JP4090072B2 - 経皮電気的移送式作用剤投与を促進するための組成物と方法 - Google Patents

経皮電気的移送式作用剤投与を促進するための組成物と方法 Download PDF

Info

Publication number
JP4090072B2
JP4090072B2 JP50506096A JP50506096A JP4090072B2 JP 4090072 B2 JP4090072 B2 JP 4090072B2 JP 50506096 A JP50506096 A JP 50506096A JP 50506096 A JP50506096 A JP 50506096A JP 4090072 B2 JP4090072 B2 JP 4090072B2
Authority
JP
Japan
Prior art keywords
electrotransport
agent
composition
enhancer
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50506096A
Other languages
English (en)
Other versions
JPH10503184A (ja
Inventor
ジオリー,ジェイ・リチャード
Original Assignee
アルザ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルザ・コーポレーション filed Critical アルザ・コーポレーション
Publication of JPH10503184A publication Critical patent/JPH10503184A/ja
Application granted granted Critical
Publication of JP4090072B2 publication Critical patent/JP4090072B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Electrotherapy Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

技術的分野
本発明は、体表を通しての作用剤の電気的移送式投与のための透過促進剤の使用に関する。さらに詳しくは、本発明は、体表の電気抵抗を減じて、体表を通しての例えば薬物のような作用剤の電気的移送を促進する透過促進剤に関する。
背景技術
皮膚を通しての拡散による薬物と薬物先駆体との投与は、例えば皮下注射及び経口投与のような、より伝統的な投与方法を凌駕する改良を提供する。受動的拡散による経皮薬物投与は経口薬物投与によって経験される肝臓初回通過効果(hepatic first pass effect)を回避する。受動的経皮薬物投与は、皮下注射に比べたときに、患者の不快感を軽減して、より均一な薬物血中濃度を経時的に生じる。“経皮”投与なる用語は、広範囲に、動物の皮膚、粘膜若しくは爪のような体表又は植物の外皮を通しての作用剤の投与を含む。
皮膚は外部物質の体内への経皮侵入に対する第1バリヤーとして機能し、作用剤の投与に対する身体の主要な抵抗を表す。現在まで、大部分の努力は投与される治療剤の投与に対する物理的抵抗を減ずること又は皮膚の透過性を強化することに集中していた。経皮薬物拡散の速度を高めるための種々な方法が用いられている。皮膚からの薬物の拡散を制限し、それによって皮膚中への薬物の拡散を高めるために、例えば、金属、プラスチック及び他の材料から製造された薬物−不透過性バッキング層が皮膚パッチに用いられていた。さらに、皮膚中への作用剤の吸収速度の上昇は、皮膚に隣接する雰囲気の温度と相対湿度とを変えることによって、得られていた。他の努力は皮膚の最も外側の角質層を機械的に破壊することによって皮膚を擦りむく又は穿刺することに向けられていた。化学的吸収促進剤又は透過促進剤も治療組成物の一体成分又は治療剤の前に塗布される成分の両方として用いられていた。これらの受動的方法は特に親水性薬物(例えば、水溶性塩として)及び高分子量作用剤(例えば、ポリペプチドとタンパク質)の場合に、作用剤の投与量を有意に高めることに無効であると一般に実証されている。
“電気的移送”とは電界の援助による体表を通しての作用剤の投与を含む。したがって、電気的移送とは一般に、例えば皮膚、粘膜又は爪のような基体(substrate)を通して電流を循環させることによって少なくとも部分的に誘導される、基体を通しての作用剤の通過を意味する。治療剤とその先駆体を包含する多くの作用剤は電気的移送によって人体に導入されることができる。体表を通しての作用剤の電気的移送は種々な方法で達成されることができる。広く用いられる電気的移送式方法の1つはイオン導入であり、これは荷電イオンの電気的に誘導される移送を含む。他の種類の電気的移送である電気的浸透(electroosmosis)は電界の影響下での生物学的膜から又は生物学的膜を通しての液体の移動を含む。さらに別の種類の電気的移送であるエレクトロポレーション(electroporation)は電界の影響下で生物学的膜に形成される一時的形成孔を通しての作用剤の移動を含む。所定の作用剤を電気的移送する場合には、1種類より多くのこれらの方法がある程度同時に生ずることができる。本明細書で用いる電気的移送なる用語は、作用剤(単数又は複数)が実際に移送される特定の機構(単数又は複数)に関係なく、荷電作用剤及び無荷電作用剤又はこれらの混合物の電気的に誘導又は強化された移送を包含するためのその最も広い、可能な解釈を与えられる。
電気的移送式デバイスは典型的に少なくとも2個の電極を必要とし、両方の電極が皮膚、爪、粘膜又は身体の他の膜表面の一部と電気的に接触する。一般に“ドナー”又は“アクティブ”電極と呼ばれる、1つの電極は、それから薬物又は薬物先駆体が身体中に投与される電極である。典型的に“カウンター”又は“リターン”電極と呼ばれる、他方の電極は、身体を通して電気回路を閉じるために役立つ。例えば、投与されるべきイオン作用剤がカチオン、即ち、正に荷電したイオンである場合には、アノードはアクティブ又はドナー電極であり、カソードは回路を完成する。或いは、作用剤がアニオン、即ち、負に荷電したイオンである場合には、カソードがドナー電極になり、アノードが回路を完成する。アニオン薬物とカチオン薬物とを同時に投与することが必要である場合には、アノードとカソードの両方をこのために用いることができ、アニオン薬物はカソード内に配置され、カチオン薬物がアノード内に配置される。さらに、電気的移送式投与デバイスは典型的に、1個以上のバッテリーとしての電力源と、電極を通しての電流を制御し、それによって薬物投与速度を制御するように設計された電気的制御機構とを包含する。或いは、異なる材料から製造された2個の電極を接触させることによって形成される電池対物質(galvanic couple)によって、電力を少なくとも部分的に供給することができる。電力源の1極をドナー電極に、ドナー電極を身体に、身体をカウンター電極に、及びカウンター電極を電力源の反対極に電気的に接触させることによって、完全な電気回路が形成される。ドナー電極は典型的に、投与される作用剤又は薬物の溜め又は供給源を包含する。ドナー溜めは特にポウチ、キャビティ、多孔質スポンジ、予成形ゲル体の形状をとることができる。カウンター電解質は同様に典型的に、生体適合性電解質を含有する溜めを包含する。このような溜めは電気的移送式デバイスのアノード又はカソードに電気的に接続して、1種以上の電解質、治療剤又は薬物の固定した又は再生可能な供給源を生じる。
電気的移送式薬物流量(flux)がデバイスによって供給される電流のレベルに大体比例することが知られる。しかし、患者によって快適に耐えられることができる電流量には限界がある。この問題は、ポータブル/着用可能な系の場合であるように、電気的移送系のサイズ、それ故電極の皮膚接触面積が減少するにつれて、より重大になる。電気的移送式デバイスの皮膚接触面積が減少すると、デバイスによって供給される電流密度(即ち、電流量/皮膚接触単位面積)が増大する。したがって、所定サイズの電気的移送式デバイスによって供給される電流レベルには限界があり、この電流限界はデバイスのサイズ(即ち、皮膚接触面積)が減少するにつれて低くなる。ある一定の場合には、これらの電流限界において作用する電気的移送式デバイスは疾患を有効に治療するために充分な量の薬物を供給することが不可能であった。このような場合には、電気的移送式デバイス中への透過促進剤の組み入れが薬物投与量を高めて、血液中の高い治療有効薬物濃度の維持を助けることができる。本出願に関連して、“透過促進剤”なる用語は広範囲に、吸収促進剤及び界面活性剤を包含し、体表を通る作用剤の通過に対する体表の物理的な抵抗を減じるか又は、電気的移送促進剤と同様に、体表のイオン選択性を変えて、体表の導電性又は透過性及び/又は体表を通る作用剤伝達経路数を増大する化学種を表す。電気的移送促進剤は、総電流の減少とそれによる電極皮膚接触面積の減少を特定の電流密度を得るために必要とすることによって、電気的移送式デバイスのサイズの減少をも助けることができる。デバイスのサイズ減少は最も可能に患者の快適さも改良し、製造費用を減ずると考えられる。
作用剤の投与のための限られた数の電気的移送促進剤が文献に開示されているにすぎない。例えば、エタノールがSrinivasan等によってポリペプチドの電気的移送促進剤として用いられている(Srinivasan等,“ポリペプチドのイオン導入:ヒト皮膚のエタノール前処理の効果”J.Pharm.Sci.79(7)588〜91(1990))。Sanderson等への米国特許第4,722,726号では、皮膚を通って外方に移動する組織イオンとの競合を減ずるために皮膚に薬物を施用する前に皮膚表面を表面活性剤で前処理し、ラウリル硫酸ナトリウムが好ましい表面活性剤である。Francoeur等への米国特許第5,023,085号はある一定の薬物のイオン導入投与のために不飽和C14−C20酸、アルコール、アミン及びエステルをケトンと共に用いることを開示する。公開特許出願WO91/16077は、薬物のイオン導入投与のための透過促進剤としての例えばオレイン酸、ラウリン酸、カプリン酸及びカプリル酸のような脂肪酸の使用を開示する。
したがって、患者への過剰な電流のような不利な効果を生じることなく、例えば薬剤又は薬剤先駆体のような作用剤の投与速度を高める経皮電気的移送促進剤を提供する必要性が絶えず存在する。
発明の開示
本発明は電気的移送式作用剤投与のための組成物と、同組成物を含有する電気的移送式デバイスと、同組成物を用いる、電気的移送によって作用剤を投与する方法とに関する。この組成物は体表を通して経皮投与されるべき少なくとも1種類の作用剤と、その投与の少なくとも1種類の電気的移送促進剤とを含む。本明細書で用いられる経皮電気的移送促進剤は疎水性尾部(tail)と極性先端(head)とを含み、約6より大きい親水性−親油性平衡(HLB)数を有する、極性先端は150ダルトン未満の分子量(MW)を有し、水溶液中に入れられたときに中性又はイオン化可能である。
本発明はまた、体表を通して経皮投与されるべき作用剤(単数又は複数)と、本発明の電気的移送促進剤(単数又は複数)とを含有するドナー溜めを含む経皮電気的移送式投与デバイスにも関する。
本発明の電気的移送促進剤は、この促進剤と作用剤とを含む組成物を体表に施用し、この体表に通して電流を供給し、体表に通しての作用剤の電気的移送式投与を誘導し、体表の電気的抵抗を減じて、促進剤の不存在下で得られる流量に比べて、体表を通る作用剤の流量を高めることによって、体表を通しての作用剤の電気的移送式投与速度を改良するために用いることができる。
【図面の簡単な説明】
図1は、本発明の組成物の投与に用いることができる電気的移送式デバイスの1実施例の断面図である。
図2は、経皮電気的移送式薬物流量のin vitro試験に用いられる二区画電池の断面図である。
本発明の実施態様
本発明は、患者に不利な効果を実質的に及ぼすことなく、例えば、今までに治療不能な疾患を治療するために充分に高い作用剤の血液レベルを使用可能にするために、例えば薬物等のような、作用剤の投与に適した先行技術テクノロジーを改良する。例えば薬物又は薬物先駆体のような作用剤を身体に投与する速度は、投与デバイスの設計及び/又は投与組成物の含量を修正することによって、改良することができる。電気的移送による作用剤の投与速度を高める方法の1つは、体表(例えば、皮膚)の電気抵抗を減ずることである。これは次に系の電力必要条件を低下させ、デバイスのサイズの縮小を可能にする。本発明では、本発明の電気的移送促進剤と組合せた作用剤(例えば、薬物)の投与が、体表を通しての作用剤の電気的移送流量を高める及び/又は体表を通して作用剤を電気的移送するために必要な電位(電圧)を低下する。
したがって、本発明に用いられる電気的移送促進剤は、体表のイオン選択性を変化させ、体表の導電性又は作用剤に対する体表の透過性を高める及び/又は体表を通る作用剤の通過に有効な体表内通路数を増加させることによって、体表を通しての作用剤の電気的移送流量を高める及び/又は体表の電気抵抗を低下させ、それによって特定電流レベルにおける体表を横切る電圧を低下させる。種々な作用剤の流量増加及び/又は電圧低下が、親油性尾部と、約150ダルトン未満の分子量(MW)、好ましくは約16〜150ダルトンMWの範囲内の極性先端基とを有する促進剤分子によって得られた。極性先端基が大きくなると、作用剤の経皮電気的移送に対する促進剤による強化効果(potentiating effect)は低下する傾向がある。これは、体表中への促進剤の浸透を物理的に遅らせる大きい極性先端基によって惹起されうる。他方では、指定されたサイズ内で、極性先端基は電気的移送促進剤に大きい水溶性を与えて、体表を通しての作用剤の親水性経路をより多く形成するのを助ける。幾つかの場合には、極性先端基は投与されるべき作用剤と相互作用して、この作用剤の溶解性を高める。本明細書で用いる“極性先端基”は促進剤の1末端に、例えば飽和脂肪族残基を含む直鎖の末端に配置された正又は負の電荷を有する化学残基である。本発明の電気的移送促進剤に用いるための極性先端基の例は、アルコール(−OH)、アミン(−NH2)、一置換及び二置換アミン(−NR2)、第4級アンモニウム塩(−N+4)、スルフェート(−SO4 -2),スルホキシド(=SO)、エステル(−COOR+)、アミド(−CONH2)、一置換及び二置換アミド(−CONR2)[これらの基においてRはN、O、S又はハロゲンで置換されうる脂肪族、脂環式及び芳香族残基から選択される]と、例えば特にナトリウム塩又はカリウム塩のような、これらのアルカリ金属塩とを包含する。
極性先端基に関する上記特徴の他に、本発明の電気的移送促進剤はそれらの親水性−親油性平衡(HLB)特徴によって選択された。HLBは1949年にWC Griffinによって紹介された経験的値であり、分子中に存在する親水性基と親油性基とのサイズと強度の平衡を広範囲に表す。高度に親油性である分子は低いHLB値、即ち約5.0未満のHLB値を有し、高度に親水性である分子は約110を越えるHLB値を有する。したがって、中間の特徴を有するものは中間的HLB値を有する。約7より大きいHLB値は、分子が親油性よりも親水性であることを示す。作用剤流量を最高に増加させ及び/又は電池電圧を最高に低下させるる化学化合物は、約6より大きいHLB数を有し、時には約15より大きく、約40程度の高いHLB数をも有する。したがって、HLB数は促進剤の親水性−親油性平衡の尺度を表し、親水性特徴の親油性特徴に対する相対的比率である。大抵の界面活性剤は0〜20の範囲内のHLB値を有するが、40まで及び40以上のHLB値も可能である。したがって、本明細書で用いる電気的移送促進剤の大部分はかなり均衡した親水性特徴と親油性特徴とを有するか又はそれらのHLB値が増加するにつれて親油性よりも大きく親水性になる。種々な親水性−親油性分子のHLB数が算出され、発表された文献に含まれている。HLB値と非イオン界面活性剤HLB数についての完全な考察が例えばGriffin,WC.“非イオン界面活性剤のHLB値の算出”,J.Soc.Cos.Met.Chem.5:249〜256(1954)と;Griffin,WC.Cosmetic Science and Technology,3巻,Ch.XLIV,BalsamとSaparin編集,583〜607頁(1974)によって与えられ、これらの文献の関係部分は本明細書に援用される。
本明細書に用いるために適した経皮電気的移送促進剤は荷電していても又は無荷電であってもよい。促進剤が荷電している場合には、電気的移送促進剤は作用剤の電荷とは反対の電荷を有することが好ましい。無荷電であるか又は投与されるべき作用剤の電荷と反対の電荷を有する促進剤が少なくとも2つの理由から好ましい。第一に、投与されるべき作用剤の電荷と反対の電荷を有する促進剤は電流の運搬に関して作用剤と競合しない、競合は供給電流の単位あたりの作用剤流量の低下させる。第二に、作用剤の電荷と同じ電荷を有する促進剤を皮膚に一度投与するならば、皮膚は荷電するので、大抵の場合には、促進剤と同じ電荷を有するイオン(例えば、作用剤イオン)に対して低透過性になる。
さらに一層好ましい実施態様では、経皮電気的移送促進剤はC10−C12飽和脂肪族残基、より好ましくは線状脂肪族残基を含む疎水性尾部を有する。電気的移送促進剤のこの群は飽和脂肪族アルコール、アミン、一置換及び二置換遊離アミン、第4級アンモニウム塩、スルフェート、酸エステル、ジスホキシド、スルホキシド、遊離アミド、脂環式、環状、複素環式及び芳香族ジスルホキシド、脂肪族スルホキシド、遊離アミド、一置換及び二置換アミド、これらのエステル及び塩を含む。本発明の組成物はこれらの促進剤の1種以上並びにこれらと、例えばこれらの不飽和誘導体、有機酸、C8−C20不飽和脂肪族酸、これらのC8−C9飽和類似体とC13−C20飽和類似体及びこれらのエステル等のような他の促進剤との混合物とを含む。本発明による電気的移送促進剤の例はラウリルアミン、ラウリン酸ナトリウム、デシルメチルスルホキシド、ドデシルピロリドン、ジメチルラウラミド、N,N−ジメチル−1−ドデカンアミン(ジメチルラウラミン)とその塩、N,N−ジドデシル−1−ドデカンアミン(トリメチルラウラミン)及びラウリル硫酸ナトリウム、これらの混合物、及びこれらと例えば特にラウリン酸のような脂肪族酸との混合物を包含する。
他の実施態様では、電気的移送促進剤は水溶液中で無荷電であるか又は中性である。本明細書で用いる“中性電気的移送促進剤”とは、水溶液中で約5重量%未満のイオン化を示す促進剤である。投与されるべき作用剤が水溶液中で荷電しているが溶液中で反対に荷電する適当な促進剤を発見することができない場合に、中性電気的移送促進剤は特に適切である。中性の電気的移送促進剤はそれらがイオン化可能な作用剤と共に組成物中に存在する場合に同じ荷電した分子よりも、体表を通しての作用剤流量の有意に良好な促進剤である。例えば、抗喘息薬ナトリウムクロモリンによって実施した試験では、ドデシルピロリドンがアニオンのクロモリン流量を50%より大きく高め、この薬物に対する皮膚抵抗を30%より大きく低下させる。中性の電気的移送促進剤の適切性の他の例はケトプロフェン、一価アニオン抗炎症剤にジメチルラウラミドを加える場合に観察される流量と導電率との両方の上昇によって与えられる。本発明によって用いるために適した中性の電気的移送促進剤群は、特に線状二脂肪族(dialiphatic)若しくは脂肪族スルホキシド、ピロリドン、アルコール非置換又は一置換若しくは二置換アミド、及び幾つかの二置換アミンを含む。特定の中性電気的移送促進剤は飽和C10−C12脂肪族酸のC1−C10脂肪族エステルを含む。水溶液中で中性又は非イオン化特徴を示す電気的移送促進剤の例は、n−デシルメチルスルホキシド、ドデシルピロリドン、ジメチルラウラミド及びこれらの混合物を包含する。同様に荷電した、イオン化透過促進剤と投与されるべき作用剤との移送競合を避けるために、中性電気的移送促進剤が好ましい。
本発明の組成物と電気的移送式投与デバイスとは、皮膚、粘膜及び爪を包含する、体表及び膜を通して投与可能である広範囲な種類の薬物の投与に有用である。本明細書で用いるかぎり、“作用剤”、“薬物”又は“薬物先駆体”なる表現は相互変換可能に用いられ、望ましい通常は治療効果を生じるために生活する生物に投与される任意の治療有効物質としてそれらの最も広い解釈を有するように意図される。この種類の薬物は、主要治療分野の全てにおける治療剤を含み、これらの治療剤は、限定する訳ではなく、抗生物質と抗ウイルス剤のような抗感染薬;フェンタニル、スフェンタニル、ブプレノルフィンを含めた鎮痛薬と鎮痛複合薬;麻酔薬;食欲減退薬;抗関節炎薬;例えばテルブタリンのような抗喘息薬;抗痙攣薬;抗うつ薬;抗糖尿病薬;下痢止め;抗ヒスタミン薬;抗炎症薬;抗偏頭痛薬;例えばスコポラミン及びオンダンセトロンのような乗り物酔い治療剤;抗おう吐薬;抗腫瘍薬(antineoplastics);抗パーキンソン病薬;かゆみ止め;抗精神病薬;解熱薬;胃腸及び尿路を含む鎮痙薬;抗コリン作動薬;交感神経興奮剤(sympathomimetrics);キサンチン誘導体;例えばニフェジピンのようなカルシウムチャンネル遮断薬を含む心血管系製剤;例えばドブタミン及びリトドリンのようなべータアゴニスト;ベータ遮断薬;抗不整脈薬;例えばアテノロールのような抗高血圧薬;例えばラニチジン(ranitidine)のようなACE阻害剤;利尿薬;全身、冠状、末梢及び脳血管を含む血管拡張薬;中枢神経系刺激薬;咳き薬及び風邪薬;うっ血除去薬;診断薬;例えば上皮小体ホルモンのようなホルモン;催眠薬;免疫制御薬;筋弛緩薬;副交感神経遮断薬;副交感神経作用薬(parasympathomimetrics)、プロスタグランジン;タンパク質;ペプチド;精神刺激薬;鎮静薬及びトランキライザーを包含する。
さらに詳しくは、本発明の組成物と電気的移送式投与デバイスとは、特に、例えばバクロフェン、ベクロメタゾン、ベタメタゾン、ブスピロン、クロモリンナトリウム、ジチアゼム、ドキサゾシン、ドロペリドール、エンカイニド、フェンタニル、ヒドロコルチゾン、インドメタシン、ケトプロフェン、リドカイン、メトトレキセート、メトクロプラミド、ミコナゾール、ミダゾラム、ニカルジピン、ピロキシカム、プラゾシン、スコポラミン、スフェンタニル、テルブタリン、テストステロン、テトラカイン、及びベラパミルのような薬物の制御投与に有用である。本発明は特に、ペプチド、ポリペプチド、タンパク質又はそれらのサイズのために経皮又は経粘膜投与されるのが困難である他のマクロ分子の制御投与に有用である。これらのマクロ分子物質は典型的に少なくとも約300ダルトン、さらに典型的には少なくとも約300〜40,000ダルトンの範囲内の分子量を有する。本発明の組成物、方法及びデバイスを用いて投与されることができるペプチド及びタンパク質の例は、非限定的に、LHRH、例えばブセレリン、ゴナドレリン、ナファレリン及びロイプロリドのようなLHRH類似体、GHRH、GHRF、インシュリン、インスリノトロピン、ヘパリン、カルシトニン、オクトレオチド、エンドルフィン、TRH、NT−36(N=[[(S)−4−オキソー2−アゼチジニル]カルボニル]−L−ヒスチジル−L−プロリナミド)、リペルシン(lipercin)、下垂体ホルモン(例えば、HGH,HMG,HCG,酢酸デスモプレッシン)、卵胞ルテオイド、αANF、成長因子放出因子(GFRF)、βMSH、ソマトスタチン、ブラディキニン、ソマトトロピン、血小板由来増殖因子、アスパラギナーゼ、硫酸ブレオマイシン、キモパパイン、コレシストキニン、絨毛性性腺刺激ホルモン、コルチコトロピン(ACTH)、エリスロポイエチン、エポプロステノール(血小板凝固阻害因子)、グルカゴン、ヒルログ(hirulog)、ヒアルロニダーゼ、インターフェロン、インターロイキンー2、メノトロピン(mentropin)類(ウロフォリトロピン(FSH)とLH)、オキシトシン、ストレプトキナーゼ、組織プラスミノーゲン活性因子、ウロキナーゼ、バソプレシン、デスモプレッシン、ACTH類似体、ANP、ANPクリアランス阻害因子、アンギオテンシンIIアンタゴニスト、抗利尿ホルモンアゴニスト、抗利尿ホルモンアンタゴニスト、ブラジキニンアンタゴニスト、CD4、セレダーゼ、CSF類、エンケファリン類、FABフラグメント、IgEペプチド抑制因子、IGF−1、神経栄養因子、コロニー刺激因子、上皮小体ホルモンとアゴニスト、上皮小体ホルモンアンタゴニスト、プロスタグランジンアンタゴニスト、ペンチゲチド(pentigetide)、プロテインC、プロテインS、レニン阻害因子、チモシンα−1、血栓溶解薬、TNF、ワクチン、バソプレッシンアンタゴニスト類似体、α−1抗トリプシン(組換え体)及びTGF−βを包含する。
本発明の電気的移送組成物はまた、表面導電率又は透過性をさらに高める他の添加剤を含むことができる。適当な添加剤は緩衝剤、例えばエタノール、プロピレングリコール、グリセロール及び水のような溶媒を包含し、これらは薬物又は促進剤の溶解度を高め及び/又は荷電イオン濃度を高めることができる、さらに、例えば脂肪酸のような他の添加剤も作用剤流量を高めることができる。本発明に用いるために適した脂肪酸の例は特にオレイン酸、ラウリン酸、カプリン酸、カプリル酸等である。薬物の経皮電気的移送に適した組成物中に用いられる他の添加剤も組成物中に存在することができる。
これらの電気的移送促進剤は体表を通しての薬物又は作用剤の経皮投与に用いられるので、薬剤学的に許容され、生体適合性でなければならない。本明細書で用いるかぎり、“生体適合性”なる用語は、促進剤が選択された体表と接触したときに、例えば刺激又は感作のような、重大な不利な副作用を生じないことを意味する。
本発明の組成物は典型的に、経皮電気的移送式投与時に作用剤の治療有効量を供給し、このレベルを一定期間にわたって維持する量の作用剤、例えば、薬物又は薬物先駆体を含む。これらの量は投与されるべき特定の作用剤によって異なる。組成物中の成分を典型的に加え、機械的に混合し、電気的移送式投与デバイスのドナー溜めにデバイスの使用前に組み入れる。イオン導入式投与デバイスのドナー溜めに加えるために必要な電気的移送促進剤量は多数の要素に依存する。例えば、選択した作用剤と促進剤との性質、印加電圧、所望の投与速度が電気的移送促進剤濃度を決定するために考慮すべき若干の変数である。一般に、本発明の電気的移送促進剤は組成物中に作用剤−促進剤溶液の重量を基準にして約0.01〜20重量%、より好ましくは作用剤−促進剤溶液の約0.1〜15重量%、さらにより好ましくは作用剤−促進剤溶液の約5重量%までの量で存在する。
本発明の組成物は典型的に、経皮電気的移送式デバイスのドナー溜め中で患者に供給される。典型的な電気的移送式デバイスは独立的な電力源(例えば、1個以上のバッテリー)、ドナー又はアクティブ電極とカウンター電極、及び供給電流レベルと、それによる薬物投与速度とを調節するように設計された電気的制御機構から構成される。
本発明の電気的移送式投与デバイスの1実施態様を図1に説明する。デバイス10は、本明細書でドナー電極12及びカウンター電極14と呼ばれる、2個の導電性要素を有する。ドナー電極とカウンター電極12と14は、それぞれ、ドナー溜め16及び任意のカウンター溜め18とに隣接して配置される。ドナー溜め16は投与されるべき作用剤を含み、任意のカウンター溜め18は生体適合性電解質塩を含む。ドナー電極12とドナー溜め16とは電気絶縁体20によって、カウンター電極18と任意のカウンター溜め18から分離される。デバイス10はまた、耐水性で、好ましくは電気絶縁性材料から構成されるバッキング層22も有する。図1に層24として概略的に示す電力源によって電力が供給され、電力源はバッテリー又はバッテリーの系列であることができる。電力源は任意に電流制御回路を含むことができる。電力源24は電極12と14に、各電極が電力源24の対立する極に接触するように、電気的に接触する。デバイスは周辺接着剤層28によって体表100に付着する。受動的作用剤投与(即ち、印加電位の不存在下で生じる流量)を制御するためにドナー溜め16と体表100との間に任意の受動的流量制御膜30を配置することができる。図1のデバイス10は本発明を実施するために適当な電気的移送式投与デバイスの1例にすぎない。さらに、このデバイスは例えばデバイスの皮膚接触面上の除去可能な保護ライナーのような、他の特徴を含むことができる。さらに、電極12と14とが電池対物質を形成するように選択されるならば、例えばカウンター溜め18と独立的な電力源24のような、デバイス10のある一定の要素は本発明によると任意である。
本発明の電気的移送促進組成物は、卓上型電気制御器とこの制御器に長い(例えば、1〜3m)電気ケーブルによって接続した電極とを有する電気的移送式デバイスに用いることもできる。患者を制御器の近くに固定して(例えば、座る又は横たわる)留めながら、“リモート電極”を分離した体表位置に取り付ける。当該技術分野で非常に多くの電気的移送式デバイスの形態が知られ、これらの全てが本発明の電気的移送促進組成物と共に用いるために考えられる。したがって、図1のデバイス10は説明のためにのみ示すものであり、本発明の組成物及び方法と共に用いることができるデバイスの1例を表すにすぎない。
電極12と14は例えば金属のような導電性材料から構成することができる。例えば、電極12と14は金属ホイル、金属スクリーン、例えばカレンダーリング若しくはフィルム蒸発によって又はバインダーマトリックス中へ金属粉末を埋封することによって、適当なバッキング上に付着させた又は塗装した金属から形成することができる。適当な金属の例は銀、亜鉛、塩化銀、アルミニウム、白金、ステンレス鋼、金及びチタンを包含する。好ましい1実施態様では、アノード電極は銀から構成され、カソード電極は塩化銀から構成される。銀アノードの酸化によって得られる銀イオン(Ag→Ag++e-)がヒトに対して比較的低毒性であるので、アノードとして、銀が他の金属よりも好ましい。塩化銀の還元は塩化物イオンを生じるが(AgCl+e-→Ag+Cl-),これは人体にとって内因性であるので、塩化銀がカソードとして好ましい。或いは、電極12と14を例えば金属粉末、粉状黒鉛、炭素繊維又は他の導電性フィラー物質のような導電性フィラーを含有するポリマーマトリックスから形成することもできる。このポリマー主成分(polymer-based)電極は導電性フィラーをポリマーマトリックスに混入することによって製造することができる。
本発明の電気的移送式投与デバイスは種々な形式で電力を与えることができる。ドナー電極とカウンター電極とが異なる金属製であるか又は異なる半電池反応を有する場合には、デバイスはそれ自体の電力を発生することができる。電池対物質を形成する典型的な物質は亜鉛アノード電極と塩化銀カソード電極とを包含する。このような電池対物質電力発生系(powed system)は、制御手段なしで、身体組織及び/又は体液がデバイスと電気回路を完成すると自動的に活性化する。本発明に有用と考えられる他の多くの電池対物質系が当該技術分野で知られており、本明細書でさらに説明する必要はない(例えば、CRC Handbook of Chemistry and Physivs,D133〜D138頁,第62版(1981〜1982)を参照のこと、これの関係部分は、組合わされて、電池対物質を形成する電気化学的半電池反応の開示に関して本明細書に援用され例えば図2に示すような分離電力源24が必要になる。電力源24は直列又は並列に接続され、カウンター電極14とドナー電極12との間にドナー電極12が電力源24の1極に接続し、カウンター電極14が反対の極に接続するように連結された1個以上のバッテリーを含むことができる。1個以上の3Vボタン電池バッテリー、例えばPANASONIC(登録商標)モデルCR2025が電気的移送式デバイスに電力を与えるために適する。患者が必要時投薬レジメ(on-demand medication regime)に適したデバイスにおけるように手動で系をオン及びオフに切り替えることができるように又は例えば身体の自然の又は約24時間周期のパターンに合わせて望ましい周期で系を自動的にオン及びオフに切り替えることができるように、電力源24は供給電流(例えば、電流レベル、パルス化又はDC、周波数、衝撃係数(duty cycle)等)並びに電気的移送式デバイスの操作をを制御するための電気回路を含むこともできる。電流を時間の関数として制御するために又は例えばパルス若しくは正弦波のような複雑な電流波形を発生させるために比較的簡単な制御器又はマイクロプロセッサーを備えることもできる。制御回路はバイオシグナルをモニターし、治療の進行を評価し、それに応じて薬物の投与を調節するためにバイオセンサー及びフィードバック系を包含することもできる。
ドナー溜め16と任意のカウンター溜め18とは、それらからの電気的移送による作用剤の移送を可能にするために、それらの中に充分な量の液体を保持するために適した任意の材料から形成することができる。綿又は他の天然と合成の両方の吸収性布帛から成る、例えば、ガーゼ、パッド又はスポンジを用いることができる。さらに好ましくは、溜め16と18のマトリックスは少なくとも部分的に親水性ポリマー材料から構成される。水は多くの薬物を可溶化するために適した好ましい生体適合性の溶媒であり、親水性ポリマーは比較的大きい平衡水含量をゆうするので、親水性ポリマーが典型的に好ましい。さらに好ましくは、溜め16と18は少なくとも部分的に不溶性の親水性ポリマーから成る固体ポリマーマトリックスである。不溶性の親水性ポリマーマトリックスは構造的な理由から溶解性の親水性ポリマーよりも好ましい。これらのマトリックスは、例えばシラスティック(silastic)マトリックスの場合のように、作用剤と適所で架橋させることができる、又はセルロース、織物の繊維パッド及びスポンジの場合のように、ポリマーを予め製造して、溶液から成分を吸着させることができる。
或いは、作用剤溜め16と18を、水中で膨潤又は溶解することができる親水性ポリマーゲルから製造することができる。このようなポリマーは任意の比で薬物とブレンドすることができ、乾燥重量の薬物負荷は好ましくは溜めの数%から約50重量%までである。ポリマーは線状であることも、架橋されることもできる。適当な親水性ポリマーは、例えばHYTREL(登録商標)(DuPontDe Nemours & Co.,デラウェア州,ウィルミントン)のようなコポリエステル、ポリビニルピロリドン、ポリビニルアルコール、例えばPOLYOX(登録商標)(Union Carbide Corp.)のようなポリエチレンオキシド、CARBOPOL(登録商標)(BF Goodrich,オハイオ州,アクロン)、例えばCARBOPOL(登録商標)をブレンドしたPOLYOX(登録商標)のような、ポリオキシエチレン又はポリエチレングリコールとポリアクリル酸とのブレンド、ポリアクリルアミド、KLUCEL(登録商標)、例えばSEPHADEX(登録商標)(Pharmacia Fine Chemicals,AB,スウェーデン,アップセラ)のような架橋デキストラン、澱粉−グラフト−ポリ(アクリル酸ナトリウム−コ−アクリルアミド)ポリマーであるWATER LOCK(登録商標)(Grain Processing Corp.,アイオワ州,ムスカチン)、例えばヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、低置換ヒドロキシプロピルセルロース及び例えばAc−Di−Sol(登録商標)(FMC Corp.ペンシルバニヤ州,フィラデルフィア)のような架橋したNa−カルボキシメチルセルロースのようなセルロース誘導体、例えばポリヒドロキシルエチルメタクリレート(National Patent Development CorP.)のようなヒドロゲル、天然ガム、キトサン、ペクチン、澱粉、グアーガム、イナゴマメガム等を、それらのブレンドと共に包含する。このリストは本発明への使用に適した物質の単なる例示である。他の適当な親水性ポリマーはScottとRoffによって挙げられている(Handbook of Common Polymers,CRC Press(1971)、この文献の関係した部分は本明細書に援用される)。
任意に、溜め16と18のマトリックスは構造剛性を強化するために疎水性ポリマーを含むことができる。例えば図1に示す絶縁体20のような隣接要素への溜め16と18の積層を改良するために、疎水性ポリマーは熱融合性であることが好ましい。溜めマトリックスに用いるために適した疎水性ポリマーは、限定する訳ではなく、ポリイソブチレン、ポリエチレン、ポリプロピレン、ポリイソプレンとポリアルケン、ゴム、例えばKRATON(登録商標)のようなコポリマー、ポリ酢酸ビニル、エチレン−酢酸ビニルコポリマー、例えばナイロンのようなポリアミド、ポリウレタン、ポリ塩化ビニル、例えばn−ブタノール、1−メチルペンタノール、2−メチルペンタノール、3−メチルペンタノール、2−エチルブタノール、イソオクタノール、n−デカノールのようなアルコールと、アクリル酸又はメタクリル酸とのエステルの単独のポリマー又は、例えばアクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、N−アルコキシメチルアクリルアミド、N−アルコキシメチルメタクリルアミド、N−tert−ブチルアクリルアミド、イタコン酸、N−分枝C10−C24アルキルーマレインアミド酸、グリコールジアクリレートのようなエチレン系不飽和モノマーと共重合したポリマーのようなアクリル酸樹脂又はメタクリル酸樹脂、並びにこれらのブレンドを包含する。上記疎水性ポリマーの大部分は熱融合性である。これらの中で、ポリイソブチレン類が好ましい。
溜めマトリックスは所望の作用剤、薬物、電解質又は他の成分(単数又は複数)にポリマーを例えばメルトブレンディング(melt blending)、溶液流延又は押出成形のような方法によってブレンドすることによって形成されるポリマーマトリックス構造体であることができる。ドナー溜め16は投与されるべき薬物を含み、カウンター溜め18は電解質、例えば水溶性生体適合性塩を含むことができる。薬物と電解質との他に、溜め16と18は例えば染料、顔料、不活性フィラー等のような他の慣用的物質を含むこともできる。カウンター溜め18は例えば塩化ナトリウムのような1種類以上の生体適合性電解質塩を含有することができる。絶縁体20はドナー溜め16又はドナー電極12とカウンター電極14又は任意のカウンター溜め18との間の直接イオン移送、即ち、短絡を防止する。絶縁体20は水、イオン及び電子の通過に対して不透過性である材料から製造される。好ましくは、絶縁性材料は溜めポリマーに強度に結合して、デバイスにさらに総合的な構造結合性(structural integrity)を与えることができる物質である。好ましい絶縁性材料はポリ(イソブチレン)とエチレン−酢酸ビニル(EVA)を含有する。同様に、バッキング層22は耐水性であり、好ましくは電気的絶縁性である物質から構成される。主な機能は電気的短絡を防止することである。さらに、バッキング層22はデバイスにある程度の構造結合性を与えることができる。
本発明の組成物は経表面投与、好ましくは経皮投与用に意図される。作用剤の投与量は本明細書で指定する必要はなく、その作用剤自体と治療される医学的症状とに依存する。
本発明を一般的に説明したが、下記実施例は上記パラメータの如何なる変更が治療有効性電気的移送式系を提供するかを説明する。
実施例
皮膚ストリップの調製
電気デルマトームによって約1mm厚さのサンプルを取り出すことによってヒト死体皮膚サンプルを調製した。次に、これらの皮膚ストリップをポリエチレンバッグに入れ、このバッグを密封し、約4℃において一時的に貯蔵した。
皮膚ディスクの調製
電気的移送式セルに用いる前に、皮膚ストリップを60℃の水を含有する1リットルビーカー中に約90秒間入れて、穏やかに撹拌した。次に、皮膚ストリップを取り出して、真皮側を下にして、BENCHKOTE物質片の吸収性側に載せた。各ストリップからラウンドチップスパチュラによって表皮を除去し、真皮をフラットチップトピンセットを用いて保持した。各表皮を、角質層サイドアップして(side up),水を含む2”深さのPyrexガラストレーに移した。各浮遊する表皮を本質的に平らに伸ばした。各表皮を水から取り出した後に、無視できる表面損傷を有する各表皮の一部から2.22cm(7/8in)直径ディスクを打ち抜いた。打ち抜いたディスクを4℃において数滴の水滴と共に密封容器内で貯蔵して、水分を維持し、続いて、図2に示すように、角質層側がドナー区画に面するように、ドナー溜め44とカウンター溜め46との間に入れた。
電気的移送式投与デバイスと組成物との調製
ヒト死体表皮ディスク42を図2に示す2区画ポリカーボネート電気的移送式透過セルに取り付けた。このセルはステンレス鋼ボルトとナット56によって一緒に維持したゴムOリングシール54を有するポリカーボネート支持構造体52から構成された。ヒト表皮ディスク42をアノード区画44とカソード区画46との間に取り付けた。銀アノード48をアノード区画44に隣接して配置し、塩化銀カソード50をカソード区画46に隣接して配置した。移送のために暴露されたヒト表皮42の面積は約1.26cm2であり、区画44と46との各容積は約2mlであった。電極48,50はガルバノスタット(galvanostat)(図2に示さず)に電気的に接続した、ガルバノスタットは一定の所定レベルの電流、即ち126μAを得るために必要な電圧を印加するように設定することができる。
皮膚ディスク42と試験すべき電気的移送促進剤の各々とを通して移送される薬物溶液を異なる時間にアノードドナー区画44に入れた。ダルベッコのリン酸塩緩衝生理食塩水(約0.15N NaCl、微量の他のイオン、pH7.0)をカソードレセプター区画46に入れた。ガルバノスタットによって印加された電圧からOhmの法則にしたがって、皮膚抵抗を算出した:
skin=V/I
式中、Vはガルバノスタットによって印加された電圧であり、Iは電流、126microamp.である。薬物流量はレセプター区画46中の溶液の定期的サンプリングによって測定した。
実施例1メトクロプラミドHClの電気的移送式投与の促進
約100mg/mlの濃度を有するメトクロプラミドHCl(抗嘔吐薬塩)水溶液をドナー区画に入れた。ドナー区画のpHは調節しなかったが、実験を通して約5.0〜5.5に自然に維持された。水溶液中で、メトクロプラミドHClは正に荷電した薬物イオンを形成し、この実験に用いた電気的移送促進剤は下記異なるカテゴリーの界面活性剤の代表的なものであった:
(a)アニオン分子、例えばラウリン酸ナトリウムとラウリル硫酸ナトリウム;
(b)弱極性分子、例えばポリエチレングリコールモノラウレート(即ち、PEG−4モノラウレート)、ポリエチレングリコールジラウレート(即ち、PEG−4ジラウレート)、ポリオキシエチレン(23)ラウリルエーテル(Sigma Chemical Co.ミズーリ州,セントルイスによって販売されるBrij35)及びラウリルラクテート;
(c)例えばスクロースラウレート、ソルビタンモノラウレート及びポリソルベート−20のような糖を含有する親水性分子;
(d)例えばジメチルラウラミド、ドデシルピロリドン、尿素、ラウリルアミン及びジメチルドデシルアミンオキシドのような、窒素を含む親水性分子;
(e)例えばデシルメチルスルホキシドと、例えばラウルアンホカルボキシプロピオネート(lauramphocarboxy propionate)のような両性分子とのような、その他の群。
比較のためにドナー溶液に10mMの最終濃度まで各界面活性剤を加えた(100mMの最終濃度まで加えたドデシルピロリドンを例外とする)。この系をHAAKEモデルD1加熱ブロック/水浴を用いて、約32℃に維持した。全処理を通してアノード48とカソード50とを横切ってガルバノスタットによって126μA即ち100μA/cm2の定常電流を供給し、セル電圧を全時間にわたってモニターして、平均した。
サンプルをレセプター区画から夜間を除いて1〜2時間毎に、オートサンプラー(ISCO モデル2230、ネブラスカ州,リンカンシティ)と計量ポンプとを用いて自動的に取り出した。レセプター区画内のメトクロプラミド濃度を濃度対吸光度の標準曲線を用いて、310nm波長における吸光度によって測定した。吸光度測定値は8452A UV/visスペクトロフォトメーター(Hewlett−Packard,カリフォルニア州,パロアルト)によって得た。これらのセルを各電気的移送促進組成物の試験に誤差を最小にするように典型的に用い、同じドナーからの組織を3個のセルに用い、セルの2個はドナー区画に選択された電気的移送促進剤を有し、第3セルは電気的移送促進剤を含まない対照セルであった。
一般に、流量と電圧の測定値を約5時間目以後に、これらのレベルが定常状態に達したときに測定した。
メトクロプラミドの定常状態流量に関する電気的移送促進剤の各々の存在下で得られた標準化した質量流量と電圧値を表1に示す。即ち、促進剤の存在下で得られた各値を対照値によって除する。したがって、標準化した流量とセル電圧とに対する対照値は両方とも1であり、促進剤の存在下での標準化値は、これらが皮膚の抵抗及び/又は皮膚を通るメトクロプラミド流量に影響を与えるので、この値からはずれる。例えば、1.87のメトクロプロミド流量値は、ジメチルラウラミドがドナー組成物に加えられたときに、薬物の投与量が殆ど二倍になることを実証する。同様に、0.45のセル電圧値は、ジメチルラウラミドがドナー組成物に加えられたときに、対照値の約1/2の電圧値とそれ故の皮膚抵抗とを実証する。
Figure 0004090072
表1から知ることができるように、約150ダルトン未満の極性先端基と約6より大きいHLB値とを有する電気的移送促進剤は対照よりも50%を越える薬物流量の増加を実証した。試験した透過促進剤の中では、優れた特徴を示す透過促進剤はラウリン酸ナトリウム、n−デシルメチルスルホキシド、ドデシルピロリドン、ジメチルラウラミド、及びラウリル硫酸ナトリウムを包含する。これらの幾つかは例えばラウリル硫酸ナトリウムのようなアニオン界面活性剤であり、これは質量流量を強化し、皮膚抵抗を減じた。例えばPEG−4モノラウレート、PEG−4ジラウレート、Brij35及びラウリルラクテートのような弱極性基を有する促進剤は皮膚抵抗を減じたが、これらのいずれもメトクロプラミドの質量流量を強化しなかった。ソルビタンモノラウレートとポリソルベート−20は親水性糖部分を有するが、メトクロプラミドの電気的移送流量又は皮膚抵抗のいずれにも有意な影響を及ぼすことができない。ジメチルラウラミド、ドデシルピロリドン、尿素、ラウリルアミン及びジメチルドデシルアミンオキシドは全てそれらの親水性先端に窒素を含む。ジメチルラウラミドとドデシルピロリドンの両方は非常に効果的な促進剤であった。正に荷電した分子であるラウリルアミンはカチオンメトクロプラミドの流量を強化しないばかりか、有意に低下させた(即ち、ラウリルアミンとメトクロプラミドとの競合と、皮膚の帯電とによる)。デシルメチルスルホキシドは良好な促進剤として作用したが、唯一の両性化合物であり、大きすぎる極性先端を有するラウルアンフォカルボキシプロピオネートは流量又は皮膚抵抗のいずれにも影響を及ぼすように見えなかった。本発明の好ましい促進剤に関して確立された範囲を超える極性先端を有する大抵の界面活性剤はメトクロプラミド流量に殆ど影響を及ぼさなかったが、一部は皮膚抵抗に影響を与えた。
したがって、本発明の好ましい電気的移送促進剤は、作用剤と促進剤の両方が溶液中にイオン化形で存在する場合に作用剤の電荷とは反対の正味電荷を溶液中で有する電気的移送促進剤である。
実施例2促進剤としてのエタノールによるメトクロプラミド流量の測定(先行技術との比較)
先行技術は、受動的経皮薬物投与と電気的に補助された経皮薬物投与の両方を促進するのにエタノールを使用することができることを教示する。この実験は実施例1に述べた条件と同様な条件下でメトクロプラミド流量とセル電圧とに対するエタノール(10〜30重量%)の効果を調べるために行った。用いた作用剤のメトクロプラミドHClを約100mgメトクロプラミドHCl/mlでドナー区画に入れ、ダルベッコのリン酸塩緩衝化生理的食塩水(pH7)をレセプター区画に入れた。この系を32℃に維持し、100μA/cm2の定常な電流を操作を通して供給した。
全てのランは同じメトクロプラミド濃度と、以下の表2に示した下記条件を除いた他の条件とを有した。
Figure 0004090072
表2中の最初のラインは対照であり、電気的に補助されたメトクロプラミド流量とセル電圧とをエタノール不存在下で測定し、それぞれに1.00の値を割り当てた。残りのメトクロプラミド流量とセル電圧値とを対照に対して標準化した。
表2は、ドナー溶液への10〜30重量%エタノールの添加がメトクロプラミドの質量流量と皮膚導電率とを低下させたことを示す。
実施例3正に荷電したテトラカインの電気的移送式投与の促進
100mg/mlの濃度を有する水溶液の形状のテトラカインHClの電気的移送を試験して、メトクロプラミドHClの電気的移送と同様に挙動することを発見した。得られた平均質量流量は100μg/cm2・時であり、定常状態流量に達するには1〜2時間遅延した。
テトラカインの電気的移送を例えばデシルメチルスルホキシドのような、界面活性剤流量促進剤を用いても実施した。促進剤による電気的移送前処理は作用剤の質量流量の増大とセル電圧の低下とに非常に有利であった。
テトラカインはその第3級アミン基において正に荷電しており、分子の残りの部分は非常に疎水性であるので、メトクロプラミドよりも非常に低親水性の分子である。20mg/ml(75mM)より大きいテトラカイン濃度は薬物の高度な界面活性剤性のためにミセルの形成を生じる。より低い濃度のテトラカインは促進剤効果をより良好に示すことができる。
実施例4ナトリウムクロモリンの電気的移送式投与の促進
二ナトリウムクロモリンは、水溶液中にあるときに、二価アニオンを形成する。クロモリンドナー溶液をカソード区画46に入れ、ダルベッコのリン酸塩緩衝化生理的食塩水レセプター溶液をアノード区画44に入れた以外は、実験条件は実施例1に述べた通りであった;皮膚の角質層ディスク42をカソード区画46に面するように取り付けた。
ドデシルピロリドンは、100mMの濃度でドナー溶液に加えたときに、クロモリン流量を50〜100%高め、皮膚抵抗を30〜70%低下させた。
実施例5ケトプロフェンの電気的移送の促進
水溶液中のナトリウムケトプロフェンは一価アニオン抗炎症剤を形成する。カチオン界面活性剤と非イオン界面活性剤との存在下での100mMケトプロフェンの電気的移送式投与を実施例1に述べた条件下で試験した。用いた促進剤はラウリルアミンとジメチルラウラミドであった。2セットの試験を実施した。最初の試験は水溶液中であり、第2試験は20重量%エタノール/水溶液中であった。用いた促進剤は両方とも、水中に単独で用いた場合に、質量流量と皮膚導電率とを高めた。溶媒としての20%エタノールの添加は両方の促進剤の性能を改良した。
本発明とそのある一定の好まし実施態様とをこのように一般的に説明したが、本発明の種々な改良が、請求の範囲のみによって限定される本発明の範囲から逸脱せずになされうることは当業者に明らかでろう。
本発明の実施態様は次の通りである。
1.下記成分:
(a)経皮投与するための少なくとも1種の作用剤と、
(b)約6より大きい親水性−親油性平衡(HLB)数を有し、疎水性末端と約150ダルトンMW未満の極性先端とを含み、該極性先端基が無荷電であるか又は、投与されるべき作用剤が溶液中でイオン化可能である場合に該作用剤の電荷と反対の電荷を有する、少なくとも1種の経皮電気的移送促進剤と
を含む作用剤の経皮電気的移送式投与用の組成物であって、
該電気的移送促進剤が飽和C10−C12脂肪族アルコール、アミン、一置換及び二置換アミン、第4級アンモニウム塩、スルホキシド、スルフェート、アミド、一置換及び二置換アミド、これらのエステル及びこれらの塩から成る群から選択される組成物。
2.電気的移送促進剤の疎水性末端が線状C10−C12アルキルである、上記1記載の組成物。
3.電気的移送促進剤がラウリルアミン、n−デシルメチルスルホキシド、ドデシルピロリドン、ジメチルラウラミド、ラウリル硫酸ナトリウム、これらの塩及びこれらの混合物から成る群から選択される、上記1の組成物。
4.作用剤と電気的移送促進剤とが溶液中にあるときに反対符号の電荷を有する、上記1記載の組成物。
5.電気的移送促進剤が前記組成物の約0.01〜20重量%を占める、上記1記載の組成物。
6.電気的移送促進剤が溶液中で実質的に非イオン性である、上記1記載の組成物。
7.溶媒、溶解促進剤、透過促進剤、導電性促進剤、緩衝剤及びこれらの混合物から成る群から選択された添加剤をさらに含む、上記1記載の組成物。
8.ドナー溜め(16)と、溜め(16)に電気的に接続したドナー電極(12)と、ドナー電極(12)に電気的に接続した電力源(24)とを含む経皮電気的移送式デバイスであって、ドナー溜めが上記1で定義された組成物を含む改良デバイス。
9.体表を通る作用剤の電気的移送流量を高める方法であって、体表と上記1で定義された組成物を接触させる工程と、該組成物と該体表とを通して電流を供給して、該作用剤を電気的移送によって該体表を通して移送させる工程とを含む方法。
10.体表を通る電気的移送によって作用剤を投与する方法であって、体表を上記8で定義されたデバイスと接触させる工程と、該組成物と該体表とに電流を通過させる工程と、該作用剤を該体表を通る電気的移送によって投与する工程とを含む方法。
11.電気的移送促進剤が前記組成物の約0.01〜20重量%を含む、上記1、2、3、4、6、7、8、9又は10のいずれかに記載の対象。

Claims (5)

  1. 下記成分:
    (a)経皮投与するための少なくとも1種の作用剤と、
    (b)6より大きい親水性−新油性平衡(HLB)数を有し、疎水性尾部と該疎水性尾部の末端に配置された150ダルトンMW未満の化学残基とを含み、該化学残基が無荷電であるか又は、投与されるべき作用剤が溶液中でイオン化可能である場合に該作用剤の電荷と反対の電荷を有する、少なくとも1種の経皮電気的移送促進剤と
    を含む作用剤の経皮電気的移送式投与用の組成物であって、
    該電気的移送促進剤が飽和C10−C12 脂肪族アミド及び飽和C10−C12一置換及び二置換脂肪族アミドから成る群から選択される組成物。
  2. 電気的移送促進剤が、ジメチルラウラミド、これの塩及びこれらの混合物から成る群から選択される、請求項1の組成物。
  3. 電気的移送促進剤が前記組成物の0.01〜20重量%を占める、請求項1記載の組成物。
  4. 溶媒、溶解促進剤、透過促進剤、導電性促進剤、緩衝剤及びこれらの混合物から成る群から選択された添加剤をさらに含む、請求項1記載の組成物。
  5. ドナー溜めと、溜めに電気的に接続したドナー電極と、ドナー電極に電気的に接続した電力源とを含む経皮電気的移送式デバイスであって、ドナー溜めが請求項1で定義された組成物を含む改良デバイス。
JP50506096A 1994-07-13 1995-06-29 経皮電気的移送式作用剤投与を促進するための組成物と方法 Expired - Fee Related JP4090072B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27461994A 1994-07-13 1994-07-13
US08/274,619 1994-07-13
PCT/US1995/008384 WO1996002232A1 (en) 1994-07-13 1995-06-29 Composition and method for enhancing transdermal electrotransport agent delivery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007193031A Division JP2007314562A (ja) 1994-07-13 2007-07-25 経皮電気的移送式作用剤投与を促進するための組成物と方法

Publications (2)

Publication Number Publication Date
JPH10503184A JPH10503184A (ja) 1998-03-24
JP4090072B2 true JP4090072B2 (ja) 2008-05-28

Family

ID=23048961

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50506096A Expired - Fee Related JP4090072B2 (ja) 1994-07-13 1995-06-29 経皮電気的移送式作用剤投与を促進するための組成物と方法
JP2007193031A Withdrawn JP2007314562A (ja) 1994-07-13 2007-07-25 経皮電気的移送式作用剤投与を促進するための組成物と方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007193031A Withdrawn JP2007314562A (ja) 1994-07-13 2007-07-25 経皮電気的移送式作用剤投与を促進するための組成物と方法

Country Status (7)

Country Link
US (1) US5668170A (ja)
EP (1) EP0804155B1 (ja)
JP (2) JP4090072B2 (ja)
AT (1) ATE197396T1 (ja)
DE (1) DE69519393T2 (ja)
ES (1) ES2153485T3 (ja)
WO (1) WO1996002232A1 (ja)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509072A (ja) * 1994-11-17 1998-09-08 アルザ・コーポレーション 電気的移送式作用剤投与を強化するための組成物と方法
WO1996031251A1 (de) * 1995-04-07 1996-10-10 Novartis Ag Iontophoretisches transdermales system zum verabreichen von mindestens zwei substanzen
US5985316A (en) * 1995-04-28 1999-11-16 Alza Corporation Composition and method of enhancing electrotransport agent delivery
US5676648A (en) 1996-05-08 1997-10-14 The Aps Organization, Llp Iontophoretic drug delivery apparatus and method for use
US6385487B1 (en) 1996-05-08 2002-05-07 Biophoretic Therapeutic Systems, Llc Methods for electrokinetic delivery of medicaments
ATE250957T1 (de) * 1996-06-12 2003-10-15 Alza Corp Verbesserte elektrophoretische verabreichung von therapeutischen wirkstoffen mit polybasischen anionischen gegenionen
US6004577A (en) * 1997-08-12 1999-12-21 Murdock; Thomas O. Enhanced electrotransport of therapeutic agents having polybasic anionic counter ions
US6775569B2 (en) * 1997-11-05 2004-08-10 Hisamitsu Pharmaceutical Co., Inc. Electroporation device for in vivo delivery of therapeutic agents
USRE37796E1 (en) 1997-12-16 2002-07-23 Biophoretic Therapeutic Systems, Llc Methods for iontophoretic delivery of antiviral agents
US6374136B1 (en) * 1997-12-22 2002-04-16 Alza Corporation Anhydrous drug reservoir for electrolytic transdermal delivery device
ID26791A (id) * 1998-04-21 2001-02-08 Infectio Recherche Inc Formulasi untuk pencegahan atau perlakuan penyakit yang mempengaruhi mukosa atau kulit, atau untuk pencegahan kehamilan dan alat pemakai terhadap pengiriman formulasi topikal didalam rongga-rongga mukosal
US7919109B2 (en) 1999-02-08 2011-04-05 Intarcia Therapeutics, Inc. Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicles
US7258869B1 (en) 1999-02-08 2007-08-21 Alza Corporation Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicle
US6792306B2 (en) 2000-03-10 2004-09-14 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6347246B1 (en) * 2000-02-03 2002-02-12 Axelgaard Manufacturing Company, Ltd. Electrotransport adhesive for iontophoresis device
US6522918B1 (en) 2000-02-09 2003-02-18 William E. Crisp Electrolytic device
US20040024036A1 (en) * 2000-08-01 2004-02-05 Anne Charlier Pharmaceutical composition for transdermal delivery of befloxatone
US7465295B2 (en) * 2000-10-20 2008-12-16 Bergeron Michel G Applicator for the delivery of topical formulations into mucosal cavities
US7137975B2 (en) * 2001-02-13 2006-11-21 Aciont, Inc. Method for increasing the battery life of an alternating current iontophoresis device using a barrier-modifying agent
IL161529A0 (en) * 2001-10-31 2004-09-27 R & R Ventures Inc Iontophoresis device
US7099713B2 (en) 2002-06-28 2006-08-29 Battelle Memorial Institute Skin conduction and transport systems
CA2500713C (en) * 2002-10-04 2012-07-03 Photokinetix, Inc. Photokinetic delivery of biologically active substances using pulsed incoherent light
US7731947B2 (en) 2003-11-17 2010-06-08 Intarcia Therapeutics, Inc. Composition and dosage form comprising an interferon particle formulation and suspending vehicle
KR20050121277A (ko) * 2003-06-02 2005-12-26 파워 페이퍼 리미티드 피부 내로 산화제의 조절된 운반을 위한 키트, 디바이스 및그의 방법
JP4728631B2 (ja) * 2004-11-30 2011-07-20 Tti・エルビュー株式会社 イオントフォレーシス装置
US7590444B2 (en) * 2004-12-09 2009-09-15 Tti Ellebeau, Inc. Iontophoresis device
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
WO2006083761A2 (en) 2005-02-03 2006-08-10 Alza Corporation Solvent/polymer solutions as suspension vehicles
JP4731931B2 (ja) * 2005-02-03 2011-07-27 Tti・エルビュー株式会社 イオントフォレーシス装置
JP4793806B2 (ja) * 2005-03-22 2011-10-12 Tti・エルビュー株式会社 イオントフォレーシス装置
US8386030B2 (en) 2005-08-08 2013-02-26 Tti Ellebeau, Inc. Iontophoresis device
US20070088331A1 (en) * 2005-08-18 2007-04-19 Transcutaneous Technologies Inc. Method and apparatus for managing active agent usage, and active agent injecting device
KR20080047600A (ko) 2005-09-15 2008-05-29 티티아이 엘뷰 가부시키가이샤 로드형 이온토포레시스 장치
CA2664589A1 (en) 2005-09-30 2007-04-12 Tti Ellebeau, Inc. Iontophoretic device and method of delivery of active agents to biological interface
WO2007041526A2 (en) * 2005-09-30 2007-04-12 Transcutaneous Technologies Inc. Iontophoresis apparatus and method to deliver antibiotics to biological interfaces
WO2007079193A2 (en) 2005-12-30 2007-07-12 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface
ES2351527T3 (es) 2006-05-30 2011-02-07 Intarcia Therapeutics, Inc Modulador de flujo en dos piezas con conducto interno para un sistema osmótico de administración.
EP2359808B1 (en) 2006-08-09 2013-05-22 Intarcia Therapeutics, Inc Osmotic delivery systems and piston assemblies
EP2123259A1 (en) * 2007-01-16 2009-11-25 Hokkaido University Liposome preparation for iontophoresis having antioxidant component encapsulated therein
EP2157967B1 (en) 2007-04-23 2013-01-16 Intarcia Therapeutics, Inc Suspension formulations of insulinotropic peptides and uses thereof
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
CA2726861C (en) 2008-02-13 2014-05-27 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
AU2010217957B2 (en) 2009-02-26 2015-08-13 Liquidia Technologies, Inc. Interventional drug delivery system and associated methods
EP3323423B1 (en) 2009-09-28 2020-06-17 Intarcia Therapeutics, Inc Rapid establishment and/or termination of substantial steady-state drug delivery
WO2011046927A1 (en) * 2009-10-13 2011-04-21 Nupathe,Inc. Transdermal methods and systems for the delivery of rizatriptan
US9237961B2 (en) * 2010-04-23 2016-01-19 Medtronic Vascular, Inc. Stent delivery system for detecting wall apposition of the stent during deployment
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
US9468682B2 (en) 2013-04-05 2016-10-18 Joint-stock company “High Tech” Compositions and methods for enhancing penetration of biologically active substances into tissues or organs
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
MA44390A (fr) 2015-06-03 2019-01-23 Intarcia Therapeutics Inc Systèmes de mise en place et de retrait d'implant
SG11201810102SA (en) 2016-05-16 2018-12-28 Intarcia Therapeutics Inc Glucagon-receptor selective polypeptides and methods of use thereof
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
CN110225762A (zh) 2017-01-03 2019-09-10 因塔西亚制药公司 包括glp-1受体激动剂的连续施用和药物的共同施用的方法
USD933219S1 (en) 2018-07-13 2021-10-12 Intarcia Therapeutics, Inc. Implant removal tool and assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153689A (en) * 1975-06-13 1979-05-08 Takeda Chemical Industries, Ltd. Stable insulin preparation for nasal administration
US4690683A (en) * 1985-07-02 1987-09-01 Rutgers, The State University Of New Jersey Transdermal varapamil delivery device
US4722726A (en) * 1986-02-12 1988-02-02 Key Pharmaceuticals, Inc. Method and apparatus for iontophoretic drug delivery
US4992477A (en) * 1988-04-04 1991-02-12 Warner-Lambert Company Skin moisturizing composition and method of preparing same
US4996193A (en) * 1989-03-03 1991-02-26 The Regents Of The University Of California Combined topical and systemic method of administration of cyclosporine
US5023085A (en) * 1989-11-29 1991-06-11 Pfizer Inc. Transdermal flux enhancers in combination with iontophoresis in topical administration of pharmaceuticals
NZ237489A (en) * 1990-04-18 1995-07-26 Alza Corp Device for electrotransport and reservoir therefor containing a fatty acid as permeation enhancing agent
US5336692A (en) * 1990-06-28 1994-08-09 Medicis Pharmaceutical Corporation Ointment base and method of use
DE69320378T2 (de) * 1992-01-21 1999-04-29 Macrochem Corp Iontophoretische verbesserte Verabreichung von Medikamenten
JPH0616538A (ja) * 1992-07-03 1994-01-25 Japan Tobacco Inc イオントフォレーゼのための薬物吸収用液組成物

Also Published As

Publication number Publication date
EP0804155A1 (en) 1997-11-05
JP2007314562A (ja) 2007-12-06
ES2153485T3 (es) 2001-03-01
DE69519393D1 (de) 2000-12-14
DE69519393T2 (de) 2001-04-26
ATE197396T1 (de) 2000-11-11
EP0804155B1 (en) 2000-11-08
US5668170A (en) 1997-09-16
WO1996002232A1 (en) 1996-02-01
JPH10503184A (ja) 1998-03-24

Similar Documents

Publication Publication Date Title
JP4090072B2 (ja) 経皮電気的移送式作用剤投与を促進するための組成物と方法
JP4049389B2 (ja) 電気的移送式作用剤投与のための組成物、デバイス及び方法
EP0752898B1 (en) Reduction of skin irritation during electrotransport delivery
JP4320177B2 (ja) 抗微生物適合性レザバー組成物を含む経皮性電気輸送デリバリー装置
US5203768A (en) Transdermal delivery device
US5464387A (en) Transdermal delivery device
US5167616A (en) Iontophoretic delivery method
US5861439A (en) Method for enhanced electrotransport agent delivery
JP3874795B2 (ja) 電気的移送式作用剤投与を促進する組成物
CA2190370C (en) Composition and method for enhancing transdermal electrotransport agent delivery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050408

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees