JP4092091B2 - 光造形装置及び方法 - Google Patents

光造形装置及び方法 Download PDF

Info

Publication number
JP4092091B2
JP4092091B2 JP2001214153A JP2001214153A JP4092091B2 JP 4092091 B2 JP4092091 B2 JP 4092091B2 JP 2001214153 A JP2001214153 A JP 2001214153A JP 2001214153 A JP2001214153 A JP 2001214153A JP 4092091 B2 JP4092091 B2 JP 4092091B2
Authority
JP
Japan
Prior art keywords
light
light source
optical
modeling
optical modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001214153A
Other languages
English (en)
Other versions
JP2003025453A (ja
Inventor
武晴 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2001214153A priority Critical patent/JP4092091B2/ja
Priority to US10/193,138 priority patent/US6841340B2/en
Publication of JP2003025453A publication Critical patent/JP2003025453A/ja
Application granted granted Critical
Publication of JP4092091B2 publication Critical patent/JP4092091B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光造形装置及び方法にかかり、特に、光の照射により硬化する光硬化性物質へ光を照射することにより構造物を造形する光造形装置及び方法に関する。
【0002】
【従来の技術】
従来、光を照射した部分が硬化する性質を有する光硬化性樹脂を用い、光の照射位置を所定のパターンに沿って移動させ、3次元の構造物を作成する光造形法が知られている(特開昭56−144478号公報参照)。光硬化性樹脂は、光吸収によって樹脂中のモノマーが重合し、ポリマー化して硬化する。ポリマー化した部分は、固体化するため、未硬化の液状部分を取り除くことによって、3次元の構造物を作成できる。この光造形では、光硬化性樹脂は、紫外線波長(300nm〜400nm)に大きな吸収を有し、紫外線レーザや紫外線ランプを光源に用いて光造形を行っている。
【0003】
ところが、従来の紫外線照射による光造形法(以下、紫外線照射光造形法という)では、高速の造形が可能であるが、加工精度が低いことが知られている。すなわち、紫外線照射光造形法では集光点以外での光が照射されている部分においても光を吸収し硬化反応が起こるため、加工精度が低く(10〜数10μm)、また、積層構造しか作成することができない。
【0004】
そこで、造形を高精度化するために、近年、紫外線ではなく、吸収波長の2倍の波長(600nm〜800nm)を有する光を照射し、2光子吸収現象によって光を吸収させ、同様に3次元の構造物を作成する造形法(以下、2光子吸収光造形法という)が提案されている(特公昭63−40650号公報参照)。
【0005】
2光子吸収現象は、吸収量が光強度の2乗に比例する非線形吸収特性を有し、高い3次元の空間分解能を有する。この特徴を生かして、通常の光造形に比べて、より微細な構造の作成が実現できる。一般的に2光子吸収光造形は3次元の構造物を作成するため、構造物を点の集合に分解し1点づつ照射位置をずらして硬化させるか、または光を照射したまま、集光スポットを移動させ、線の集まりによって構造物を作成する。
【0006】
【発明が解決しようとする課題】
しかしながら、点硬化または線硬化の何れの場合であっても単位体積を硬化させるには、一定以上の光エネルギを吸収させることが必要である。特に、2光子吸収現象は、紫外線照射光造形法による吸収に比較して、吸収確率が小さい。光源の出力を高めれば、時間短縮することが可能であるが、一定の出力以上では、アブレーションの発生などにより、樹脂を破壊する場合があった。
【0007】
これにより、大きなサイズの構造物を大量に作成するには、2光子吸収現象を利用した2光子吸収光造形法では、スループットが低く、実用的に問題となり、作成時間の短縮化が叫ばれている。
【0008】
本発明は、上記事実を考慮して、簡単かつ短時間で高精度の構造物を光造形することができる光造形装置及び方法を得ることが目的である。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、容器内に収容されかつ光の照射により硬化する光硬化性物質へ、前記光硬化性物質の硬化に必要なエネルギレベルの光を照射することにより構造物を造形する光造形装置において、前記光硬化性物質へ第1の光を照射する第1光源と、多光子吸収現象が生じる第2の光を前記光硬化性物質へ照射する第2光源と、を有する光源手段と、前記第1の光及び第2の光の光エネルギが前記光硬化性物質の硬化に必要なエネルギレベルとなるべく集光する集光手段と、前記容器内において前記集光手段による集光位置を変更する変更手段と、造形されるべき所定形状の構造物について、前記構造物の少なくとも一部のサイズを前記所定形状の構造物のサイズから予め定めた小さなサイズとなるように前記第1の光源による光の照射及び前記集光位置の変更の前処理の後に、前記予め定めた小さなサイズから前記所定形状になるまで前記第2の光源による光の照射及び前記集光位置の変更の本処理を行うように制御する制御手段と、を備えたことを特徴とする。
【0010】
本発明の光造形装置は、容器内に収容されかつ光の照射により硬化する光硬化性物質へ、前記光硬化性物質の硬化に必要なエネルギレベルの光を照射することにより構造物を造形する。光硬化性物質へ照射する光は、光源手段が有する第1光源と第2光源から照射される。第1光源は、光硬化性物質へ第1の光を照射する。第2光源は、多光子吸収現象、例えば2光子吸収現象が生じる第2の光を光硬化性物質へ照射する。光源手段から照射された光は、集光手段によって容器内における光硬化性物質で集光される。この場合、第1の光及び第2の光の光エネルギが光硬化性物質の硬化に必要なエネルギレベルとなるべく集光される。容器内における集光位置は、変更手段によって変更される。その集光位置の変更及び光源手段は、制御手段により制御される。制御手段は、造形されるべき所定形状の構造物について、構造物の少なくとも一部のサイズを所定形状の構造物のサイズから予め定めた小さなサイズとなるように第1の光源による光の照射及び集光位置の変更の前処理を行うように制御する。この後、制御手段は、予め定めた小さなサイズから所定形状になるまで第2の光源による光の照射及び集光位置の変更の本処理を行うように制御する。すなわち、前処理では、粗い造形がなされ、本処理では微細な造形がなされる。これによって、微細な構造物を短時間で造形することができる。
【0011】
請求項2に記載の発明は、請求項1に記載の光造形装置において、前記変更手段は、前記光源手段からの光の集光位置を2次元的に走査する走査手段と、前記走査面と交差する方向に前記集光位置及び前記光硬化性物質の位置の少なくとも一方の位置を移動する移動手段と、から構成したことを特徴とする。
【0012】
焦点位置は、構造物の形状に併せて変更されることが好ましい。そこで、集光位置を3次元的に変更するため、変更手段が走査手段と移動手段により焦点位置の変更を分離することで、焦点位置の変更が容易となる。すなわち、走査手段は、光源手段からの光の集光位置を2次元的に走査する。移動手段は、走査面と交差する方向に集光位置及び前記光硬化性物質の位置の少なくとも一方の位置を移動する。
【0013】
請求項3に記載の発明は、請求項1または請求項2に記載の光造形装置において、前記光源手段は、前記第1光源の光と前記第2光源の光との何れか一方の光の照射に切り換える切換手段を含むことを特徴とする。
【0014】
第1光源の光と第2光源の光が、共に光硬化性物質に照射されたのでは、第1光源の光による作用と第2光源の光による作用が同時に生じ好ましくない。そこで、第1光源の光と第2光源の光との何れか一方の光の照射に切り換える切換手段を光源手段が含むことにより各々の光源の作用を分離することが可能になる。
【0015】
請求項4に記載の発明は、請求項1乃至請求項3の何れか1項に記載の光造形装置において、前記第1光源は、紫外波長域の波長の光を照射することを特徴とする。
【0016】
第1光源として、紫外波長域の波長の光を照射する光源を用いることで、一般的な光硬化性物質を用いるすることができ、光造形装置の汎用性が向上する。
【0017】
請求項5に記載の発明は、請求項1乃至請求項4の何れか1項に記載の光造形装置において、前記第2光源は、高調波発生素子を含み、前記第1光源から照射された光を前記多光子吸収現象が生じる第2の光として照射することを特徴とする。
【0018】
第2光源は、多光子吸収現象が生じる第2の光を照射するが、第1光源と別個の光源を用いたのでは、装置が大型化する。そこで、第2光源として、SHGなどの高調波発生素子を用い、第1光源から照射された光を、高調波発生素子の作動によって多光子吸収現象が生じる第2の光として照射すれば、光源を兼用することができ、装置を小型化することが可能となる。
【0019】
請求項6に記載の発明は、請求項5に記載の光造形装置において、前記切換手段は、前記第1光源の光を透過する第1光学フィルタと前記第2光源の光を透過する第2光学フィルタとの何れかの光学フィルタに交換する交換手段であることを特徴とする。
【0020】
第2光源として、SHGなどの高調波発生素子を用いた場合、第1光源の光と第2光源の光は接近またはほぼ合波され、分離することが困難な場合がある。そこで、前記切換手段として、前記第1光源の光を透過する第1光学フィルタと前記第2光源の光を透過する第2光学フィルタとの何れかの光学フィルタに交換する交換手段で構成すれば、第1光源の光と第2光源の光を容易に分離して用いることができる。
【0021】
前記光造形装置の機能は、次の光造形方法により容易に達成できる。詳細には、請求項7にも記載したように、容器内に収容されかつ光の照射により硬化する光硬化性物質へ、前記光硬化性物質の硬化に必要なエネルギレベルの光を照射することにより構造物を造形する光造形方法において、前記光硬化性物質へ照射する第1の光、及び前記光硬化性物質へ照射する多光子吸収現象が生じる第2の光の光エネルギが前記光硬化性物質の硬化に必要なエネルギレベルとなるべく集光し、造形されるべき所定形状の構造物について、前記構造物の少なくとも一部のサイズを前記所定形状の構造物のサイズから予め定めた小さなサイズとなるように前記第1の光を照射した後に、前記予め定めた小さなサイズから前記所定形状になるまで前記第2の光を照射すると共に、前記集光位置を前記容器内において変更することによって、前記所定形状の構造物を造形することを特徴とする。
【0022】
請求項8に記載の発明は、請求項7に記載の光造形方法であって、前記集光位置を2次元的に走査すると共に、前記走査面と交差する方向に前記集光位置及び前記光硬化性物質の位置の少なくとも一方の位置を移動することにより、前記集光位置を前記容器内において変更することを特徴とする。
【0023】
請求項9に記載の発明は、請求項7または請求項8に記載の光造形方法であって、前記光硬化性物質へ照射するときは、前記第1の光と前記第2の光との何れか一方の光の照射に切り換えることを特徴とする。
【0024】
請求項10に記載の発明は、請求項7乃至請求項9の何れか1項に記載の光造形方法であって、前記第1の光は、紫外波長域の波長の光であることを特徴とする。
【0025】
請求項11に記載の発明は、請求項7乃至請求項10の何れか1項に記載の光造形方法であって、前記第2の光は、前記第1の光から高調波発生現象により生じた前記多光子吸収現象が生じる光であることを特徴とする。
【0026】
請求項12に記載の発明は、請求項11に記載の光造形方法であって、前記光硬化性物質へ照射するときは、前記第1の光を透過する第1光学フィルタと前記第2の光を透過する第2光学フィルタとの何れかの光学フィルタに交換することを特徴とする。
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。本実施の形態は、光造形装置に本発明を適用したものである。
【0028】
光造形によって、単位体積を硬化させるには、一定以上の光エネルギを吸収させることが必要である。特に、2光子吸収現象は、通常の光吸収にくらべて、吸収確率が小さい。従って、光源の出力を高めることによって、時間短縮することが可能であるが、一定の出力以上では、アブレーションの発生などにより、樹脂を破壊してしまう。本発明者らは、実験により、実用的な光源出力範囲で、2光子吸収光造形法による樹脂の硬化のためには、約0.01s/μm3以上程度の照射時間が必要であることを見いだした。従って、体積V(μm3)の構造物を作成するためには、少なくとも、V×0.01(s)の時間が必要である。
【0029】
この2光子吸収光造形法では、大きなサイズの構造物を大量に作成するには、スループットが低く、実用的に問題となり、作成時間の短縮化が叫ばれている。
【0030】
一方、紫外線照射光造形法では、2光子吸収と同一のパワーの光を照射した場合に、単位体積あたり、1e-8s/μm3の速度で樹脂を硬化させることが可能であり、2光子吸収光造形に比較して、桁違いに高速である。ところが、紫外線照射光造形法では集光点以外での光を照射している部分の至るところで光を吸収し硬化反応が起こるため、2光子吸収光造形に比べて、加工精度が劣る(10〜数10μm)。
【0031】
そこで、本実施の形態では、紫外線照射光造形法による粗い光造形を実施した後に、2光子吸収光造形法による光造形を連続して行うことによって、高速かつ高精度の光造形を実現する。
【0032】
図1には、本発明が適用可能な第1実施の形態にかかる光造形装置10の概略構成を示した。本実施の形態の光造形装置10は、第1レーザ光源12及び第2レーザ光源14から構成された光源部16を備えている。なお、これら第1レーザ光源12及び第2レーザ光源14から構成された光源部16は、予め定めたパターンに従って光造形するための過程を制御する制御装置50に接続されている(図2)。
【0033】
第1レーザ光源12は、従来の紫外線照射光造形法による光造形を実施するための光源であり、本実施の形態では、発振波長325nmで出力10mWのHe−Cdレーザを用いている。なお、本実施の形態では紫外線照射光造形法による第1レーザ光源12に、レーザ光源を用いた場合を説明するが、本発明はこれに限定されるものではなく、紫外線波長域の光を射出する光源であればよい。例えば、Nd:YAG−3倍高調波のレーザや、水銀ランプなどの放電灯を用いても良い。
【0034】
第2レーザ光源14は、2光子吸収光造形法による光造形を実施するための光源であり、本実施の形態では、Ti:Sapphireパルスレーザを用いている。このTi:Sapphireパルスレーザは、発振波長700nm、パルス幅100fs(フェムト秒)、繰返周波数100MHzで発振するパルスレーザであり、平均出力10mWを得ることができる。なお、本実施の形態では、2光子吸収光造形法による第2レーザ光源14として、Ti:Sapphireパルスレーザを用いた場合を説明するが、本発明はこれに限定されるものではない。第2レーザ光源14は、2光子吸収光造形法による光造形が生じる光源であればよいが、Ti:Sapphireパルスレーザを用いれば、短パルスで出力ピークを高くでき、効率的に2光子吸収現象を生じさせることができる。
【0035】
第1レーザ光源12の射出側にはダイクロイックミラー18が設けられており、第2レーザ光源14の射出側には反射ミラー22が設けられている。ダイクロイックミラー18は、第1レーザ光源12が射出したレーザビームを反射すると共に第2レーザ光源14が射出したレーザビームを透過するものであり、具体的には、波長が700nm近傍の光を透過しかつ波長が325nm希望の光を反射するものである。反射ミラー22は、少なくとも第2レーザ光源14から射出されたレーザビームを反射できれば良く、具体的には、波長が700nm近傍の光を反射するものである。
【0036】
ダイクロイックミラー18には、反射光を光軸と交差する2軸方向に偏向するための第1駆動部20に取り付けられている。これは、スポット光を2次元的に走査するためである。同様に、反射ミラー22には、反射光を光軸と交差する2軸方向に偏向するための第2駆動部24に取り付けられている。
【0037】
ダイクロイックミラー18及び反射ミラー22の反射側には、光変調機構26及び集光レンズ28が順に設けられている。
【0038】
光変調機構26は、通過するレーザビームを遮光または透光に切換るものであり、本実施の形態では、音響光学変調素子(AOM)を用いて説明するが、本発明はこれに限定されるものではなく、通過するレーザビームを遮光または透光に切換可能な機構を有するものであればよい。例えば、機械的に遮光または開放するメカニカルシャッタ、電気光学効果により遮光または透光に切換る電気光学変調素子(EOM)、液晶により遮光または透光に切換るLCDシャッタなどを用いることができる。
【0039】
集光レンズ28は、入射されたレーザビームをスポット状に集光するためのものであり、集光レンズ28を光軸に沿う方向に移動調整するための移動機構30に取り付けられている。本実施の形態では、集光レンズ28は、N.A.が0.8のレンズ系を用いている。なお、上記ダイクロイックミラー18及び反射ミラー22の反射角度の偏向及び集光レンズ28の移動調整による集光位置の調整は、集光点移動機構として機能する。
【0040】
なお、上記では、第1レーザ光源12及び第2レーザ光源14からのレーザビームを単一の集光レンズ28で集光する場合を説明するが、本発明はこれに限定されるものではなく、各々のレーザビームを独立した光学系として構成してもよい。
【0041】
集光レンズ28の集光側には、デスク(ベース板46)上に載置された容器40が位置している。ベース板46の所定位置に容器40が載置される。ベース板46には、上下動機構48が設けられている。上下動機構48は、支柱38,アーム36,ポール34,支持板32,上下駆動部44から構成されている。
【0042】
すなわち、ベース板46上に、容器40の上方に位置するアーム36が取り付けられた支柱38が固定され、アーム36の先端部には、造形物を保持するための支持板32が取り付けられたポール34が上下動可能に軸支される。ポール34の上下動は、上下駆動部44によりなされる。この支持板32は、容器40内に収容される光硬化性樹脂42に埋没可能であり、容器40の上下動によって、支持板32と光硬化性樹脂42の液面との間隔を調整できる。すなわち、上下動機構48の稼働によって支持板32が上下動され、これに伴って容器40が上下動される。なお、支持板32は、ほぼ透明な平坦な板であればよく、例えば硝子やアクリルなどの平板を用いることができる。
【0043】
図2に示すように、制御装置50は、第1レーザ光源12及び第2レーザ光源14に接続しており、第1レーザ光源12及び第2レーザ光源14の各々のレーザビームの射出を制御する。また、ダイクロイックミラー18の反射角度を偏向するための第1駆動部20及び反射ミラー22の反射角度を偏向するための第2駆動部24も制御装置50に接続されている。さらに、光変調機構26、移動機構30及び上下駆動部44も、制御装置50に接続されている。なお、制御装置50は、CPU、ROM、RAMを含むコンピュータを備えた構成とされ、後述する処理ルーチンによって各部の駆動を制御して造形処理するためのものである。
【0044】
なお、制御装置50には、記録媒体としてのフロッピーディスク(FD)が挿抜可能なフロッピーディスクユニット(FDU)を備えることができる。なお、後述する処理ルーチン等は、FDUを用いてフロッピーディスクFDに対して読み書き可能である。従って、後述する処理ルーチンは、予めFDに記録しておき、FDUを介してFDに記録された処理プログラムを実行してもよい。また、制御装置50にハードディスク装置等の大容量記憶装置(図示省略)を接続し、FDに記録された処理プログラムを大容量記憶装置(図示省略)へ格納(インストール)して実行するようにしてもよい。また、記録媒体としては、CD−ROM、DVD等の光ディスクや、MD,MO等の光磁気ディスクなどのディスク、DAT等の磁気テープがあり、これらを用いるときには、上記FDUに代えてまたはさらにCD−ROM装置、DVD装置、MD装置、MO装置、テープデッキ等を用いればよい。
【0045】
次に、本実施の形態にかかる光造形法による構造物の造形のプロセスを説明する。本実施の形態では、構造物を、紫外線照射光造形法によって粗く造形し、この後に2光子吸収光造形法によって微細に造形する。
【0046】
図3に示す処理ルーチンが、制御装置50で実行される。先ず、ステップ100では、造形する構造物の構造データを読み取る。この構造データは、構造物をを数値解析上の造形モデルに落とし込むために利用されるCADデータやスキャンデータがあり、ステップ100では、この構造データから造形モデルを作成する。この造形モデルは、造形モデルを数値的・解析的手法に基づいて作成されたコンピュータプログラムヘのインプットデータ形式に数値化したものをいう。
【0047】
次のステップ102では、造形モデルを格子状に分解する。ここでは、予め定めた大きさの空間(本実施の形態では、容器40)を、10μmを一辺とする立方体の分解ブロックとなるように分割する。この予め定めた大きさの空間は、造形されるべき構造物の造形モデルを完全に含有する体積である。そして、この空間内に造形モデルを設置したときに、造形モデルを格子状に分解したことに相当され、上記の分解ブロックの位置と、造形モデルとの位置の対応関係を求めることができる。次のステップ104では、造形モデル内に完全に含まれる分解ブロックを抽出する。
【0048】
次のステップ106では、支持板32の上面と光硬化性樹脂42の液面との間隔が10μmになるように、上下駆動部44を駆動させる制御信号を出力する。これは、本実施の形態における紫外線照射光造形法による造形量が10μmを一辺とする立方体(1000μm3)であることに起因する。このため、紫外線照射光造形法による造形量に応じて、ステップ102の値を変更することが可能である。次のステップ108では、紫外線照射光造形法による光造形をするために、第1レーザ光源12からレーザビームが射出されるように第1レーザ光源12を駆動させる制御信号を出力する。なお、この時点では、制御装置50は、レーザビームを遮光するように光変調機構26へ制御信号を出力する。
【0049】
次のステップ110では、上記ステップ104で抽出した分解ブロックのうち、最下層の分解ブロックの光造形を実施する。ここでは、第1駆動部20及び移動機構30へ制御信号を出力することで、2次元面内の光硬化性樹脂42へレーザビームを照射し、硬化させる。また、分解ブロックの位置(パターン)に応じて、制御装置50は、レーザビームを透光するように光変調機構26へ制御信号を出力する。
【0050】
次のステップ112では、造形モデルの全ての層について造形が終了したか否かを判断し、否定されると、ステップ114へ進む。ステップ114では、造形を完了した層を最下層とするべく、造形上面と液面との間隔が10μmになるように、上下駆動部44を駆動させる制御信号を出力した後にステップ110へ戻り、上記処理を繰り返す。
【0051】
一方、紫外線照射光造形法による造形が完了すると、ステップ112で肯定され、ステップ116へ進み、造形モデルを微細な格子状に分解する。ここでは、予め定めた大きさの空間(本実施の形態では、容器40)を、1μmを一辺とする立方体の微細ブロックとなるように分割する。上記と同様に、この空間内に造形モデルを設置したときに、造形モデルを微細な格子状に分解したことに相当され、上記の分解ブロックの位置と、造形モデルとの位置の対応関係を求めることができる。次のステップ118では、造形モデル内に完全に含まれかつ上記分解ブロックに含まれない微細ブロックを抽出する。
【0052】
なお、微細ブロックの抽出は、造形モデル内に完全に含まれることに限定さない。例えば、微細ブロックの一部が造形モデルの外部に存在する場合、微細ブロックの体積に対する突出量の比率が、予め定めた比率以下のものを抽出するようにしてもよい。
【0053】
次のステップ120では、支持板32の上面と光硬化性樹脂42の液面との間隔が1μmになるように、上下駆動部44を駆動させる制御信号を出力する。これは、本実施の形態における2光子吸収光造形法による造形量すなわち精度が約1μm3であることに起因する。このため、2光子吸収光造形法による造形量に応じて、ステップ120の値を変更することが可能である。次のステップ122では、2光子吸収光造形法による光造形をするために、第2レーザ光源14からレーザビームが射出されるように第2レーザ光源14を駆動させる制御信号を出力する。すなわち、第1レーザ光源12から第2レーザ光源14へレーザービームの射出を切り換える。なお、この時点では、制御装置50は、レーザビームを遮光するように光変調機構26へ制御信号を出力する。
【0054】
次のステップ124では、上記ステップ118で抽出した微細ブロックのうち、最下層の微細ブロックの光造形を実施する。ここでは、第2駆動部24及び移動機構30へ制御信号を出力することで、2次元面内の光硬化性樹脂42へレーザビームを照射し、硬化させる。また、分解ブロックの位置(パターン)に応じて、制御装置50は、レーザビームを透光するように光変調機構26へ制御信号を出力する。
【0055】
次のステップ126では、造形モデルの全ての層について造形が終了したか否かを判断し、否定されると、ステップ128へ進む。ステップ128では、造形を完了した層を最下層とするべく、造形上面と液面との間隔が1μmになるように、上下駆動部44を駆動させる制御信号を出力した後にステップ124へ戻り、上記処理を繰り返す。
【0056】
一方、2光子吸収光造形法による造形が完了すると、ステップ126で肯定され、ステップ130へ進み、洗浄処理する。すなわち、硬化した光硬化性樹脂42を取り出し、未硬化部に可溶でかつ硬化部に不溶な溶剤、例えばメタノールを吹きかけたり埋没させたりして、未硬化の光硬化性樹脂42を洗い流す。
【0057】
このように本実施の形態では、紫外線照射光造形法による粗い光造形を実施した後に、2光子吸収光造形法による微細な光造形を連続して行うので、紫外線照射光造形法による高速処理を実現しつつ2光子吸収光造形法による微細構造造形を可能とする光造形を実現することができる。
【0058】
なお、本実施の形態では、光硬化性樹脂42の液面から光硬化性樹脂42を硬化させる場合を説明したが、本発明はこれに限定されるものではない。例えば、透明な容器を用いて、その容器を隔てて支持板の底面に最上層から積層するように構成することもできる。
【0059】
本実施の形態の光造形によって、造形した構造物の作成例を説明する。
【0060】
図4には、作成した構造物の概要を示した。図4(A)は構造物の外観を示す矢視図であり、図4(B)は一部拡大図である。この構造物は、一辺が5mmの四角形状で、厚さが100μmの基板上に、5μmピッチで幅1μm、高さ1μmの隆起をストライプ状に形成したものである。この構造は、回折格子として知られる分光などの目的に用いられるものである。
【0061】
図4に示す構造は、その精度の高さから、紫外線照射光造形法による粗い光造形の実施では、得ることができなかった。一方、2光子吸収光造形法による微細な光造形の実施では、加工精度は充分であるが、実用的な造形時間で構造物を得ることができなかった。
【0062】
すなわち、図4の構造物の体積は、基板部が2.5e9(μm3)=5000×5000×100であり、ストライプ部が5e6(μm3)=1×1×5000である。従って、2光子吸収光造形法によって造形すると、基板部の造形時間が支配的となり、2.5e9(μm3)×0.01(s/μm3)=2.5e7(s:秒)=289(day:日)を必要とする。
【0063】
一方、本実施の形態を適用すると、基板部の造形に紫外線照射光造形法を用い、ストライプ部の造形に2光子吸収光造形法を用いる。その造形時間は、基板部分が2.5e9(μm3)×1e-8(s/μm3)=25(s:秒)で、ストライプ部が5e6(μm3)×0.01(s/μm3)=14(h:時間)となり、ほぼ14時間という短時間で必要とする精度の構造物を造形することができる。
【0064】
次に、第2実施の形態を説明する。なお、本実施の形態は、上記実施の形態とほぼ同様の構成であるため、同一部分には同一符号を付して詳細な説明を省略する。
【0065】
上記実施の形態では、紫外線照射光造形法による光造形のための光源と、2光子吸収光造形法による光造形のための光源を、各々別途備えて、レーザビームを射出するように構成したが、2種類の光源を備えることはコスト高になり、光造形装置10全体としては好ましくない。そこで、本実施の形態では、単一光源を利用して紫外線照射光造形法による高速処理を実現しつつ2光子吸収光造形法による微細構造造形を可能とする光造形を実現するものである。
【0066】
図5及び図6には、本発明が適用可能な第2実施の形態にかかる光造形装置10の概略構成を示した。本実施の形態の光造形装置11は、光源部16として第2レーザ光源14のみから構成する。すなわち、第2レーザ光源14は、2光子吸収光造形法による光造形を実施するための光源であり、発振波長700nmのパルスレーザを用いる。従って、第1レーザ光源12、ダイクロイックミラー18及び第1駆動部20という第1レーザ光源12に属する構成は全て不要である。
【0067】
第2レーザ光源14の射出側には、波長変換部58が設けられている。波長変換部58は、第2レーザ光源14から射出された700nmのレーザビームの一部を、350nmのレーザビームへ変換する光学素子である。この波長変換部58によって、そのまま通過するSHG変換されないレーザビームとSHG変換されたレーザビームとがほぼ同軸上を伝播されることになる。例えば、波長変換部58には、第2高調波(SHG)を発生する非線形光学結晶があり、素子の一例としてはBBOがある。このBBOにより700nmのレーザビームから350nmのレーザビームを発生できる。本実施の形態の第2レーザ光源14は短パルスで出力パワーのピーク値が高いので、非線形効果が効率よく発揮され、高い変換効率でSHGを発生させることが可能となる。BBOを用いた場合、平均励起パワー40mWで、5mW以上のSHG変換光を得ることができた。
【0068】
第2レーザ光源14の射出側に設けられた反射ミラー22の反射側で、図2のダイクロイックミラー18に相当する位置には、フィルタ機構60が設けられている。フィルタ機構60は、第1光学フィルタ62と、第2光学フィルタ64を備えており、第1光学フィルタ62及び第2光学フィルタ64は挿抜部66に取付られている。挿抜部66は、制御装置50に接続されており、制御装置50からの制御信号によって、第1光学フィルタ62及び第2光学フィルタ64の何れかの光学フィルタが光路に挿入されるように、駆動される。
【0069】
第1光学フィルタ62は、紫外線照射光造形法による光造形を実現するために紫外線を透過するフィルタであり、具体的には、SHG変換光を透過する光学フィルタである。第2光学フィルタ64は、2光子吸収光造形法による光造形を実現するために紫外線を遮光するフィルタであり、具体的には、SHG変換光を遮光する光学フィルタである。
【0070】
以上の構成で、構造物を造形するプロセスは、図3と同様の流れになる。この場合、制御装置50では、図3のステップ108の第1レーザ光源12の設定を、第1光学フィルタ62の挿入に代え、またステップ122の第2レーザ光源14の設定を、第2光学フィルタ64の挿入に代えて制御する。
【0071】
このように本実施の形態では、紫外線照射光造形法による粗い光造形及び2光子吸収光造形法による光造形を、単一の光源によって実現できるので、上記実施の形態の効果に加え、次のさらなる効果を有することになる。第1は、光源の単一化によって、低コストで装置を形成することができる。第2は、SHGによる波長変換により2つの波長を程同軸上に発生させることができるので、光源毎の光学調整などの煩雑な作業を削減できる。
【0072】
【発明の効果】
以上説明したように本発明によれば、第1の光源による光の照射の前処理を行った後に、第2光源による多光子吸収現象が生じる第2の光を光硬化性物質へ照射する本処理を行って構造物を造形するので、微細な構造物を短時間で造形することができる、という効果がある。
【図面の簡単な説明】
【図1】 本発明の第1実施の形態にかかる、光造形装置の外観概略図である。
【図2】 光造形装置の概略構成を示すイメージ図である。
【図3】 本実施形態にかかる、光造形装置の作動を説明するための制御装置の処理の流れを示すフローチャートである。
【図4】 作成した構造物の概要を示し、(A)は構造物の外観矢視図を示し、(B)は一部拡大を示している。
【図5】 本発明の第2実施の形態にかかる、光造形装置の外観概略図である。
【図6】 本発明の第2実施の形態にかかる、光造形装置の概略構成を示すイメージ図である。
【符号の説明】
10 光造形装置
11 光造形装置
12 レーザ光源
14 レーザ光源
16 光源部
18 ダイクロイックミラー
20 駆動部
22 反射ミラー
24 駆動部
26 光変調機構
28 集光レンズ
30 移動機構
32 支持板
40 容器
42 光硬化性樹脂
48 上下動機構
50 制御装置

Claims (12)

  1. 容器内に収容されかつ光の照射により硬化する光硬化性物質へ、前記光硬化性物質の硬化に必要なエネルギレベルの光を照射することにより構造物を造形する光造形装置において、
    前記光硬化性物質へ第1の光を照射する第1光源と、多光子吸収現象が生じる第2の光を前記光硬化性物質へ照射する第2光源と、を有する光源手段と、
    前記第1の光及び第2の光の光エネルギが前記光硬化性物質の硬化に必要なエネルギレベルとなるべく集光する集光手段と、
    前記容器内において前記集光手段による集光位置を変更する変更手段と、
    造形されるべき所定形状の構造物について、前記構造物の少なくとも一部のサイズを前記所定形状の構造物のサイズから予め定めた小さなサイズとなるように前記第1の光源による光の照射及び前記集光位置の変更の前処理の後に、前記予め定めた小さなサイズから前記所定形状になるまで前記第2の光源による光の照射及び前記集光位置の変更の本処理を行うように制御する制御手段と、
    を備えたことを特徴とする光造形装置。
  2. 前記変更手段は、前記光源手段からの光の集光位置を2次元的に走査する走査手段と、前記走査面と交差する方向に前記集光位置及び前記光硬化性物質の位置の少なくとも一方の位置を移動する移動手段と、から構成したことを特徴とする請求項1に記載の光造形装置。
  3. 前記光源手段は、前記第1光源の光と前記第2光源の光との何れか一方の光の照射に切り換える切換手段を含むことを特徴とする請求項1または請求項2に記載の光造形装置。
  4. 前記第1光源は、紫外波長域の波長の光を照射することを特徴とする請求項1乃至請求項3の何れか1項に記載の光造形装置。
  5. 前記第2光源は、高調波発生素子を含み、前記第1光源から照射された光を前記多光子吸収現象が生じる第2の光として照射することを特徴とする請求項1乃至請求項4の何れか1項に記載の光造形装置。
  6. 前記切換手段は、前記第1光源の光を透過する第1光学フィルタと前記第2光源の光を透過する第2光学フィルタとの何れかの光学フィルタに交換する交換手段であることを特徴とする請求項5に記載の光造形装置。
  7. 容器内に収容されかつ光の照射により硬化する光硬化性物質へ、前記光硬化性物質の硬化に必要なエネルギレベルの光を照射することにより構造物を造形する光造形方法において、
    前記光硬化性物質へ照射する第1の光、及び前記光硬化性物質へ照射する多光子吸収現象が生じる第2の光の光エネルギが前記光硬化性物質の硬化に必要なエネルギレベルとなるべく集光し、
    造形されるべき所定形状の構造物について、前記構造物の少なくとも一部のサイズを前記所定形状の構造物のサイズから予め定めた小さなサイズとなるように前記第1の光を照射した後に、前記予め定めた小さなサイズから前記所定形状になるまで前記第2の光を照射すると共に、前記集光位置を前記容器内において変更することによって、前記所定形状の構造物を造形する
    ことを特徴とする光造形方法。
  8. 前記集光位置を2次元的に走査すると共に、前記走査面と交差する方向に前記集光位置及び前記光硬化性物質の位置の少なくとも一方の位置を移動することにより、前記集光位置を前記容器内において変更することを特徴とする請求項7に記載の光造形方法。
  9. 前記光硬化性物質へ照射するときは、前記第1の光と前記第2の光との何れか一方の光の照射に切り換えることを特徴とする請求項7または請求項8に記載の光造形方法。
  10. 前記第1の光は、紫外波長域の波長の光であることを特徴とする請求項7乃至請求項9の何れか1項に記載の光造形方法。
  11. 前記第2の光は、前記第1の光から高調波発生現象により生じた前記多光子吸収現象が生じる光であることを特徴とする請求項7乃至請求項10の何れか1項に記載の光造形方法。
  12. 前記光硬化性物質へ照射するときは、前記第1の光を透過する第1光学フィルタと前記第2の光を透過する第2光学フィルタとの何れかの光学フィルタに交換することを特徴とする請求項11に記載の光造形方法。
JP2001214153A 2001-07-13 2001-07-13 光造形装置及び方法 Expired - Fee Related JP4092091B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001214153A JP4092091B2 (ja) 2001-07-13 2001-07-13 光造形装置及び方法
US10/193,138 US6841340B2 (en) 2001-07-13 2002-07-12 Optical fabricating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214153A JP4092091B2 (ja) 2001-07-13 2001-07-13 光造形装置及び方法

Publications (2)

Publication Number Publication Date
JP2003025453A JP2003025453A (ja) 2003-01-29
JP4092091B2 true JP4092091B2 (ja) 2008-05-28

Family

ID=19049021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214153A Expired - Fee Related JP4092091B2 (ja) 2001-07-13 2001-07-13 光造形装置及び方法

Country Status (1)

Country Link
JP (1) JP4092091B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041278B1 (fr) * 2015-09-23 2017-11-03 Manutech-Usd Systeme et procede de fabrication additive par fusion laser d'un lit de poudre
CN107932910B (zh) * 2017-12-26 2022-12-20 浙江大学 基于双路入射光的投影式光固化成形装置
JPWO2019155933A1 (ja) * 2018-02-06 2021-03-11 国立大学法人大阪大学 光造形装置、及び造形物の製造方法
KR102210719B1 (ko) * 2019-08-02 2021-02-02 한국과학기술원 미세 구멍 가공 기능을 가진 3d 프린터 및 이를 이용하여 미세 구멍을 가공하는 방법
LT3888887T (lt) * 2020-03-31 2023-01-25 Upnano Gmbh Įrenginys ir būdas, skirti trimačio komponento generatyvinei gamybai litografijos pagrindu
JP7450767B2 (ja) 2020-12-22 2024-03-15 株式会社フジクラ 光演算装置の製造方法、光回折ユニット中間体、及び光演算装置

Also Published As

Publication number Publication date
JP2003025453A (ja) 2003-01-29

Similar Documents

Publication Publication Date Title
US6841340B2 (en) Optical fabricating method and apparatus
JP5018076B2 (ja) 光造形装置及び光造形方法
JP4957242B2 (ja) 光造形装置
JP4057311B2 (ja) 光スポットの電子制御
JP5023975B2 (ja) 光造形装置及び光造形方法
CN109968661B (zh) 光固化型三维打印方法和设备
JP2010510089A (ja) ポリマーオブジェクトオプティカル製造工程
JP4092091B2 (ja) 光造形装置及び方法
US7241550B2 (en) Method and apparatus for multiphoton-absorption exposure wherein exposure condition is changed with depth of convergence position
JP2008162189A (ja) 光造形装置
JP2009166448A (ja) 光造形装置および光造形方法
JP3578590B2 (ja) ランプを用いた光造形装置
JP4477893B2 (ja) レーザ加工方法及び装置、並びに、レーザ加工方法を使用した構造体の製造方法
US20230150190A1 (en) Method and apparatus for lithography-based generative manufacturing of a three-dimensional component
US20080272346A1 (en) Multi-Photon Absorber Medium and Method of Exposure Using the Same
JP4376649B2 (ja) 異波長レーザー光を用いた多光束微小構造物光造形方法及び装置
JP2004314406A (ja) 層厚可変のマイクロ光造形方法と層厚可変型マイクロ光造形装置
JP3170832B2 (ja) 光学的造形方法
JPH06143437A (ja) 紫外線硬化造形装置
JP3520329B2 (ja) マイクロ光造形法
JPH07232383A (ja) 三次元光造形方法及びその装置
JPH0514839Y2 (ja)
JPH09318831A (ja) 直接描画方法
JPH11170377A (ja) 光造形加工法、該加工法を用いた可動装置および光造形加工装置
JP2003025454A (ja) 光造形装置及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees