inorganic substances. Examples of the former include polypropylene fibers, polyvinyl alcohol fibers, polyethylene fibers, polyester fibers, and aramid fibers. Examples of the latter include glass fiber, steel fiber, carbon fiber, rock fiber (such as basalt), ceramic fiber, and silica fiber.
In particular, polyethylene fibers, aramid fibers, polypropylene fibers, polyvinyl alcohol fibers, and steel fibers are preferable because they have excellent compatibility with cement-based materials.

短繊維の直径は100μm以下であり、50μm以下が好ましい。短繊維の直径が前記上限値以下であると、水硬性複合材料の形状保持性を高める効果に優れる。
本明細書において、繊維の直径(単位:μm)は、番手(単位:dtex)及び密度(単位:g/cm)から下記式により算出した値である。
直径=11.3×(番手/密度)1/2
なお、繊維の番手は糸長10000mの糸重量を意味し、1dtexは糸長10000mの糸重量が1グラムであることを表す。
短繊維の直径の下限値は特に限定されない。入手しやすい点では1μm以上が好ましい。
短繊維の長さは0.1~30mmであり、5~20mmがより好ましい。前記範囲の下限値以上であると硬化後の水硬性複合材料の引張特性の向上が期待でき、上限値以下であると繊維混入後の水硬性複合材料を混練しやすい。
The diameter of the short fibers is 100 μm or less, preferably 50 μm or less. When the diameter of the short fibers is less than or equal to the above upper limit, the effect of improving the shape retention of the hydraulic composite material is excellent.
In this specification, the diameter (unit: μm) of a fiber is a value calculated from the count (unit: dtex) and density (unit: g/cm 3 ) using the following formula.
Diameter = 11.3 x (count/density) 1/2
Note that the fiber count means the yarn weight of a yarn length of 10,000 m, and 1 dtex represents that the yarn weight of a yarn length of 10,000 m is 1 gram.
The lower limit of the diameter of the short fibers is not particularly limited. The thickness is preferably 1 μm or more in terms of easy availability.
The length of the short fibers is 0.1 to 30 mm, more preferably 5 to 20 mm. When it is at least the lower limit of the above range, it can be expected that the tensile properties of the hydraulic composite material after curing can be improved, and when it is at most the upper limit, it is easy to knead the hydraulic composite material after fibers are mixed therein.

水硬性複合材料における短繊維の含有量は、マトリクス組成物100体積部に対して短繊維が0.5体積部以上であり、1.0体積部以上が好ましい。前記下限値以上であると水硬性複合材料の形状保持性を高める効果に優れる。上限は、マトリクス組成物と混練しやすい点で、マトリクス組成物100体積部に対して短繊維が3.0体積部以下であることが好ましい。
水硬性複合材料に含まれる短繊維は1種でもよく、直径、長さ又は材質の1以上が互いに異なる2種以上を併用してもよい。2種以上を併用する場合、短繊維の合計が前記含有量の範囲内であればよい。
The content of short fibers in the hydraulic composite material is 0.5 parts by volume or more, preferably 1.0 parts by volume or more, based on 100 parts by volume of the matrix composition. When it is more than the lower limit, the effect of improving the shape retention of the hydraulic composite material is excellent. The upper limit is preferably 3.0 parts by volume or less of the short fibers per 100 parts by volume of the matrix composition in terms of ease of kneading with the matrix composition.
The hydraulic composite material may contain only one type of short fiber, or may use a combination of two or more types that differ from each other in one or more of diameter, length, or material. When two or more types are used together, the total amount of short fibers may be within the above content range.

[フロー値]
本実施形態の水硬性複合材料は、JIS R 5201(2015)「セメントの物理試験方法」で規定するフロー値が120~160mmが好ましい。前記範囲の下限値以上であると圧送性に優れ、上限値以下であると形状保持性に優れる。
フロー値が前記範囲内となるように短繊維の含有量を設定することが好ましい。また短繊維の材質、直径、長さによってもフロー値を調整できる。例えば、短繊維の材質、直径及び長さが同じである場合、短繊維の含有量が多いほどフロー値は小さくなる傾向がある。
本発明におけるフロー値は、使用時におけるフロー値である。短繊維の含有量が前記範囲内であるときに、前記範囲のフロー値が得られるように、水硬性複合材料における水の含有量を調整することが好ましい。例えば構成材料の結合材の総質量に対して水の含有量は15~50質量%が好ましい。
例えば、水硬性複合材料の調製直後(練上がり直後)から30分後におけるフロー値が120~160mmの範囲内であることが好ましい。
[Flow value]
The hydraulic composite material of this embodiment preferably has a flow value of 120 to 160 mm as defined in JIS R 5201 (2015) "Physical Test Methods for Cement." If it is at least the lower limit of the above range, it will have excellent pumpability, and if it is not more than the upper limit, it will have excellent shape retention.
It is preferable to set the content of short fibers so that the flow value is within the above range. The flow value can also be adjusted by changing the material, diameter, and length of the short fibers. For example, when the short fibers have the same material, diameter, and length, the flow value tends to decrease as the short fiber content increases.
The flow value in the present invention is the flow value at the time of use. It is preferable to adjust the water content in the hydraulic composite material so that a flow value within the above range is obtained when the short fiber content is within the above range. For example, the water content is preferably 15 to 50% by mass based on the total mass of the binder of the constituent materials.
For example, it is preferable that the flow value 30 minutes after preparation (immediately after kneading) of the hydraulic composite material is within the range of 120 to 160 mm.

[作用・機序]
本実施形態では、水硬性複合材料中に適量の短繊維を混在させることにより、形状保持性と圧送性を両立できる。その理由としては、短繊維が未硬化のマトリクス組成物を物理的につなぐ役目を果たすことにより、圧送性の低下を抑えつつ形状保持性を向上できると考えられる。
本実施形態では、短繊維とマトリクス組成物との物理的な相互作用により水硬性複合材料の物性をコントロールできるため、外気温や湿度などの外部環境の影響を受け難い。したがって、物性の安定性に優れ、現場で扱いやすい。
[Mechanism of action]
In this embodiment, by mixing an appropriate amount of short fibers in the hydraulic composite material, both shape retention and pumping properties can be achieved. The reason for this is thought to be that the short fibers serve to physically connect the uncured matrix composition, thereby improving shape retention while suppressing deterioration in pumpability.
In this embodiment, the physical properties of the hydraulic composite material can be controlled through physical interaction between the short fibers and the matrix composition, so that it is not easily influenced by the external environment such as outside temperature and humidity. Therefore, it has excellent stability in physical properties and is easy to handle on site.

前述したように、従来のセメント系材料ではセメント、水及び骨材以外に、非晶質アルミノケイ酸塩、水酸化カルシウム、増粘剤などの化学反応に寄与する添加剤を用いて材料の物性をコントロールしたが、本実施形態では、これらの成分を用いなくても、形状保持性と圧送性の両立を達成できる。
外部環境の影響を受け難い点で、化学反応に寄与する添加剤の含有量は少ない方が好ましい。特に、セメント材料の硬化反応を促進させる成分を含む添加剤は、可使時間が短くなり、材料のフレッシュ性状をコントロールすることが難しくなるため、使用しないほうが好ましい。
As mentioned above, in conventional cement-based materials, in addition to cement, water, and aggregate, additives that contribute to chemical reactions such as amorphous aluminosilicate, calcium hydroxide, and thickeners are used to improve the physical properties of the material. However, in this embodiment, both shape retention and pumpability can be achieved without using these components.
It is preferable that the content of additives that contribute to chemical reactions be small, since it is less susceptible to the influence of the external environment. In particular, it is preferable not to use additives containing components that accelerate the hardening reaction of cement materials, since they shorten the pot life and make it difficult to control the fresh properties of the materials.

本実施形態の水硬性複合材料は、形状保持性と圧送性を両立できる。したがって、水硬性複合材料をノズルから押出す工程を有する、硬化体の製造方法に好適である。例えば、水硬性複合材料を押出成形してパネル等の硬化体を製造する方法、又は付加製造(3Dプリンティング)方法など、型枠を用いずに造形する方法に好適である。
なかでも、ノズルから押出された水硬性複合材料の形状保持性に優れ、未硬化の水硬性複合材料を積層しても下層がつぶれ難いため、特に付加製造方法に好適である。
The hydraulic composite material of this embodiment can achieve both shape retention and pumpability. Therefore, it is suitable for a method for producing a cured body that includes a step of extruding a hydraulic composite material from a nozzle. For example, it is suitable for a method of manufacturing a cured body such as a panel by extrusion molding a hydraulic composite material, or a method of modeling without using a mold, such as an additive manufacturing (3D printing) method.
Among these, the hydraulic composite material extruded from the nozzle has excellent shape retention, and the lower layer is difficult to collapse even when uncured hydraulic composite materials are laminated, so it is particularly suitable for additive manufacturing methods.

<硬化体の製造方法>
本実施形態の硬化体の製造方法は、上記実施形態の水硬性複合材料をノズルから押出す工程(押出工程)と、水硬性複合材料を硬化させて硬化体を得る工程を有する。
押出工程は公知の押出成形装置、又は付加製造装置(3Dプリンタ)を用いて実施できる。
<Method for producing cured body>
The method for producing a cured body of this embodiment includes a step of extruding the hydraulic composite material of the above embodiment from a nozzle (extrusion step), and a step of curing the hydraulic composite material to obtain a cured body.
The extrusion process can be performed using a known extrusion molding device or additive manufacturing device (3D printer).

図1、2は本実施形態の製造方法の例として、付加製造装置を用いる方法を説明するための概略図である。
予め、マトリクス組成物と短繊維を混練した水硬性複合材料を調製し、ノズル10を備えた付加製造装置に供給する。押出工程では、図1、2に示すように、ノズル10を矢印方向に移動させながら、水硬性複合材料20を所定の位置に押出す。この操作を繰り返して、水硬性複合材料20からなる第一層21、第二層22、第三層23…を順に積層して所望の形状の積層体30を得る。
各層の厚さは特に限定されないが、良好な積層性が得られやすい点で1~30mmが好ましい。
この後、積層体30を公知の方法で養生し、水硬性複合材料20を硬化させる。硬化する過程で、隣接する水硬性複合材料20からなる層(第一層21、第二層22、第三層23…)どうしが接合されて一体化し、目的の形状の硬化体が得られる。
FIGS. 1 and 2 are schematic diagrams for explaining a method using an additive manufacturing apparatus as an example of the manufacturing method of this embodiment.
A hydraulic composite material is prepared in advance by kneading a matrix composition and short fibers, and is supplied to an additive manufacturing device equipped with a nozzle 10. In the extrusion process, as shown in FIGS. 1 and 2, the hydraulic composite material 20 is extruded to a predetermined position while moving the nozzle 10 in the direction of the arrow. By repeating this operation, the first layer 21, second layer 22, third layer 23, etc. made of the hydraulic composite material 20 are laminated in this order to obtain a laminate 30 having a desired shape.
Although the thickness of each layer is not particularly limited, it is preferably 1 to 30 mm since good lamination properties can be easily obtained.
Thereafter, the laminate 30 is cured by a known method to harden the hydraulic composite material 20. During the curing process, adjacent layers of the hydraulic composite material 20 (first layer 21, second layer 22, third layer 23, etc.) are joined and integrated to obtain a cured body in the desired shape.

本実施形態の製造方法によれば、水硬性複合材料の形状保持性が良好であるため、水硬性複合材料からなる未硬化層を積層した状態で、各層の形状が変形し難い。したがって、積層体を所望の形状に造形しやすく、硬化体の精度や美観を向上できる。
また水硬性複合材料は圧送性も良好であるため、押出工程を効率よく行うことができ、外部環境の影響を受け難いため、現場での再現性にも優れる。
According to the manufacturing method of this embodiment, since the shape retention of the hydraulic composite material is good, the shape of each layer is difficult to deform in a state in which uncured layers made of the hydraulic composite material are laminated. Therefore, the laminate can be easily shaped into a desired shape, and the precision and aesthetic appearance of the cured product can be improved.
In addition, hydraulic composite materials have good pumpability, so the extrusion process can be carried out efficiently, and because they are less susceptible to the influence of the external environment, they have excellent on-site reproducibility.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
測定方法又は評価方法は以下の方法を用いた。
The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.
The following method was used for measurement or evaluation.

[フロー値の測定方法]
JIS R 5201(2015)「セメントの物理試験方法」で規定されたフロー試験にしたがって、以下の方法でフロー値を測定した。
フローテーブル上の中央に正しく置いたフローコーンに、水硬性複合材料を詰め、直ちにフローコーンを上方に垂直に取り去り、15秒間に15回の落下運動を与え、水硬性複合材料が広がった後の径を最大と認める方向と、これに直角な方向とで1mm単位まで測定し、その平均値をフロー値(単位:mm)とした。
[How to measure flow value]
The flow value was measured by the following method according to the flow test specified in JIS R 5201 (2015) "Physical test method for cement".
A flow cone placed correctly in the center on the flow table is filled with hydraulic composite material, and the flow cone is immediately removed vertically upwards to give 15 falling motions in 15 seconds to spread the hydraulic composite material. The diameter was measured to the nearest 1 mm in the maximum direction and in the direction perpendicular to this direction, and the average value was taken as the flow value (unit: mm).

[圧送性の評価方法]
排出口の形状が略矩形(縦1.5cm、横3cm)であるノズルを備えた押出機を用い、ポンプで一定の押出速度で水硬性複合材料を帯状に連続押出した。図1、2に示すように、ノズルを一定速度(30mm/秒)で移動させながら連続押出した。このとき、押し出した材料の連続性が保たれなくなり、不連続になった時点、あるいは連続計測したポンプ圧力がその平均値より20%以上低下した時点の層数を算出し、連続押出ができる層数と定義した。この層数が多いほど圧送性に優れる。下記の基準で圧送性を評価した。
○:連続押出ができる層数が10層以上。
×:連続押出ができる層数が10層未満。
[Evaluation method of pumpability]
Using an extruder equipped with a nozzle with an approximately rectangular outlet (1.5 cm long and 3 cm wide), the hydraulic composite material was continuously extruded into a strip at a constant extrusion speed using a pump. As shown in FIGS. 1 and 2, continuous extrusion was performed while moving the nozzle at a constant speed (30 mm/sec). At this time, calculate the number of layers at the time when the continuity of the extruded material is no longer maintained and becomes discontinuous, or at the time when the continuously measured pump pressure drops by 20% or more from the average value, and calculate the number of layers that can be continuously extruded. defined as a number. The larger the number of layers, the better the pumping performance. Pumpability was evaluated based on the following criteria.
○: The number of layers that can be continuously extruded is 10 or more.
×: The number of layers that can be continuously extruded is less than 10.

[形状保持性の評価方法]
前記圧送性の評価方法と同じ方法で第14層まで積層した直後に、長さ方向(ノズルの移動方向)の中央における、第1層の下端から第7層の天端(上端)までの高さを測定した。この高さが大きいほど形状保持性に優れる。下記の基準で形状保持性を評価した。
○:高さが60mm以上。
×:高さが60mm未満。
[Evaluation method of shape retention]
Immediately after laminating up to the 14th layer using the same method as the evaluation method for pumpability, the height from the bottom end of the first layer to the top end (top end) of the seventh layer at the center in the length direction (nozzle movement direction) is measured. We measured the The larger the height, the better the shape retention. Shape retention was evaluated using the following criteria.
○: Height is 60 mm or more.
×: Height is less than 60 mm.

以下の材料を使用した。
[使用材料]
セメント:普通ポルトランドセメント(比重3.16)
シリカフューム:比重2.20
フライアッシュ:比重2.30
石灰石微粉末:比表面積3300cm/g(比重2.71)
珪砂:粒径0.05~0.85mm(比重2.60)
減水剤:高性能減水剤
繊維(B):直径12μm、長さ(カタログ値(標準長))6mmのポリエチレン繊維(比重0.97)
The following materials were used.
[Materials used]
Cement: Ordinary Portland cement (specific gravity 3.16)
Silica fume: specific gravity 2.20
Fly ash: specific gravity 2.30
Limestone fine powder: specific surface area 3300cm 2 /g (specific gravity 2.71)
Silica sand: particle size 0.05-0.85mm (specific gravity 2.60)
Water reducing agent: High performance water reducing agent Fiber (B): Polyethylene fiber with diameter 12 μm and length (catalog value (standard length)) 6 mm (specific gravity 0.97)

[例1~5]
本例ではマトリクス組成物(A)として表1に示す配合のモルタルを用いた。
表1に示す材料(結合材、細骨材、水及び混和剤)と、繊維(B)を、ホバートミキサを用いて混練して水硬性複合材料を調製した。
マトリクス組成物(A)の100体積部に対する繊維(B)の添加量を表2に示す。例1では繊維(B)を添加せず、マトリクス組成物(A)を水硬性複合材料とした。例2~5では、上述したフロー試験における落下運動を与える前のフロー値が例1と同程度になるように、減水剤の添加量を調整した。
水硬性複合材料の調製直後(練上がり直後)から30分後のフロー値を上記の方法で測定した。上述の落下運動を与えた後のフロー値を表2に示す(以下、同様)。
得られた水硬性複合材料の圧送性及び形状保持性を上記の方法で評価した。結果を表2に示す(以下、同様)。
[Examples 1 to 5]
In this example, mortar having the composition shown in Table 1 was used as the matrix composition (A).
A hydraulic composite material was prepared by kneading the materials shown in Table 1 (binder, fine aggregate, water, and admixture) and fiber (B) using a Hobart mixer.
Table 2 shows the amount of fiber (B) added to 100 parts by volume of matrix composition (A). In Example 1, the fiber (B) was not added and the matrix composition (A) was used as a hydraulic composite material. In Examples 2 to 5, the amount of water reducing agent added was adjusted so that the flow value before applying the falling motion in the flow test described above was approximately the same as in Example 1.
The flow value 30 minutes after the preparation of the hydraulic composite material (immediately after kneading) was measured using the method described above. Table 2 shows the flow values after applying the above-described falling motion (the same applies hereinafter).
The pumpability and shape retention of the obtained hydraulic composite material were evaluated by the above method. The results are shown in Table 2 (the same applies hereinafter).

Figure 2023178311000001
Figure 2023178311000001

Figure 2023178311000002
Figure 2023178311000002

表2の結果に示されるように、短繊維を0.5体積部以上含み、かつフロー値が120~160mmである例2~4の水硬性複合材料は、圧送性と形状保持性を両立できた。 As shown in the results in Table 2, the hydraulic composite materials of Examples 2 to 4, which contain 0.5 parts by volume or more of short fibers and have a flow value of 120 to 160 mm, can achieve both pumpability and shape retention. Ta.

10 ノズル
20 水硬性複合材料
21 第一層
22 第二層
23 第三層
30 積層体
10 Nozzle 20 Hydraulic composite material 21 First layer 22 Second layer 23 Third layer 30 Laminate

Claims (2)

水硬性マトリクス組成物と、直径100μm以下かつ長さ0.1~30mmの短繊維とを含み、
前記水硬性マトリクス組成物100体積部に対して、前記短繊維の含有量が0.5体積部以上であり、
JIS R 5201(2015)「セメントの物理試験方法」で規定するフロー値が120~160mmである、水硬性複合材料。
comprising a hydraulic matrix composition and short fibers with a diameter of 100 μm or less and a length of 0.1 to 30 mm,
The content of the short fibers is 0.5 parts by volume or more with respect to 100 parts by volume of the hydraulic matrix composition,
A hydraulic composite material with a flow value of 120 to 160 mm as specified in JIS R 5201 (2015) "Physical Test Methods for Cement."
請求項1に記載の水硬性複合材料をノズルから押出す工程と、水硬性複合材料を硬化させて硬化体を得る工程を有する、硬化体の製造方法。 A method for producing a cured body, comprising the steps of extruding the hydraulic composite material according to claim 1 from a nozzle, and curing the hydraulic composite material to obtain a cured body.
JP2023166264A 2019-08-27 2023-09-27 Hydraulic composite material and method for producing hardened body Withdrawn JP2023178311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023166264A JP2023178311A (en) 2019-08-27 2023-09-27 Hydraulic composite material and method for producing hardened body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154660A JP7423221B2 (en) 2019-08-27 2019-08-27 Hydraulic composite material and method for producing cured material
JP2023166264A JP2023178311A (en) 2019-08-27 2023-09-27 Hydraulic composite material and method for producing hardened body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019154660A Division JP7423221B2 (en) 2019-08-27 2019-08-27 Hydraulic composite material and method for producing cured material

Publications (1)

Publication Number Publication Date
JP2023178311A true JP2023178311A (en) 2023-12-14

Family

ID=74675292

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019154660A Active JP7423221B2 (en) 2019-08-27 2019-08-27 Hydraulic composite material and method for producing cured material
JP2023166264A Withdrawn JP2023178311A (en) 2019-08-27 2023-09-27 Hydraulic composite material and method for producing hardened body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019154660A Active JP7423221B2 (en) 2019-08-27 2019-08-27 Hydraulic composite material and method for producing cured material

Country Status (1)

Country Link
JP (2) JP7423221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023250203A2 (en) * 2022-06-23 2023-12-28 Icon Technology, Inc. Three-dimensional printer nozzle and assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787816B2 (en) 2017-02-28 2020-11-18 デンカ株式会社 Cementum material for 3D modeling for construction and 3D modeling method for construction

Also Published As

Publication number Publication date
JP2021031343A (en) 2021-03-01
JP7423221B2 (en) 2024-01-29

Similar Documents

Publication Publication Date Title
JP5860106B2 (en) Glass fiber reinforced cementitious armor panel
US9382156B2 (en) Lightweight extruded cementitious material and method of making the same
KR101187320B1 (en) Exposed concrete pannel for exterior of building comprising additive of carbon source and manufacturing method thereof
JP2023178311A (en) Hydraulic composite material and method for producing hardened body
Kh et al. Structure and properties of mortar printed on a 3D printer
JP2011513185A (en) Self-leveling cementitious composition with controlled strength growth and ultra-high compressive strength at the time of curing and articles made therefrom
JP2008513340A (en) Flexible hydraulic composition
JP6404471B2 (en) Low moisture content plastic composition containing hydraulic cement and method for producing the same
CH703868B1 (en) Building material and construction system element and method of making same.
JP2015061817A (en) Cementitious armor panel system
US20220106230A1 (en) 3d printable portland limestone clay-based mortar utilizing locally available materials
CN108383465A (en) A kind of extruded type 3D printing gypsum based composite cementing material and preparation method thereof
Zhu et al. Limestone calcined clay cement for three-dimensional-printed engineered cementitious composites
JP2019026539A (en) Precast cement panel for residual formwork and production method therefor
KR101020653B1 (en) Manufacturing Methods for Light weight panel of Inorganic Cement composites
EP3568275B1 (en) Building brick and manufacturing method thereof
JP5513789B2 (en) Insulation
JP3652968B2 (en) Insulating incombustible material, method for manufacturing the same, and construction method for insulative incombustible wall
JP2018127778A (en) Reinforced cement board
Panda et al. Material Design, Additive Manufacturing, and Performance of Cement-Based Materials
Chaiyotha et al. Optimization of Printing Parameters for Printing of Ordinary Portland Cement Using a Custom-Made 3D Printer
JP2022156556A (en) Cement composition and method for producing laminated molded object
JPH02229752A (en) Cement composition
JPH05329823A (en) Production of hydraulic inorganic molded object
JPH0733492A (en) Hydraulic inorganic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240405