JP4093528B2 - Asymmetric ethylidene polyphenols and process for producing the same - Google Patents

Asymmetric ethylidene polyphenols and process for producing the same Download PDF

Info

Publication number
JP4093528B2
JP4093528B2 JP2001146951A JP2001146951A JP4093528B2 JP 4093528 B2 JP4093528 B2 JP 4093528B2 JP 2001146951 A JP2001146951 A JP 2001146951A JP 2001146951 A JP2001146951 A JP 2001146951A JP 4093528 B2 JP4093528 B2 JP 4093528B2
Authority
JP
Japan
Prior art keywords
hydroxyphenyl
phenol
added
ethane
ethylidene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001146951A
Other languages
Japanese (ja)
Other versions
JP2002037750A (en
Inventor
豊彦 前田
如志 守田
泰一 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Priority to JP2001146951A priority Critical patent/JP4093528B2/en
Publication of JP2002037750A publication Critical patent/JP2002037750A/en
Application granted granted Critical
Publication of JP4093528B2 publication Critical patent/JP4093528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規非対称エチリデン多価フェノール類に関する。
さらに、本発明は、フェノール核と、アルキル置換されたフェノール核又はアルキル置換されてもよい多価フェノール核とをエチリデン基にて連結した構造を有する新規な非対称エチリデン多価フェノール類に関する。本発明の新規非対称多価フェノール類は、フォトレジスト材料の樹脂成分、感光剤、溶解抑止剤、添加剤などの原料、非直線性構造や架橋構造を有する重合体の原料又は架橋剤の原料等として有用である。
さらにまた、本発明は、そのような非対称エチリデン多価フェノール類の製造方法に関する。
【0002】
【従来の技術】
従来、分子中に2つ以上のフェノール性水酸基を有する、非対称なアルキリデン多価フェノール類は、既に、一部については、フォトレジスト材料の原料や、エポキシ樹脂の原料として有用であることが知られている。
例えば、特開平2−269351号公報には、塩化アルミニウム触媒の存在下にジオキサン中、2−(3−ヒドロキシフェニルプロペン)等のアルケニルフェノール類にハイドロキノン、メチルハイドロキノン等の2価フェノール類を反応させて、種々のアルキリデン多価フェノール類、例えば2−(2,4−ジヒドロキシフェニル)ー2−(4−ヒドロキシフェニル)プロパン、2−(2,5−ジヒドロキシー3−メチルフェニル)ー2−(4−ヒドロキシフェニル)プロパン等が得られることが記載されている。また、これらはポジ型フォトレジスト材料の原料として有用であることも記載されている。
また、特開平5−201903号公報には、上記2−(2,4−ジヒドロキシフェニル)ー2−(4−ヒドロキシフェニル)プロパンの製造方法として、36%塩酸触媒の存在下、ベンゼン又はベンゼンとメタノールの混合溶媒中、レゾルシンと4−イソプロペニルフェノールを反応させる方法が記載されている。
しかしながら、フェノール核と、アルキル置換されたフェノール核又はアルキル置換されてもよい多価フェノール核とをエチリデン基にて連結した構造を有する、非対称エチリデン多価フェノール類は知られていない。このような非対称多価フェノール類は、含有するヒドロキシル基やアルキル基などの選択的な反応性を利用して、フォトレジスト材料の樹脂成分、感光剤、溶解抑止剤、添加剤などの原料、非直線性構造や架橋構造を有する重合体の原料又は架橋剤の原料等として有用であることが期待される。
【0003】
【発明が解決しようとする課題】
従って、本発明は、フェノール核とアルキル置換されたフェノール核又はアルキル置換されてもよい多価フェノール核とをエチリデン基にて連結した構造を有する、非対称エチリデン多価フェノール類を提供することを課題とする。このような非対称多価フェノール類は、フォトレジスト材料の樹脂成分、感光剤、溶解抑止剤、添加剤などの原料、非直線性構造や架橋構造を有する重合体の原料又は架橋剤の原料等として有用である。
また、本発明は、そのような非対称エチリデン多価フェノール類の製造方法を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明によれば、一般式(4)で表される非対称エチリデン多価フェノール類が提供される。
【0005】
【化7】
一般式(4)
(式中、Rは炭素数1〜4のアルキル基又は炭素数5乃至6のシクロアルキル基を示し、nは 1 〜3の整数を表し、但しRのうち少なくとも1つはシクロアルキル基である。)
【0006】
さらに、本発明によれば、一般式(2)で表される4−(1−ヒドロキシエチル)フェノールと一般式(3)で表されるフェノール類とを酸触媒の存在下に反応させることによって、上記一般式(1)の非対称エチリデン多価フェノール類を製造することができる。
【0007】
【化5】
【0008】
【化6】
【0009】
上式中、Rは炭素数1〜4のアルキル基又は炭素数5乃至6のシクロアルキル基であり、具体的には、メチル基、エチル基、プロピル基又はブチル基であり、プロピル基、ブチル基は直鎖状でも、分岐状でもよく、シクロアルキル基としては、シクロペンチル基又はシクロヘキシル基を挙げることができる。
従って、本発明による非対称エチリデン多価フェノール類の具体例として、1−(4−ヒドロキシフェニル)ー1−(3−メチルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(5−メチルー2−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(3,5−ジメチルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(2,5−ジメチルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(2,3,5−トリメチルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(3−シクロペンチルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(2−メチルー5−シクロペンチルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(3−シクロヘキシルー4−ヒドロキシフェニル)エタン、1−(4−ヒドロキシフェニル)ー1−(2−メチルー5−シクロヘキシルー4−ヒドロキシフェニル)エタン 1−(4−ヒドロキシフェニル)ー1−(2,4−ジヒドロキシフェニル)エタン等を挙げることができる。
【0010】
このような本発明の非対称エチリデン多価フェノール類は、本発明に従って、式(2)で表される4−(1−ヒドロキシエチル)フェノールと一般式(3)で表されるフェノール類とを酸触媒の存在下に反応させることによって製造することが出来る。
上記一般式(2)で表されるフェノール類において、R、n及びmは、前記一般式(1)で表される非対称エチリデン多価フェノール類におけるものと同じである。従って、上記一般式(2)で表されるフェノール類の具体例として、例えば、o−,m−又はp−クレゾール、2,5−又は2,6−キシレノール、2,4−キシレノ−ル、3,5−キシレノ−ル、3−メチルー6−エチルフェノール、3ーメチルー6−イソプロピルフェノール、3−メチルー6−t−ブチルフェノール、2−エチルー4−イソプロピルフェノール、o−シクロペンチルフェノール、o−シクロヘキシルフェノール、3−メチルー6−シクロペンチルフェノール、3−メチルー6−シクロヘキシルフェノール、2−メチルー5−シクロヘキシルフェノール、4−エチルー2−シクロヘキシルフェノール、p−イソプロピルフェノール、2,6−ジイソプロピルフェノール、2,6−ジーt−ブチルフェノール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール、1,3−ジヒドロキシベンゼン、1,2−ジヒドロキシベンゼン、1,2,3−トリヒドロキシベンゼン、1,2,4−トリヒドロキシベンゼン等を挙げることができる。
【0011】
本発明の製造方法において、上記4−(1−ヒドロキシエチル)フェノールと上記フェノール類との反応においては、上記フェノール類は、4−(1−ヒドロキシエチル)フェノールに対して、通常、1.0倍モル量以上、好ましくは、1.0〜10.0倍モル量の範囲で用いられるが、特に好ましくは1.0〜6.0倍モル量の範囲で用いられる。
この反応は、必要に応じて、反応溶媒中で行われる。反応溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等の脂肪族ケトン、メタノール等の脂肪族アルコール又はこれらの混合物が挙げられる。これらのうち、脂肪族アルコールが好ましく用いられる。好ましい脂肪族アルコールとしては、用いる反応原料、得られる生成物の溶解度、反応条件、反応の経済性等を考慮して、メタノール、エタノール、イソプロピルアルコール、nープロピルアルコール、イソブチルアルコール又はnーブチルアルコール等の低級脂肪族アルコールが挙げられるが、特にメタノールが好ましく用いられる。
【0012】
このような反応溶媒は、通常、用いる4−(1−ヒドロキシエチル)フェノール100重量部に対して、100〜500重量部の範囲、好ましくは、150〜200重量部の範囲で用いられる。
本発明の製造方法において、用いられる上記酸触媒としては、例えば塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、蟻酸、リン酸、トリクロロ酢酸又はトリフルオロ酢酸等を挙げることができる。このような酸触媒は、通常、例えば35%塩酸の場合は、4−(1−ヒドロキシエチル)フェノール100重量部に対して、5〜50重量部の範囲、好ましくは、10〜20重量部の範囲で用いられる。
反応温度は、通常10〜60℃、好ましくは30〜50℃の範囲である。反応圧力は、通常、常圧下で行われるが、用いてもよい有機溶媒の沸点によっては、反応温度が前記範囲内になるように、加圧又は減圧下に行ってもよい。このような条件下に反応を行えば、反応は、通常5〜10時間程度で終了する。
【0013】
本発明の製造方法においては、4−(1−ヒドロキシエチル)フェノールとフェノール類とを酸触媒の存在下に反応させるに際して、その態様については、特に、限定されるものではなく、例えば、フェノール類、溶媒及び酸触媒を反応容器に仕込み、窒素気流下に、攪拌しながら、温度30〜50℃程度に昇温し、これに4−(1−ヒドロキシエチル)フェノールを滴下し、その後、同温度にて3〜8時間程度反応させる。
反応の終点は、液体クロマトグラフィー(HPLC)分析にて追跡することができ、未反応の4−(1−ヒドロキシエチル)フェノールが消失した時点を終点とすればよい。4−(1−ヒドロキシエチル)フェノールに対する反応収率は、通常90〜100%程度である。
反応終了後、得られた反応混合物に、アンモニア水、水酸化ナトリウム水溶液等のアルカリ溶液を加えて酸触媒を中和した後、冷却晶析により、目的とする非対称エチリデン多価フェノール類の粗結晶を得ることができる。
【0014】
このようにして得られた非対称エチリデン多価フェノール類は、そのまま製品としてもよいが、必要に応じて、精製して高純度品としてもよい。精製方法は、例えば、上記粗結晶に、晶析溶媒、例えばトルエン等の芳香族炭化水素類と水との混合物を加え、分液し、残った油層から、目的物を再度晶析させ、これを濾過分離、乾燥することによって、高純度の非対称エチリデン多価フェノール類を、通常、無色の結晶として得ることができる。
【0015】
【実施例】
以下に実施例を挙げて本発明をさらに具体的に説明する。
実施例中の純度は液体クロマトグラフィーによる純度である。
【実施例1】
1−(4−ヒドロキシフェニル)ー1−(2−メチルー5−シクロヘキシルー4−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、撹拌装置を備えた1Lの四つ口フラスコに、3ーメチルー6−シクロヘキシルフェノール190g(1モル)、メチルアルコール100g及び35%塩酸12gを仕込み、窒素気流下において、40℃に昇温して攪拌、溶解させた。この溶液に、内温を40℃に保ちつつ、4−(1−ヒドロキシエチル)フェノール92g(0.66モル)を約2時間かけて滴下した。滴下終了後、同温度で、さらに、4時間反応させた。反応終点は4−(1−ヒドロキシエチル)フェノ−ルが消失している事をHPLC分析により確認した。
反応終了後、得られた反応混合液に、メチルアルコール50gを追加添加し、さらに16%水酸化ナトリウム溶液31.9gを添加して、反応混合液を中和した。その後、反応混合液を約20℃まで冷却し、析出した結晶を濾過、乾燥して、粗結晶207gを得た。
得られた粗結晶に、メチルイソブチルケトンを加えて70℃に昇温、溶解した後トルエンを加えて、20℃まで冷却し再結晶させた。再析出した結晶を濾過、乾燥して、目的物である1−(4−ヒドロキシフェニル)ー1−(2−メチルー5−シクロヘキシルー4−ヒドロキシフェニル)エタン175gを白色結晶として得た。
(純度99.8%、4−(1−ヒドロキシエチル)フェノールに対する収率85 .2%)
融点 184℃(示差熱分析法)
分子量 310(M)(質量分析法)
HーNMRによる分析結果を表1に示す。
(400MHz,溶媒DMSOーd)
【0016】
【表1】
【0017】
【実施例2】
1−(4−ヒドロキシフェニル)−1−(2,3,6−トリメチル−4−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロ−ト、逆流コンデンサ−、攪拌装置を備えた1Lの四ツ口フラスコにメタノ−ル136g、2,3,6−トリメチルフェノ−ル136g(1モル)及び35%塩酸13.6gを仕込み、窒素気流下において、40℃に昇温して攪拌、溶解させた。この溶液に内温を40℃に保ちつつ4−(1−ヒドロキシエチル)フェノ−ル125.5g(0.909モル)を約2時間かけて滴下した。滴下終了後、同温度で更に3時間反応させた。反応終点は、4−(1−ヒドロキシエチル)フェノ−ルが消失している事をHPLC分析で確認した。
反応終了後、得られた反応混合液にメタノ−ルを追加添加し、さらに16%水酸化ナトリウム水溶液34.8gを添加して、反応混合液を中和した。
その後、反応混合液を20℃まで冷却し、析出した結晶を濾過、乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(2,3,6−トリメチル−4−ヒドロキシフェニル)エタン180.8gを白色結晶として得た。
(純度99.7%、4−(1−ヒドロキエタン)フェノ−ルに対する収率77. 7%)
融点158.5℃(示差熱分析法)
分子量 256(M)(質量分析法)
HーNMRによる分析結果を表2に示す。
(400MHz,溶媒DMSO−d)
【0018】
【表2】
【0019】
【実施例3】
1−(4−ヒドロキシフェニル)−1−(2,6−ジメチル−4−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロ−ト、逆流コンデンサ−、攪拌装置を備えた1Lの四ツ口フラスコにメタノ−ル122g、2,6−ジメチルフェノ−ル122g(1モル)及び35%塩酸14.6gを仕込み、窒素気流下において40℃に昇温して攪拌、溶解させた。この溶液に内温を40℃に保ちつつ4−(1−ヒドロキシエチル)フェノ−ル92g(0.66モル)を約2時間かけて滴下した。滴下終了後、同温度で更に4時間反応させた。
反応終点は、4−(1−ヒドロキシエチル)フェノ−ルが消失している事をHPLC分析で確認した。
反応終了後、得られた反応混合液に水50gと16%水酸化ナトリウム水溶液38.5gを添加して、反応混合液を中和した。その後、トルエンを添加して分液し、水層を分離した。残った油層にさらにトルエンを添加した後、冷却し析出した結晶を濾過、乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(2,6−ジメチル−4−ヒドロキシフェニル)エタン88.3gを白色結晶として得た。
(純度99.5%、4−(1−ヒドロキエチル)フェノ−ルに対する収率54. 7%)
融点 105.7℃(示差熱分析法)
分子量 242(M)(質量分析法)
HーNMRによる分析結果を表3に示す。
(400MHz,溶媒DMSO−d)
【0020】
【表3】
【0021】
【実施例4】
1−(4−ヒドロキシフェニル)−1−(2−メチルー4−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコにメタクレゾール334g、75%リン酸10gを仕込み、窒素気流下において40℃に昇温して、この溶液に内温を40℃に保ちつつ4−(1−ヒドロキシエチル)フェノール106.7gを約2時間かけて添加した。添加終了後,同温度で更に3時間反応させた。
反応終了後、得られたスラリー状の反応混合液に水50gと16%水酸化ナトリウム水溶液を添加して、反応混合液を中和した。中和後の溶液にトルエンを添加して分液し、水層を分離した。残った油層に、さらにトルエンを添加した後、冷却し、析出した結晶を濾過、乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(2−メチルー4−ヒドロキシフェニル)エタン48gを白色結晶として得た。(純度99.0%、4−(1−ヒドロキシエチル)フェノールに対する収率40%)
融点 164℃(示差熱分析法)
分子量 228(M+) (質量分析法)
H−NMRによる分析結果を表4に示す。
(400MHz、DMSO―d溶媒)
【0022】
【表4】
【0023】
【実施例5】
1−(4−ヒドロキシフェニル)−1−(5−メチルー2−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコにパラクレゾール337.5g、75%リン酸10gを仕込み、窒素気流下において40℃に昇温して、この溶液に内温を40℃に保ちつつ4−(1−ヒドロキシエチル)フェノール107.8gを約2時間かけて添加した。添加終了後,同温度で更に4時間反応させた。
反応終了後、得られたスラリー状の反応混合液に水50gと16%水酸化ナトリウム水溶液を添加して、反応混合液を中和した。中和後の溶液にトルエンを添加して分液し、水層を分離した。残った油層を冷却し、析出した結晶を濾別した。 得られた濾過物にメチルイソブチルケトンを加えて70℃で溶解し、その後メチルイソブチルケトンの一部を溜出させた後、これにトルエンを加えて冷却し、この溶液より晶析,濾過,乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(5−メチルー2−ヒドロキシフェニル)エタン58.1gを白色結晶として得た。(純度99.8%、4−(1−ヒドロキシエチル)フェノールに対する収率33%)
融点 154℃(示差熱分析法)
分子量 228(M+) (質量分析法)
H−NMRによる分析結果を表5に表す。
(400MHz、DMSO―d溶媒)
【0024】
【表5】
【0025】
【実施例6】
1−(4−ヒドロキシフェニル)−1−(5−メチルー4−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコにオルソクレゾール250g、75%リン酸5gを仕込み、窒素気流下において30℃に昇温して、この溶液に内温を30℃に保ちつつ4−(1−ヒドロキシエチル)フェノール106.4gを約2時間かけて添加した。添加終了後,同温度で更に3時間反応させた。
反応終了後、得られた反応混合溶液に水50gと16%水酸化ナトリウム水溶液を添加して、反応混合液を中和した。中和後の溶液にトルエンを添加して分液し、水層を分離した。残った油層に水を加えて2回水洗分液した後、得られた油層を減圧蒸留し、余剰のオルソクレゾールを溜出させた。この残留液にトルエンとシクロヘキサンを加えて、この溶液を冷却し、析出した結晶を濾別した。
得られた濾過物に再度トルエンとシクロヘキサンを加えた後、この溶液を冷却し、晶析,濾過,乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(5−メチルー4−ヒドロキシフェニル)エタン115.5gを白色結晶として得た。(純度99.3%、4−(1−ヒドロキシエチル)フェノールに対する収率66%)
融点 84℃(示差熱分析法)
分子量 228(M+) (質量分析法)
H−NMRによる分析結果を表6に表す。
(400MHz、DMSO―d溶媒)
【0026】
【表6】
【0027】
【実施例7】
1−(4−ヒドロキシフェニル)−1−(5−シクロヘキシルー4−ヒドロキシフェニル)エタンの合成
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコにオルソシクロヘキシルフェノール141g、メタノール141g、35%塩酸42gを仕込み、窒素気流下において35℃に昇温して、この溶液に内温を35℃に保ちつつ4−(1−ヒドロキシエチル)フェノール27.6gを約1時間かけて添加した。添加終了後,同温度で更に15時間反応させた。
反応終了後、得られた反応混合溶液に75%リン酸水溶液と16%水酸化ナトリウム水溶液gを添加して、反応混合液を中和した。中和後の溶液を常圧蒸留で濃縮した後、これにトルエンを添加して分液し、水層を分離した。残った油層を減圧蒸留し、余剰のオルソシクロヘキシルフェノールを溜出させた。この残留液にトルエンを加えて、この溶液を冷却し、析出した結晶を濾別した。
得られた濾過物に再度トルエンを加えたのち、この溶液を冷却し、晶析,濾過,乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(5−シクロヘキシルー4−ヒドロキシフェニル)エタン28.5gを白色結晶として得た。(純度99.8%、4−(1−ヒドロキシエチル)フェノールに対する収率 48%)
融点 129℃(示差熱分析法)
分子量 296(M+) (質量分析法)
H−NMRによる分析結果を表7に表す。
(400MHz、DMSO―d溶媒)
【0028】
【表7】
【0029】
【実施例8】
1−(4−ヒドロキシフェニル)−1−(2,5−ジメチルー4−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコに2,5−キシレノール152.5g、メタノール152.5g、35%塩酸30.5gを仕込み、窒素気流下において40℃に昇温して、この溶液に内温を40℃に保ちつつ、4−(1−ヒドロキシエチル)フェノール156.8gを約1時間かけて添加した。添加終了後,同温度で更に3時間反応させた。
反応終了後、得られた反応混合溶液に75%リン酸水溶液と16%水酸化ナトリウム水溶液を添加して、反応混合液を中和した。中和後の溶液に水200gを加えた後、常圧蒸留で濃縮した。これにトルエンを添加して分液し、水層を分離した。残った油層を減圧蒸留し、余剰の2,5−キシレノールを溜出させた。
この残留液にトルエンとシクロヘキサンを加えて、この溶液を冷却し、析出した結晶を濾別、乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(2、5−ジメチルー4−ヒドロキシフェニル)エタン253gを白色結晶として得た。(純度98.8%、4−(1−ヒドロキシエチル)フェノールに対する収率 92%)
融点 134.6℃(示差熱分析法)
分子量 242(M+) (質量分析法)
H−NMRによる分析結果を表8に表す。
(400MHz、DMSO―d溶媒)
【0030】
【表8】
【0031】
【実施例9】
1−(4−ヒドロキシフェニル)−1−(4,6−ジメチルー2−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコに3,5−キシレノール244g、メタノール73.2g、35%塩酸2.4gを仕込み、窒素気流下において40℃に昇温して、この溶液に内温を40℃に保ちつつ4−(1−ヒドロキシエチル)フェノール69gを約1時間かけて添加した。添加終了後,同温度で更に17時間反応させた。
反応終了後、得られた反応混合溶液に75%リン酸水溶液と16%水酸化ナトリウム水溶液を添加して、反応混合液を中和した。中和後の溶液に水100gを加えた後、常圧蒸留で濃縮した。これにトルエンと水を添加して分液し、水層を分離した。残った油層を減圧蒸留し、余剰の3,5−キシレノールを溜出させた。 この残留液にトルエンとシクロヘキサンを加えて、この溶液を冷却し、析出した結晶を濾別、乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(4,6−ジメチルー2−ヒドロキシフェニル)エタン27.1gを白色結晶として得た。(純度99.1%、4−(1−ヒドロキシエチル)フェノールに対する収率 14%)
融点 80℃(示差熱分析法)
分子量 242(M+) (質量分析法)
H−NMRによる分析結果を表9に表す。
(400MHz、DMSO―d溶媒)
【0032】
【表9】
【0033】
【実施例10】
1−(4−ヒドロキシフェニル)−1−(3,4,6−トリメチルー2−ヒドロキシフェニル)エタンの合成;
温度計、滴下ロート、逆流コンデンサー、攪拌装置を備えた1Lの四つ口フラスコに2、3,5−トリメチルフェノール163.2g、メタノール81.6g、35%塩酸1.6gを仕込み、窒素気流下において50℃に昇温して、この溶液に内温を50℃に保ちつつ4−(1−ヒドロキシエチル)フェノール157.7gを約2時間かけて添加した。添加終了後,同温度で更に20時間反応させた。
反応終了後、得られた反応混合溶液に75%リン酸水溶液と16%水酸化ナトリウム水溶液を添加して、反応混合液を中和した。中和後の溶液に水200gを加えた後、常圧蒸留で濃縮した。これにトルエンと水を添加して分液し、水層を分離した。残った油層にトルエンとシクロヘキサンを加えて、この溶液を冷却し、析出した結晶を濾別、乾燥して目的物である1−(4−ヒドロキシフェニル)−1−(3、4,6−トリメチルー2−ヒドロキシフェニル)エタン55.9gを白色結晶として得た。(純度98.8%、4−(1−ヒドロキシエチル)フェノールに対する収率17%)
融点 123℃(示差熱分析法)
分子量 256(M+) (質量分析法)
H−NMRによる分析結果を表10に表す。
(400MHz、DMSO―d溶媒)
【0034】
【表10】
【0035】
【発明の効果】
本発明においては、非対称エチリデン多価フェノール類は、エチリデン基にて連結したフェノール核と、アルキル置換されたフェノール核又はアルキル置換されてもよい多価フェノール核とを有し、これを原料とすることにより、その含有するヒドロキシル基やアルキル基などの選択的な反応性、溶剤溶解性を利用して、有用なフォトレジスト材料の樹脂成分、感光剤、溶解抑止剤及び添加剤あるいは非直線性構造や架橋構造を有する重合体を得ることが期待される。
さらに、本発明によれば、このような非対称エチリデン多価フェノール類は、4−(1−ヒドロキシエチル)フェノールと前記フェノール類とを酸触媒の存在下に反応させることにより、高収率にて得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to novel asymmetric ethylidene polyhydric phenols.
Furthermore, the present invention relates to novel asymmetric ethylidene polyhydric phenols having a structure in which a phenol nucleus and an alkyl-substituted phenol nucleus or a polyhydric phenol nucleus which may be alkyl-substituted are linked by an ethylidene group. The novel asymmetric polyhydric phenols of the present invention are a raw material such as a resin component of a photoresist material, a photosensitizer, a dissolution inhibitor, an additive, a raw material of a polymer having a nonlinear structure or a cross-linked structure, or a raw material of a cross-linking agent. Useful as.
Furthermore, the present invention relates to a method for producing such asymmetric ethylidene polyhydric phenols.
[0002]
[Prior art]
Conventionally, asymmetric alkylidene polyhydric phenols having two or more phenolic hydroxyl groups in the molecule have already been known to be useful as raw materials for photoresist materials and epoxy resins, in part. ing.
For example, in JP-A-2-269351, dihydric phenols such as hydroquinone and methylhydroquinone are reacted with alkenylphenols such as 2- (3-hydroxyphenylpropene) in dioxane in the presence of an aluminum chloride catalyst. Various alkylidene polyhydric phenols such as 2- (2,4-dihydroxyphenyl) -2- (4-hydroxyphenyl) propane, 2- (2,5-dihydroxy-3-methylphenyl) -2- ( It is described that 4-hydroxyphenyl) propane and the like can be obtained. It is also described that these are useful as raw materials for positive photoresist materials.
Japanese Patent Application Laid-Open No. 5-201903 discloses benzene or benzene in the presence of a 36% hydrochloric acid catalyst as a method for producing 2- (2,4-dihydroxyphenyl) -2- (4-hydroxyphenyl) propane. A method of reacting resorcin and 4-isopropenylphenol in a mixed solvent of methanol is described.
However, asymmetric ethylidene polyhydric phenols having a structure in which a phenol nucleus and an alkyl-substituted phenol nucleus or an alkyl-substituted polyhydric phenol nucleus are connected by an ethylidene group are not known. Such asymmetric polyhydric phenols utilize the selective reactivity of the hydroxyl group and alkyl group contained therein, and are used as raw materials such as resin components, photosensitizers, dissolution inhibitors and additives for photoresist materials. It is expected to be useful as a raw material for a polymer having a linear structure or a crosslinked structure or a raw material for a crosslinking agent.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an asymmetric ethylidene polyhydric phenol having a structure in which a phenol nucleus and an alkyl-substituted phenol nucleus or an alkyl-substituted polyhydric phenol nucleus are linked by an ethylidene group. And Such asymmetric polyhydric phenols are used as a raw material for a resin component of a photoresist material, a photosensitizer, a dissolution inhibitor, an additive, a raw material for a polymer having a nonlinear structure or a cross-linked structure, or a raw material for a cross-linking agent. Useful.
Another object of the present invention is to provide a method for producing such an asymmetric ethylidene polyhydric phenol.
[0004]
[Means for Solving the Problems]
  According to the present invention,General formula (4)Asymmetric ethylidene polyhydric phenols represented by the formula:
[0005]
[Chemical 7]
      General formula (4)
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 5 to 6 carbon atoms,n is 1 Represents an integer of -3, wherein at least one of R is a cycloalkyl group. )
[0006]
Furthermore, according to the present invention, by reacting 4- (1-hydroxyethyl) phenol represented by the general formula (2) and phenols represented by the general formula (3) in the presence of an acid catalyst. Asymmetric ethylidene polyhydric phenols of the above general formula (1) can be produced.
[0007]
[Chemical formula 5]
[0008]
[Chemical 6]
[0009]
In the above formula, R is an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 5 to 6 carbon atoms, specifically a methyl group, an ethyl group, a propyl group or a butyl group, and a propyl group, butyl group The group may be linear or branched, and examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
Accordingly, specific examples of the asymmetric ethylidene polyhydric phenols according to the present invention include 1- (4-hydroxyphenyl) -1- (3-methyl-4-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- ( 5-methyl-2-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (3,5-dimethyl-4-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (2,5- Dimethyl-4-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (2,3,5-trimethyl-4-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (3-cyclopentyl 4-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (2-methyl-5-cyclopentyl-4- Droxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (3-cyclohexylphenyl) -4-hydroxyphenyl) ethane, 1- (4-hydroxyphenyl) -1- (2-methyl-5-cyclohexylure-4- Hydroxyphenyl) ethane 1- (4-hydroxyphenyl) -1- (2,4-dihydroxyphenyl) ethane and the like can be mentioned.
[0010]
Such an asymmetric ethylidene polyhydric phenol of the present invention is obtained by converting 4- (1-hydroxyethyl) phenol represented by the formula (2) and the phenol represented by the general formula (3) into acid according to the present invention. It can manufacture by making it react in presence of a catalyst.
In the phenols represented by the general formula (2), R, n, and m are the same as those in the asymmetric ethylidene polyhydric phenols represented by the general formula (1). Accordingly, specific examples of the phenols represented by the general formula (2) include, for example, o-, m- or p-cresol, 2,5- or 2,6-xylenol, 2,4-xylenol, 3,5-xylenol, 3-methyl-6-ethylphenol, 3-methyl-6-isopropylphenol, 3-methyl-6-tert-butylphenol, 2-ethyl-4-isopropylphenol, o-cyclopentylphenol, o-cyclohexylphenol, 3-methyl-6-cyclopentylphenol, 3-methyl-6-cyclohexylphenol, 2-methyl-5-cyclohexylphenol, 4-ethyl-2-cyclohexylphenol, p-isopropylphenol, 2,6-diisopropylphenol, 2,6-di-t -Butylphenol, 2,3,5- Examples include limethylphenol, 2,3,6-trimethylphenol, 1,3-dihydroxybenzene, 1,2-dihydroxybenzene, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene, etc. Can do.
[0011]
In the production method of the present invention, in the reaction of the 4- (1-hydroxyethyl) phenol with the phenols, the phenols are usually 1.0 with respect to 4- (1-hydroxyethyl) phenol. It is used in a molar amount or more, preferably in the range of 1.0 to 10.0 times the molar amount, and particularly preferably in the range of 1.0 to 6.0 times the molar amount.
This reaction is performed in a reaction solvent as necessary. Examples of the reaction solvent include aromatic hydrocarbons such as toluene and xylene, aliphatic ketones such as methyl isobutyl ketone and methyl ethyl ketone, aliphatic alcohols such as methanol, and mixtures thereof. Of these, aliphatic alcohols are preferably used. Preferred aliphatic alcohols include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol or n-butyl alcohol in consideration of the raw materials used, solubility of the resulting product, reaction conditions, economics of the reaction, etc. And lower aliphatic alcohols such as methanol are particularly preferred.
[0012]
Such a reaction solvent is usually used in a range of 100 to 500 parts by weight, preferably in a range of 150 to 200 parts by weight with respect to 100 parts by weight of 4- (1-hydroxyethyl) phenol used.
Examples of the acid catalyst used in the production method of the present invention include hydrochloric acid, sulfuric acid, sulfuric anhydride, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, phosphoric acid, trichloroacetic acid, A fluoroacetic acid etc. can be mentioned. Such an acid catalyst is usually in the range of 5 to 50 parts by weight, preferably 10 to 20 parts by weight with respect to 100 parts by weight of 4- (1-hydroxyethyl) phenol in the case of 35% hydrochloric acid, for example. Used in a range.
The reaction temperature is usually in the range of 10 to 60 ° C, preferably 30 to 50 ° C. The reaction pressure is usually carried out under normal pressure, but depending on the boiling point of the organic solvent that may be used, it may be carried out under pressure or reduced pressure so that the reaction temperature is within the above range. If the reaction is carried out under such conditions, the reaction is usually completed in about 5 to 10 hours.
[0013]
In the production method of the present invention, when 4- (1-hydroxyethyl) phenol and phenols are reacted in the presence of an acid catalyst, the embodiment is not particularly limited. For example, phenols The solvent and the acid catalyst were charged into a reaction vessel, and the temperature was raised to about 30 to 50 ° C. with stirring in a nitrogen stream, and 4- (1-hydroxyethyl) phenol was added dropwise thereto, and then the same temperature. For about 3 to 8 hours.
The end point of the reaction can be followed by liquid chromatography (HPLC) analysis, and the end point of unreacted 4- (1-hydroxyethyl) phenol may be set as the end point. The reaction yield based on 4- (1-hydroxyethyl) phenol is usually about 90 to 100%.
After completion of the reaction, an alkaline solution such as aqueous ammonia or aqueous sodium hydroxide solution is added to the resulting reaction mixture to neutralize the acid catalyst, and then the crude crystals of the desired asymmetric ethylidene polyhydric phenols are obtained by cooling crystallization. Can be obtained.
[0014]
The asymmetric ethylidene polyhydric phenol thus obtained may be used as a product as it is, or may be purified to a high purity product as necessary. In the purification method, for example, a mixture of a crystallization solvent, for example, an aromatic hydrocarbon such as toluene and water is added to the crude crystal, and the mixture is separated, and the target product is crystallized again from the remaining oil layer. Is separated by filtration and dried, so that a highly pure asymmetric ethylidene polyhydric phenol can be usually obtained as colorless crystals.
[0015]
【Example】
The present invention will be described more specifically with reference to the following examples.
The purity in an Example is the purity by a liquid chromatography.
[Example 1]
Synthesis of 1- (4-hydroxyphenyl) -1- (2-methyl-5-cyclohexylure-4-hydroxyphenyl) ethane;
A 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser, and a stirrer was charged with 190 g (1 mol) of 3-methyl-6-cyclohexylphenol, 100 g of methyl alcohol and 12 g of 35% hydrochloric acid. The temperature was raised to 40 ° C., and the mixture was stirred and dissolved. While maintaining the internal temperature at 40 ° C., 92 g (0.66 mol) of 4- (1-hydroxyethyl) phenol was dropped into this solution over about 2 hours. After completion of the dropwise addition, the reaction was further continued at the same temperature for 4 hours. The end point of the reaction was confirmed by HPLC analysis that 4- (1-hydroxyethyl) phenol had disappeared.
After completion of the reaction, 50 g of methyl alcohol was further added to the resulting reaction mixture, and 31.9 g of 16% sodium hydroxide solution was further added to neutralize the reaction mixture. Thereafter, the reaction mixture was cooled to about 20 ° C., and the precipitated crystals were filtered and dried to obtain 207 g of crude crystals.
Methyl isobutyl ketone was added to the obtained crude crystals, and the mixture was heated to 70 ° C. and dissolved. After that, toluene was added, cooled to 20 ° C., and recrystallized. The re-precipitated crystals were filtered and dried to obtain 175 g of 1- (4-hydroxyphenyl) -1- (2-methyl-5-cyclohexylure-4-hydroxyphenyl) ethane as white crystals.
(Purity 99.8%, yield 85.2% based on 4- (1-hydroxyethyl) phenol)
Melting point 184 ° C (differential thermal analysis)
Molecular weight 310 (M+) (Mass spectrometry)
1The analysis results by 1 H-NMR are shown in Table 1.
(400MHz, solvent DMSO-d)
[0016]
[Table 1]
[0017]
[Example 2]
Synthesis of 1- (4-hydroxyphenyl) -1- (2,3,6-trimethyl-4-hydroxyphenyl) ethane;
In a 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser, and a stirrer, 136 g of methanol, 136 g of 2,3,6-trimethylphenol (1 mol) and 35% hydrochloric acid 13. 6 g was charged, and the mixture was heated to 40 ° C. and stirred and dissolved under a nitrogen stream. While maintaining the internal temperature at 40 ° C., 125.5 g (0.909 mol) of 4- (1-hydroxyethyl) phenol was added dropwise to this solution over about 2 hours. After completion of the dropwise addition, the reaction was further continued for 3 hours at the same temperature. The end point of the reaction was confirmed by HPLC analysis that 4- (1-hydroxyethyl) phenol had disappeared.
After completion of the reaction, methanol was further added to the obtained reaction mixture, and 34.8 g of a 16% aqueous sodium hydroxide solution was further added to neutralize the reaction mixture.
Thereafter, the reaction mixture is cooled to 20 ° C., and the precipitated crystals are filtered and dried to obtain the target 1- (4-hydroxyphenyl) -1- (2,3,6-trimethyl-4-hydroxyphenyl). 180.8 g of ethane was obtained as white crystals.
(Purity 99.7%, Yield 77.7% based on 4- (1-hydroxyethane) phenol)
Melting point 158.5 ° C. (differential thermal analysis method)
Molecular weight 256 (M+) (Mass spectrometry)
1The analysis results by 1 H-NMR are shown in Table 2.
(400 MHz, solvent DMSO-d)
[0018]
[Table 2]
[0019]
[Example 3]
Synthesis of 1- (4-hydroxyphenyl) -1- (2,6-dimethyl-4-hydroxyphenyl) ethane;
Into a 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser and a stirrer, 122 g of methanol, 122 g of 2,6-dimethylphenol (1 mol) and 14.6 g of 35% hydrochloric acid were added. The mixture was charged, heated to 40 ° C. under a nitrogen stream, and stirred and dissolved. To this solution, 92 g (0.66 mol) of 4- (1-hydroxyethyl) phenol was added dropwise over about 2 hours while maintaining the internal temperature at 40 ° C. After completion of the dropwise addition, the reaction was further continued for 4 hours at the same temperature.
The end point of the reaction was confirmed by HPLC analysis that 4- (1-hydroxyethyl) phenol had disappeared.
After completion of the reaction, 50 g of water and 38.5 g of a 16% aqueous sodium hydroxide solution were added to the resulting reaction mixture to neutralize the reaction mixture. Then, toluene was added and liquid-separated and the water layer was isolate | separated. Toluene was further added to the remaining oil layer, and then cooled and the precipitated crystals were filtered and dried to obtain 1- (4-hydroxyphenyl) -1- (2,6-dimethyl-4-hydroxyphenyl) ethane as the target product. 88.3 g was obtained as white crystals.
(Purity 99.5%, yield 54.7% based on 4- (1-hydroxyethyl) phenol)
Melting point: 105.7 ° C (differential thermal analysis method)
Molecular weight 242 (M+) (Mass spectrometry)
1The analysis results by 1 H-NMR are shown in Table 3.
(400 MHz, solvent DMSO-d)
[0020]
[Table 3]
[0021]
[Example 4]
Synthesis of 1- (4-hydroxyphenyl) -1- (2-methyl-4-hydroxyphenyl) ethane;
A 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser and a stirrer was charged with 334 g of metacresol and 10 g of 75% phosphoric acid, heated to 40 ° C. under a nitrogen stream, Was maintained at 40 ° C., and 106.7 g of 4- (1-hydroxyethyl) phenol was added over about 2 hours. After completion of the addition, the mixture was further reacted at the same temperature for 3 hours.
After completion of the reaction, 50 g of water and a 16% aqueous sodium hydroxide solution were added to the resulting slurry reaction mixture to neutralize the reaction mixture. Toluene was added to the neutralized solution for liquid separation, and the aqueous layer was separated. Toluene was further added to the remaining oil layer, followed by cooling, and the precipitated crystals were filtered and dried to obtain 48 g of 1- (4-hydroxyphenyl) -1- (2-methyl-4-hydroxyphenyl) ethane as the target product. Was obtained as white crystals. (Purity 99.0%, 40% yield based on 4- (1-hydroxyethyl) phenol)
Melting point 164 ° C (differential thermal analysis method)
Molecular weight 228 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 4.
(400MHz, DMSO-d solvent)
[0022]
[Table 4]
[0023]
[Example 5]
Synthesis of 1- (4-hydroxyphenyl) -1- (5-methyl-2-hydroxyphenyl) ethane;
A 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser, and a stirrer was charged with 337.5 g of paracresol and 10 g of 75% phosphoric acid, and the temperature was raised to 40 ° C. under a nitrogen stream. While maintaining the internal temperature at 40 ° C., 107.8 g of 4- (1-hydroxyethyl) phenol was added over about 2 hours. After completion of the addition, the mixture was further reacted at the same temperature for 4 hours.
After completion of the reaction, 50 g of water and a 16% aqueous sodium hydroxide solution were added to the resulting slurry reaction mixture to neutralize the reaction mixture. Toluene was added to the neutralized solution for liquid separation, and the aqueous layer was separated. The remaining oil layer was cooled and the precipitated crystals were filtered off. Methyl isobutyl ketone is added to the obtained filtrate and dissolved at 70 ° C., and then a portion of methyl isobutyl ketone is distilled off, followed by cooling with toluene, and crystallization, filtration, and drying from this solution. As a result, 58.1 g of 1- (4-hydroxyphenyl) -1- (5-methyl-2-hydroxyphenyl) ethane as the target product was obtained as white crystals. (Purity 99.8%, yield 33% based on 4- (1-hydroxyethyl) phenol)
Melting point 154 ° C (differential thermal analysis)
Molecular weight 228 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 5.
(400MHz, DMSO-d solvent)
[0024]
[Table 5]
[0025]
[Example 6]
Synthesis of 1- (4-hydroxyphenyl) -1- (5-methyl-4-hydroxyphenyl) ethane;
Into a 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser, and a stirrer was charged 250 g of orthocresol and 5 g of 75% phosphoric acid, and the temperature was raised to 30 ° C. under a nitrogen stream. Was maintained at 30 ° C., and 106.4 g of 4- (1-hydroxyethyl) phenol was added over about 2 hours. After completion of the addition, the mixture was further reacted at the same temperature for 3 hours.
After completion of the reaction, 50 g of water and 16% aqueous sodium hydroxide solution were added to the resulting reaction mixture to neutralize the reaction mixture. Toluene was added to the neutralized solution for liquid separation, and the aqueous layer was separated. After water was added to the remaining oil layer and washed twice with water, the obtained oil layer was distilled under reduced pressure to distill off excess orthocresol. Toluene and cyclohexane were added to the residual liquid, the solution was cooled, and the precipitated crystals were separated by filtration.
Toluene and cyclohexane were added to the obtained filtrate again, and the solution was cooled, crystallized, filtered and dried to obtain the target 1- (4-hydroxyphenyl) -1- (5-methyl-4- 115.5 g of hydroxyphenyl) ethane were obtained as white crystals. (Purity 99.3%, Yield 66% based on 4- (1-hydroxyethyl) phenol)
Melting point 84 ° C (differential thermal analysis)
Molecular weight 228 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 6.
(400MHz, DMSO-d solvent)
[0026]
[Table 6]
[0027]
[Example 7]
Synthesis of 1- (4-hydroxyphenyl) -1- (5-cyclohexyl luro 4-hydroxyphenyl) ethane
141 g of orthocyclohexylphenol, 141 g of methanol, and 42 g of 35% hydrochloric acid were charged into a 1 L four-necked flask equipped with a thermometer, a dropping funnel, a reverse flow condenser, and a stirrer, and this solution was heated to 35 ° C. under a nitrogen stream. While maintaining the internal temperature at 35 ° C., 27.6 g of 4- (1-hydroxyethyl) phenol was added over about 1 hour. After completion of the addition, the mixture was further reacted at the same temperature for 15 hours.
After completion of the reaction, 75% phosphoric acid aqueous solution and 16% sodium hydroxide aqueous solution g were added to the obtained reaction mixture solution to neutralize the reaction mixture solution. After the neutralized solution was concentrated by atmospheric distillation, toluene was added thereto for liquid separation, and the aqueous layer was separated. The remaining oil layer was distilled under reduced pressure, and excess orthocyclohexylphenol was distilled off. Toluene was added to the residual liquid, the solution was cooled, and the precipitated crystals were separated by filtration.
Toluene was again added to the obtained filtrate, and this solution was cooled, crystallized, filtered and dried to obtain the target product 1- (4-hydroxyphenyl) -1- (5-cyclohexyl lu 4-hydroxy. 28.5 g of phenyl) ethane were obtained as white crystals. (Purity 99.8%, yield based on 4- (1-hydroxyethyl) phenol 48%)
Melting point 129 ° C (differential thermal analysis method)
Molecular weight 296 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 7.
(400MHz, DMSO-d solvent)
[0028]
[Table 7]
[0029]
[Example 8]
Synthesis of 1- (4-hydroxyphenyl) -1- (2,5-dimethyl-4-hydroxyphenyl) ethane;
A 1 L four-necked flask equipped with a thermometer, a dropping funnel, a reverse flow condenser, and a stirrer was charged with 152.5 g of 2,5-xylenol, 152.5 g of methanol, and 30.5 g of 35% hydrochloric acid. The temperature was raised to 156.8 g of 4- (1-hydroxyethyl) phenol over about 1 hour while maintaining the internal temperature at 40 ° C. After completion of the addition, the mixture was further reacted at the same temperature for 3 hours.
After completion of the reaction, a 75% aqueous phosphoric acid solution and a 16% aqueous sodium hydroxide solution were added to the resulting reaction mixture solution to neutralize the reaction mixture solution. After adding 200 g of water to the neutralized solution, the solution was concentrated by atmospheric distillation. Toluene was added thereto for liquid separation, and the aqueous layer was separated. The remaining oil layer was distilled under reduced pressure to distill off excess 2,5-xylenol.
Toluene and cyclohexane were added to the residual liquid, the solution was cooled, and the precipitated crystals were separated by filtration and dried to obtain 1- (4-hydroxyphenyl) -1- (2,5-dimethyl-4- 253 g of hydroxyphenyl) ethane were obtained as white crystals. (Purity 98.8%, 92% yield based on 4- (1-hydroxyethyl) phenol)
Melting point 134.6 ° C. (differential thermal analysis method)
Molecular weight 242 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 8.
(400MHz, DMSO-d solvent)
[0030]
[Table 8]
[0031]
[Example 9]
Synthesis of 1- (4-hydroxyphenyl) -1- (4,6-dimethyl-2-hydroxyphenyl) ethane;
A 1 L four-necked flask equipped with a thermometer, a dropping funnel, a backflow condenser, and a stirrer was charged with 244 g of 3,5-xylenol, 73.2 g of methanol, and 2.4 g of 35% hydrochloric acid, and the temperature was raised to 40 ° C. under a nitrogen stream. Then, 69 g of 4- (1-hydroxyethyl) phenol was added to the solution over about 1 hour while maintaining the internal temperature at 40 ° C. After completion of the addition, the mixture was further reacted at the same temperature for 17 hours.
After completion of the reaction, a 75% aqueous phosphoric acid solution and a 16% aqueous sodium hydroxide solution were added to the resulting reaction mixture solution to neutralize the reaction mixture solution. After adding 100 g of water to the neutralized solution, it was concentrated by atmospheric distillation. Toluene and water were added thereto for liquid separation, and the aqueous layer was separated. The remaining oil layer was distilled under reduced pressure to distill off excess 3,5-xylenol. Toluene and cyclohexane were added to the residual liquid, the solution was cooled, and the precipitated crystals were separated by filtration and dried to give 1- (4-hydroxyphenyl) -1- (4,6-dimethyl-2- 27.1 g of hydroxyphenyl) ethane were obtained as white crystals. (Purity 99.1%, 14% yield based on 4- (1-hydroxyethyl) phenol)
Melting point 80 ° C (differential thermal analysis method)
Molecular weight 242 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 9.
(400MHz, DMSO-d solvent)
[0032]
[Table 9]
[0033]
[Example 10]
Synthesis of 1- (4-hydroxyphenyl) -1- (3,4,6-trimethyl-2-hydroxyphenyl) ethane;
A 1 L four-necked flask equipped with a thermometer, dropping funnel, reverse flow condenser, and stirrer was charged with 163.2 g of 2,3,5-trimethylphenol, 81.6 g of methanol, and 1.6 g of 35% hydrochloric acid under a nitrogen stream. The temperature was raised to 50 ° C., and 157.7 g of 4- (1-hydroxyethyl) phenol was added to the solution over about 2 hours while maintaining the internal temperature at 50 ° C. After completion of the addition, the reaction was further continued for 20 hours at the same temperature.
After completion of the reaction, a 75% aqueous phosphoric acid solution and a 16% aqueous sodium hydroxide solution were added to the resulting reaction mixture solution to neutralize the reaction mixture solution. After adding 200 g of water to the neutralized solution, the solution was concentrated by atmospheric distillation. Toluene and water were added thereto for liquid separation, and the aqueous layer was separated. Toluene and cyclohexane are added to the remaining oil layer, and the solution is cooled. The precipitated crystals are separated by filtration and dried to give the desired product 1- (4-hydroxyphenyl) -1- (3,4,6-trimethyl- There were obtained 55.9 g of 2-hydroxyphenyl) ethane as white crystals. (Purity 98.8%, 17% yield based on 4- (1-hydroxyethyl) phenol)
Melting point 123 ° C (differential thermal analysis)
Molecular weight 256 (M +) (mass spectrometry)
1The analysis results by H-NMR are shown in Table 10.
(400MHz, DMSO-d solvent)
[0034]
[Table 10]
[0035]
【The invention's effect】
In the present invention, the asymmetric ethylidene polyhydric phenol has a phenol nucleus linked by an ethylidene group and an alkyl-substituted phenol nucleus or an alkyl-substituted polyhydric phenol nucleus, which is used as a raw material. By utilizing the selective reactivity of the hydroxyl group and alkyl group contained therein, solvent solubility, useful photoresist material resin components, photosensitizers, dissolution inhibitors and additives, or non-linear structures It is expected to obtain a polymer having a crosslinked structure.
Furthermore, according to the present invention, such an asymmetric ethylidene polyhydric phenol can be obtained in a high yield by reacting 4- (1-hydroxyethyl) phenol with the phenol in the presence of an acid catalyst. Obtainable.

Claims (4)

一般式(4)で表される非対称エチリデン多価フェノール類。
一般式(4)
(式中、Rは炭素数1〜4のアルキル基又は炭素数5乃至6のシクロアルキル基を示し、nは 1 〜3の整数を表し、但しRのうち少なくとも1つはシクロアルキル基である。)
Asymmetric ethylidene polyhydric phenols represented by the general formula (4) .
General formula (4)
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 5 to 6 carbon atoms, n represents an integer of 1 to 3, provided that at least one of R is a cycloalkyl group. .)
1−(4−ヒドロキシフェニル)−1−(2−メチル−5−シクロヘキシル−4−ヒドロキシフェニル)エタン。1- (4-Hydroxyphenyl) -1- (2-methyl-5-cyclohexyl-4-hydroxyphenyl) ethane. 1−(4−ヒドロキシフェニル)−1−(5−シクロヘキシル−4−ヒドロキシフェニル)エタン。1- (4-Hydroxyphenyl) -1- (5-cyclohexyl-4-hydroxyphenyl) ethane. 一般式(2)で表される4−(1−ヒドロキシエチル)フェノールと一般式(3)で表されるフェノール類とを酸触媒の存在下に反応させることを特徴とする一般式(1)で表される非対称エチリデン多価フェノール類の製造方法。
一般式(2)
一般式(3)
(式中、R、nおよびmは下記一般式(1)のそれと同じである。)
一般式(1)
(式中、Rは炭素数1〜4のアルキル基又は炭素数5乃至6のシクロアルキル基を示し、nは0〜3の整数を表し、mは1〜3の整数を表す。但しn+m≦4であり、且つ、mが1の場合、nは少なくとも1である。)
(以下、特に断りのない限り「本発明」という)
General formula ( 1) characterized by reacting 4- (1-hydroxyethyl) phenol represented by general formula (2) with phenols represented by general formula (3) in the presence of an acid catalyst. The manufacturing method of asymmetric ethylidene polyhydric phenol represented by these .
General formula (2)
General formula (3)
(In the formula, R, n and m are the same as those in the following general formula (1) .)
General formula (1)
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 5 to 6 carbon atoms, n represents an integer of 0 to 3, and m represents an integer of 1 to 3. However, n + m ≦ 4 and when m is 1, n is at least 1.)
(Hereinafter referred to as `` the present invention '' unless otherwise specified)
JP2001146951A 2000-05-17 2001-05-16 Asymmetric ethylidene polyphenols and process for producing the same Expired - Fee Related JP4093528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146951A JP4093528B2 (en) 2000-05-17 2001-05-16 Asymmetric ethylidene polyphenols and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-144346 2000-05-17
JP2000144346 2000-05-17
JP2001146951A JP4093528B2 (en) 2000-05-17 2001-05-16 Asymmetric ethylidene polyphenols and process for producing the same

Publications (2)

Publication Number Publication Date
JP2002037750A JP2002037750A (en) 2002-02-06
JP4093528B2 true JP4093528B2 (en) 2008-06-04

Family

ID=26592012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146951A Expired - Fee Related JP4093528B2 (en) 2000-05-17 2001-05-16 Asymmetric ethylidene polyphenols and process for producing the same

Country Status (1)

Country Link
JP (1) JP4093528B2 (en)

Also Published As

Publication number Publication date
JP2002037750A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
KR101407794B1 (en) Novel tris(formylphenyl) and novel polynuclear phenol derived from the same
TWI520937B (en) Novel trisphenol compound
JP4132302B2 (en) Novel polyphenolic compounds
JP4395184B2 (en) NOVEL BIS (HYDROXYBENZALDEHYDE) COMPOUND, NOVEL POLYNUCLEAR POLYPHENOL COMPOUND DERIVED FROM THE SAME, AND METHOD FOR PRODUCING THE SAME
JP4878486B2 (en) 1,3-bis (3-formyl-4-hydroxyphenyl) adamantanes and polynuclear polyphenols derived therefrom
JP4093528B2 (en) Asymmetric ethylidene polyphenols and process for producing the same
KR101426971B1 (en) Novel bis(formylphenyl)alkane and novel polynuclear phenol derived from the same
JP4067974B2 (en) 1,3,5-tris (4-hydroxyphenyl) adamantanes and process for producing the same
JP3275186B2 (en) Method for producing fully-nuclear alkyl-substituted trisphenol derivatives
KR101828095B1 (en) Novel polynuclear poly(phenol) compound
JP2004277358A (en) Bisphenol monoaldehyde compound, method for producing the same, tetrakisphenol compound using the same and method for producing the same
JP3605208B2 (en) Novel bisphenol compound and method for producing the same
JP2000063308A (en) New tri-nucleus polyphenol compound
JP2003306460A (en) 1,3-bis(hydroxyphenyl)adamantane and method for producing the same
KR101546553B1 (en) Novel bis(formylphenyl) compound and novel polynuclear polyphenol compound derived from the same
JP3797799B2 (en) New bisphenol compounds
JP4022387B2 (en) Novel 4-substituted cyclohexylidene bisphenols
JP3614571B2 (en) Novel polyphenolic compounds
JP2008163032A (en) Novel polyphenol
JP2004067664A (en) New 4, 4'-(hexahydro-4, 7-methanoindan-5-ylidene)bis(substituted phenol)s
JPH1135509A (en) New polyphenol compound
JP2002356453A (en) New a,a',a"-tris(hydroxyphenyl)-1,3,5-triisopropylbenzene
JP2000063310A (en) New bisphenol compound
JP2002284726A (en) METHOD FOR PRODUCING alpha,alpha',alpha"-TRIS (4-HYDROXYPHENYL)-1,3,5- TRIALKYLBENZENE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees