JP4088283B2 - 回折光学素子およびそれを備える光学系並びに光学装置 - Google Patents

回折光学素子およびそれを備える光学系並びに光学装置 Download PDF

Info

Publication number
JP4088283B2
JP4088283B2 JP2004264086A JP2004264086A JP4088283B2 JP 4088283 B2 JP4088283 B2 JP 4088283B2 JP 2004264086 A JP2004264086 A JP 2004264086A JP 2004264086 A JP2004264086 A JP 2004264086A JP 4088283 B2 JP4088283 B2 JP 4088283B2
Authority
JP
Japan
Prior art keywords
wavelength
region
optical element
diffractive optical
relief pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004264086A
Other languages
English (en)
Other versions
JP2004348165A (ja
Inventor
哲也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004264086A priority Critical patent/JP4088283B2/ja
Publication of JP2004348165A publication Critical patent/JP2004348165A/ja
Application granted granted Critical
Publication of JP4088283B2 publication Critical patent/JP4088283B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

この発明は、複数の波長、あるいは帯域光で使用する回折光学素子、およびそれを備える光学系並びに光学装置に関するものである。
回折光学素子、例えば、レンズ作用を有するように構成した回折光学素子(回折レンズ)は、以下に示すように、従来からある屈折レンズにはない特長を有することが知られている。
(I)非球面波を容易に生成することができるので、収差を効果的に補正することができる。
(II)実質的に厚みを持たないので、設計の自由度が高く、コンパクトな光学系を実現することができる。
(III)屈折レンズでのアッベ数に相当する量が、回折レンズでは負の値となるので、屈折素子との組み合わせによって、色収差を効果的に補正することができる。
このような回折レンズの特長を利用し、光学系の性能を向上させることに関しては、例えば、下記の非特許文献1に詳しく記述されている。
上述したように、回折光学素子には、従来の屈折素子にはない多くの有用な特長があるが、他方では、回折効率が波長に依存するために、以下のような原理的な問題がある。例えば、光学系に適用する回折光学素子は、レンズ素子として利用する場合が多いが、このような用途においては、複数の回折光(複数の焦点)が存在するのは、一般に好ましくない。そこで、従来の回折光学素子(具体的には回折レンズ)においては、一般に、図19に示すように、使用する波長で透明な基材1に、断面を鋸歯波状とした(ブレーズ化した)レリーフパターン2を形成して、特定次数の回折光にエネルギーを集中させるようにしている。
しかしながら、図19に示すように、断面を鋸歯波状に加工すると、その溝深さによってエネルギーを集中できる波長、すなわち回折効率が最大になる波長が異なるため、波長幅を有する帯域光のエネルギーを特定次数の回折光に集中させることができなくなる。このような現象は、例えば、レーザーのような、単色光を利用する光学系の場合には問題にならないが、カメラのように白色光を利用する光学系では、特定の波長の光で回折効率を最適化すると、その他の波長で回折効率が低下してしまうという問題がある。
図20は、図19に示した断面形状を有する回折光学素子において、基材1としてBK7を用い、レリーフパターン2を、波長λ=510nmにおいて1次回折効率が100%となるような溝深さで形成した場合の1次回折効率と波長との関係を示したものである。図20から明らかなように、一般に可視波長領域と見なせるλ=400nmからλ=700nmにおいて、回折効率は、最適化した波長λ=510nmから離れるに従って減少し、特に、短波長領域での低下が著しくなる。このような回折効率の低下は、単に分光透過率が低下するといった問題にとどまらず、溝深さが最適化されていない波長において、不要次数の回折光が発生することになる。このため、かかる回折光学素子を、帯域光を用いる光学系、例えば、白色光で用いる撮像光学系に適用した場合には、フレアやゴーストが生じて、光学系の性能を低下させることになる。
ここで、図19に示した断面が鋸歯波状のレリーフパターンは、図21に示すような位相シフト関数φ(x)で表すことができる。このφ(x)は、レリーフパターンの波面変調作用を特長づける関数で、その形状は、レリーフパターンの断面形状に対応した周期関数となる。この位相シフト関数φ(x)で表されるレリーフパターンのm次回折効率ηは、その振れ幅(以後、位相振幅と呼ぶことにする)aを用いれば、
Figure 0004088283

で与えられる。
(1)式において、位相振幅aは、空気の屈折率を1、レリーフパターンを形成した基材の屈折率をn、溝深さをd、および使用する光の波長をλとして、
Figure 0004088283

で定義される量である。ここで、波長λで、m次回折効率が100%となるように最適化した溝深さdは、
Figure 0004088283

となるので、このときの位相振幅aは、
Figure 0004088283

となる。
(4)式は、ある定まった溝深さdに対して、位相振幅aが波長に依存することを意味し、この位相振幅aの波長依存によって、(1)式から明らかなように、回折効率の波長依存が引き起こされる。例えば、図20に示した回折効率の波長依存も、このような現象の結果である。
Binary Optics Technology; The Theory and Design of Multi-Level Diffractive Optical Element, Gary J.Swanson, Technical Report 854,MIT Lincoln Laboratory, August 1989.
本出願人は、上述したような回折効率の波長依存性の仕組みを詳細に検討し、回折効率の波長依存性を低減した新しいタイプのレリーフ型回折光学素子を既に提案している(特願平7−220754号)。ここで提案している回折光学素子は、図22に示すように、高屈折率低分散の光学材料10aと、低屈折率高分散の光学材料10bとの異なる2種類の光学材料を組み合わせ、その異なる2種類の光学材料10a、10bの境界面にレリーフパターン20を形成したものである。
ここで、レリーフパターン20の断面形状を、図22に示すように鋸歯波状として、その溝深さを、波長λでm次回折効率が100%となるように最適化した場合の位相振幅a(λ)は、
Figure 0004088283

で与えられる。ただし、n(λ) は、高屈折率低分散の光学材料10aの屈折率を示し、n(λ) は、低屈折率高分散の光学材料10bの屈折率を示す。
(5)式において、2種類の光学材料の屈折率n,nが、使用する波長帯域にわたって、例えば、図23に示すように、n(λ) >n(λ) であるとすると、分子に現れる屈折率差は波長λの増加に伴って増加し、分母のλの変化分を打ち消すようになる。したがって、位相振幅の波長変化は、(4)式で表される場合と比較して小さく抑えられるので、結果として、回折効率の波長変化を小さく抑えることができる。
しかしながら、現実に存在する光学材料の屈折率と分散(屈折率の波長分散)との関係は、おおよそ、屈折率が大きくなるほど分散も大きくなる傾向を示すため、十分な効果を有する光学材料の組み合わせを見い出すのは容易ではない。例えば、可視帯域光で使用する光学材料には、豊富な種類があるが、基本的には屈折率の増加に伴って分散も増加する。また、可視帯域光で使用する光学材料の多くは、いわゆる光学ガラスであるが、2種類の光学材料としてそれぞれ光学ガラスを選んだ場合には、加工性が悪いことから、その境界面に微細なレリーフパターンを形成するのは容易ではない。さらに、製造の容易さを考慮して、2種類の光学材料の少なくとも一方を、加工の容易なプラスチック光学材料とすることもできるが、プラスチック光学材料は種類が少ないため、十分な効果を有する光学材料の組み合わせは大きく制限される。特に、プラスチック光学材料どうしの組み合わせでは、回折効率の波長依存性を改善するのは容易ではない。
この発明は、上述した問題点に着目してなされたもので、容易に製造でき、しかも回折効率の波長依存を低減して、フレアやゴースト等の発生を有効に防止できるよう適切に構成した回折光学素子およびそれを備える光学系並びに光学装置を提供することを目的とする。
上記目的を達成する請求項1に係る回折光学素子の発明は、第1の領域と第2の領域との境界に形成された第1のレリーフパターンと、前記第2の領域と第3の領域との境界に形成された第2のレリーフパターンとを有する回折光学素子であって、
前記第1、第2および第3の領域は、いずれも使用する波長に対して実質的に透明で、互いに異なる屈折率を有し、
前記第1および第2のレリーフパターンは、面内に存在する共通の回転対称軸を通る断面形状がそれぞれ鋸歯波状で、前記回転対称軸を中心にして、それぞれ同心円状に交互に連続して形成された複数の第1の傾斜部および複数の第2の傾斜部を有し、
前記第1の傾斜部は前記第2の傾斜部よりも傾斜が緩やかになっていると共に、前記回転対称軸から外周部に向けて傾斜部の長さが徐々に短くなっており、
前記第1の傾斜部のうち、最も長い傾斜部の一端が前記回転対称軸と一致していることを特徴とするものである。
請求項2に係る発明は、請求項1に記載の回折光学素子において、前記第1および第2のレリーフパターンは、前記回転対称軸を通る断面形状が実質的に同一形状であることを特徴とするものである。
請求項3に係る発明は、請求項1または2に記載の回折光学素子において、前記第1、第2および第3の領域をそれぞれ構成する材料の屈折率を、n(λ) 、n(λ) およびn(λ) とし、
前記第1および第2のレリーフパターンのそれぞれの溝深さを、dおよびd、それらの比を、α=d/dとして、
Figure 0004088283

ただし、λ:光の波長
とするとき、
Figure 0004088283

ただし、λ:使用する光の波長域の短波長端の波長
λ:使用する光の波長域の長波長端の波長
を満たすことを特徴とするものである。
請求項4に係る発明は、請求項1〜3のいずれか一項に記載の回折光学素子において、前記第3の領域側から見て、前記第1の傾斜部は、前記外周部に向かって高さが低くなるように傾斜していることを特徴とするものである。
請求項5に係る発明は、請求項1〜4のいずれか一項に記載の回折光学素子において、前記第1の領域の前記第1のレリーフパターンを有する面とは反対側の面は、曲率を有することを特徴とするものである。
請求項6に係る発明は、請求項1〜5のいずれか一項に記載の回折光学素子において、前記第3の領域の前記第2のレリーフパターンを有する面とは反対側の面は、曲率を有することを特徴とするものである。
請求項7に係る光学系の発明は、請求項1〜6のいずれか一項に記載の回折光学素子を備えることを特徴とするものである。
請求項8に係る光学装置の発明は、請求項1〜6のいずれか一項に記載の回折光学素子または請求項7に記載の光学系を備えることを特徴とするものである。
この発明によれば、容易に製造でき、しかも効果的に回折効率の波長依存を低減できると共に、安価にできる透過型の回折光学素子を得ることができる。したがって、係る回折光学素子を備える光学系や該光学系を備える光学装置によれば、例えばカラー映像を撮影する場合のフレアやゴースト等の発生を有効に防止することができる。
図1は、この発明とともに開発した回折光学素子の第1参考例における概念図で、断面の一部を模式的に示したものである。この回折光学素子は、順次に積層した第1の領域11、第2の領域12および第3の領域13と、第1の領域11および第2の領域12の境界面に形成した第1のレリーフパターン21と、第2の領域12および第3の領域13の境界面に形成した第2のレリーフパターン22とを有する。第1,第2および第3の領域11,12および13は、それぞれ使用する光の波長帯域で実質的に透明な互いに異なる材料をもって構成する。ここでは、第1の領域11の屈折率をn(λ) 、第2の領域12の屈折率をn(λ) 、第3の領域13の屈折率をn(λ) とする。
また、第1および第2のレリーフパターン21および22は、等しいピッチ分布を有する断面鋸歯波状に形成して、対応する部位を対向させる。ここでは、第1のレリーフパターン21の溝深さをd、第2のレリーフパターン22の溝深さをd、第1のレリーフパターン21の頂部と第2のレリーフパターン22の底部との間隔をdとする。
図1に示す構成において、回折光学素子に入射した光は、第1,第2のレリーフパターン21,22によってそれぞれ位相変調を受けることになる。この場合、第1のレリーフパターン21の位相振幅a(λ) は、
Figure 0004088283

となり、第2のレリーフパターン22の位相振幅a(λ) は、
Figure 0004088283

となる。
ここで、第1,第2のレリーフパターン21,22よりなる構造を一体と考えて、回折光学素子に入射した光が実質的に同時に変調されるとすると、その位相シフト作用を特長づける位相振幅a(λ)は、
Figure 0004088283

のように表すことができる。
さらに、このときの溝深さを、波長λにおいてm次回折効率が100%となるように最適化すれば、a(λ)=mなる条件から、
Figure 0004088283

となる。ただし、αは、以下のように、第1のレリーフパターン21の溝深さdと、第2のレリーフパターン22の溝深さdとの比で定義される量である。
Figure 0004088283
このように、図1に示した回折光学素子の位相振幅a(λ)は、(8)式で示すように、第1のレリーフパターン21の位相振幅a(λ) と、第2のレリーフパターン22の位相振幅a(λ) との和で与えられるが、その波長依存特性は、(10)式で定義したパラメータαに依存している。ここで、パラメータαは、(9)式が示すように、特定波長λにおける回折効率の最適化とは無関係に、任意に決めることができるパラメータである。
また、図1に示す構成によれば、第1,第2および第3の領域11,12および13は、互いに異なる材料で形成されており、屈折率差Δn(λ) およびΔn(λ) が、異なる波長依存性を示すことになるので、パラメータαの設定を変えることにより、(9)式の位相振幅a(λ)を、種々の異なった波長依存性を有するようにすることができる。
したがって、図1に示した構成の回折光学素子によれば、第1,第2のレリーフパターンの溝深さの比、すなわちパラメータαを最適に設定することにより、特定波長λにおける回折効率を最適に保ったまま、それとは独立に回折効率の波長依存だけを好適に制御することができる。なお、一般に、二つのレリーフパターンの溝深さを互いに相違させれば、すなわち、α≠1とすれば、回折効率の波長依存を最適に設定することができるが、この回折光学素子によれば、第1,第2,第3の領域を構成する材料を適切に組み合わせることにより、α=1で、回折効率の波長依存を最適に設定することも可能である。
図2は、この発明とともに開発した回折光学素子の第2参考例における概念図で、断面の一部を模式的に示したものである。この回折光学素子は、順次に積層した第1の領域14、第2の領域15および第3の領域16と、第1の領域14および第2の領域15の境界面に形成した第1のレリーフパターン23と、第2の領域15および第3の領域16の境界面に形成した第2のレリーフパターン24とを有する。第1の領域14は、使用する光を反射する材料をもって構成し、第2および第3の領域15および16は、それぞれ使用する光の波長帯域で実質的に透明な互いに異なる材料をもって構成する。
ここでは、第2の領域15の屈折率をn(λ) とし、第3の領域16の屈折率をn(λ) とする。また、第1,第2のレリーフパターン23,24は、等しいピッチ分布を有し、かつ対応する部位が対向するように、図1の場合と同様に、断面鋸歯波状に形成する。ここでは、図1の場合と同様に、第1のレリーフパターン23の溝深さをd、第2のレリーフパターン24の溝深さをd、第1のレリーフパターン23の頂部と、第2のレリーフパターン24の底部との間隔をdとする。
図2に示す構成において、第3の領域16側から回折光学素子に入射した光は、第2,第1のレリーフパターン24,23によってそれぞれ位相変調を受けることになる。ここで、第1のレリーフパターン23は、反射材料で構成された第1の領域14に面しているので、素子に入射した光は、この第1のレリーフパターン23で反射される。したがって、かかる構成の回折光学素子は、全体として反射型回折格子として機能する。
ここで、図1の場合と同様に、第1,第2のレリーフパターン23,24よりなる構造を一体と考え、回折光学素子に入射した光が実質的に同時に変調されるとすると、波長λにおいてm次回折効率が100%となるように、レリーフパターン23,24の溝深さを設定した場合の位相振幅は、
Figure 0004088283

のように表すことができる。この(11)式は、図1に示す構成の位相振幅を表す(9)式に相当するもので、パラメータαも、第1のレリーフパターン23の溝深さdと、第2のレリーフパターン24の溝深さdとにより、(10)式で定義されるものである。
上記(11)式は、図1に示す構成の位相振幅を表す(9)式において、光が侵入しない第1の領域14の屈折率を0とおいたものと一致する。すなわち、図2に示す構成の反射型回折格子の場合も、その位相振幅は、図1に示す構成の場合と同様に、任意のパラメータαを含む形式で表現される。したがって、図2に示す構成の回折光学素子においても、任意のパラメータαを最適に設定することにより、図1に示す構成の回折光学素子の場合と同様に、特定波長λにおける回折効率を最適に保ったまま、それとは独立に回折効率の波長依存だけを好適に制御することができる。
図1に示した回折光学素子において、回折効率の波長依存をより小さくするためには、(8)式、もしくは(9)式で示された位相振幅a(λ)の波長依存をより小さくする必要がある。例えば、(9)式において、位相振幅a(λ)の波長依存を決めるのは、分子にある2つの屈折率差の項、Δn(λ) およびαΔn(λ) と、分母にあるλである。したがって、この波長依存をより小さくするためには、2つの屈折率差の項の和の絶対値ΔN(λ)を、
Figure 0004088283

としたとき、ΔN(λ)が波長λの増加に伴って増加するように、材料の組み合わせと、溝深さの比とを最適に設定するのが効果的である。
このようにすれば、(9)式の分子および分母の波長依存の効果は、互いに相殺し合うので、回折効率の波長依存をより低減した回折光学素子を実現することができる。なお、(9)式は、図1の構成に対して定義した式であるが、n(λ) =0、とすることにより、(11)式が得られるので、上記(12)式に関する説明は、図2の構成に対しても同様に成り立つ。
ところで、実在する光学材料を組み合わせた場合の屈折率差Δn(λ)は、その絶対値が波長λの増加に伴って減少する場合が多い。すなわち、所望の特性とは逆の波長依存性を生じることが多い。これは、実在する光学材料が、高屈折率高分散から低屈折率低分散の方向に多く分布しているためである。このような場合には、図1および図2の構成において、2つの屈折率差の項が互いに打ち消し合うように、溝深さ比αの代数符号を設定することが、所望の特性とは逆の波長依存性が打ち消される点で効果的である。これにより、材料選択の容易さの点で好適な、高屈折率高分散材料と低屈折率低分散材料とを組み合わせた場合でも、所望の特性とは逆の波長依存性が打ち消されるので、回折効率の波長依存性をより低減することができる。
ここで、溝深さ比αの代数符号の違いは、レリーフパターンの凹凸の反転に対応する。すなわち、(10)式で示したαの定義において、αが正となるのは、図3で示すように、第1,第2のレリーフパターンの山と山(谷と谷)とが対応している場合、つまり、2つのレリーフパターンの凹凸が対応している場合である。これとは反対に、αが負となるのは、図8で示すように、第1,第2のレリーフパターンの山と谷(谷と山)とが対応している場合、つまり、2つのレリーフパターンの凹凸が反転して対応している場合である。
なお、図1および図2の構成において、第3の領域13および16は、該領域の接する環境の雰囲気とすることもできる。例えば、通常の使用状態において、環境は空気なので、第3の領域13および16を空気で構成することもできる。この場合には、組み合わせる透明材料との屈折率差を大きくすることができるので、必要なレリーフパターンの溝深さを浅くすることができ、これにより高性能な回折光学素子を実現することができる。
ところで、回折光学素子は、一般に厚型と薄型とに分類されるが、波長幅を有する帯域光で、特に結像光学系に適用する場合は、入射角依存や波長依存が比較的少ない薄型をとすることが好ましい。ここで、回折光学素子の厚さを特長づけるパラメータとしては、
Figure 0004088283

で与えられるQ値がよく知られており、一般に、Q<1のとき、その回折光学素子は薄型に分類される。ただし、(13)式において、λは波長、Tは周期構造のピッチ、Dは周期構造の深さ、nは周期構造の平均屈折率である。したがって、後述するこの発明に係る回折光学素子においても、Q<1を満たすように構成することが好ましい。
(13)式から、回折光学素子の厚さを示すパラメータQは、波長λに依存しているが、使用する波長範囲全般にわたって回折効率の均一性を維持するためには、概ね使用する帯域光の中心波長について、薄型の条件、Q<1が満たされていればよい。したがって、後述するこの発明に係る回折光学素子においても、使用する帯域光の中心波長について、Q<1を満たすように構成するのが好ましい。例えば、この発明に係る回折光学素子を、可視帯域光で使用する光学系に適用する場合には、該中心波長を概ね480nmから550nmの範囲に設定することができる。ただし、パラメータQが波長λに依存していることを考慮し、全波長範囲で薄型の条件、Q<1を満たすことが望ましいのは言うまでもない。
さらに、本発明者による検討によれば、Q<0.1のときのレリーフ格子は、薄型の性質をより良く表すことが確認された。したがって、この発明に係る回折光学素子においても、より好適には、Q<0.1となるように、周期構造を構成するのが望ましい。
ここで、図1に示した構成の回折光学素子における、周期構造の深さDおよび平均屈折率n0 は、
Figure 0004088283

で与えられる。また、図2に示した構成の回折光学素子における、周期構造の深さDおよび平均屈折率nは、
Figure 0004088283

で与えられる。
この発明に係る回折光学素子は、使用する波長範囲が、所定量以上の幅を有する場合に効果が大きい。ここで、任意の波長λで回折効率を最適化した通常のレリーフ格子において、回折効率の変化が無視できる波長変化の幅は、λの±5%程度が目安であるため、この発明に係る回折光学素子は、任意の中心波長λに対して、その±5%以上の波長幅の帯域光を使用する場合に効果的である。
以上、第1,第2および第3の領域が密接した場合を例にとって説明したが、上記の各領域の境界に接着層を設けて、各領域が近接するように構成しても同等の効果を奏することができる。
この発明に係る回折光学素子は、複数の波長、あるいは帯域光で使用する光学装置全般に適用することができる。その中でも、特に、結像光学系を有する光学装置に適用すると効果的である。
図17は、その一適用例を示すもので、この発明に係る回折光学素子を撮像装置、例えば、カメラの撮影レンズに適用した場合の概念図である。図17において、撮像光学系60は、屈折レンズ51と、この発明による回折レンズ41とを有し、物体の像を撮像素子61上に結像するよう構成されている。ここで、この発明による回折レンズ41は、例えば、可視帯域光の全域において、高い回折効率を得ることができるので、カラー映像を撮影した場合のフレアやゴーストの発生を有効に防止することができる。
また、図18は、この発明に係る回折光学素子の他の適用例を示すもので、観察光学系を含む光学装置、例えば、カメラのファインダや顕微鏡の接眼レンズに適用した場合の概念図である。図18において、対物レンズ53は、物体の拡大実像を形成し、屈折レンズ52と、この発明による回折レンズ42とを有する接眼光学系62は、その実像をさらに拡大して観察者の網膜に投影するよう構成されている。この場合も、図17に示した撮像装置の場合と同様の効果を得ることができる。
図3は、この発明の第1実施例を示すものである。この実施例は、透過型の回折レンズを示すもので、第1の領域101としてオハラ製の光学ガラスLaL14(nd=1.6968,νd=55.5)を、第2の領域102として紫外線硬化樹脂(nd=1.52,νd=52)を、第3の領域103としてポリカーボネイト(nd=1.58,νd=30.5)をそれぞれ用い、これらを順次積層する。また、第1の領域101と第2の領域102との境界面、および第2の領域102と第3の領域103との境界面には、等しいピッチ分布を有する第1のレリーフパターン201および第2のレリーフパターン202を、第1のレリーフパターン201の頂部と第2のレリーフパターン202の底部とが接するようにそれぞれ形成する。
第1,第2のレリーフパターン201,202は、所定のレンズ作用を持つように各ピッチ配列を最適化すると共に、各断面を鋸歯波状として、波長λ=550nmで1次回折効率が最大となるようにその溝深さを最適化する。この実施例では、第1のレリーフパターン201の溝深さdを、d=7.90μm、第2のレリーフパターン202の溝深さdを、d=13.74μmとして、上記(10)式で定義したパラメータαを、α≒1.74とする。また、外側に面する2つの端面301および302は、ともに平面として、各端面上に反射防止コートを施す。
図4は、この実施例による回折レンズにおいて、(6)式で与えられるΔnと、(7)式で与えられるΔnとのそれぞれの波長依存特性を、可視波長域について示すものである。図4から明らかなように、LaL14(第1の領域101)と紫外線硬化樹脂(第2の領域102)との屈折率差Δnは、LaL14の屈折率のほうが紫外線硬化樹脂の屈折率よりも大きいので、可視波長帯域で正となり、また、LaL14と紫外線硬化樹脂とのアッベ数νdが比較的近いことから、波長λの増加に伴ってわずかに減少する傾向を示す。これに対して、紫外線硬化樹脂(第2の領域102)とポリカーボネイト(第3の領域103)との屈折率差Δnは、ポリカーボネイトの屈折率のほうが紫外線硬化樹脂の屈折率よりも大きいので、可視波長帯域で負となり、また、波長λの増加に伴って相対的に大きく増加する傾向を示す。
この実施例では、図4のΔnおよびΔnの波長依存特性から明らかなように、αΔnの絶対値が、Δnの大きさを超えないような正の値のαを選んでいるので、(12)式で定義した屈折率差の項N(λ)の波長依存は、波長λの増加に伴って増加することになる。したがって、(9)式の分母に現れるλは、この屈折率差の項N(λ)で良好に相殺され、これにより位相振幅の波長依存が低減され、回折効率の波長依存が低減される。
図5は、この実施例による回折レンズと従来の回折レンズとの位相振幅の波長依存特性を比較して示すものである。図5において、実線はこの実施例による回折レンズの位相振幅の波長依存特性を示す。また、破線は従来の回折レンズの位相振幅の波長依存特性を示したもので、波長λ=510nmで1次回折効率が最大となるように、LaL14の基板にブレーズパターンを形成した場合のものである。図5から明らかなように、αの値を最適化することによって、位相振幅の波長依存が良好に低減されていることがわかる。
図6は、図5に示した位相振幅の波長依存特性に対応する回折効率の波長依存特性を示すもので、実線および破線は、図5の場合と同じものを表す。図6から明らかなように、この実施例による回折レンズによれば、回折効率の波長依存が従来のものと比較してきわめて良好に補正されていることがわかる。
このように、この実施例による回折レンズによれば、可視帯域光の全域において高い回折効率を得ることができるので、可視帯域光を用いる場合のフレアやゴーストの発生を有効に防止できる。したがって、例えば、カメラのような撮像光学系に好適に適用することができる。
なお、図5および図6にみられるように、この実施例では、1次回折効率が100%となるように最適化した波長を、従来例とは違えて設定してある。これは、一般に、最適化波長は、使用する波長範囲において回折効率をバランスさせるように設定するからである。つまり、この実施例の場合と従来例の場合とでは、回折効率の波長依存がバランスする最適波長が異なるからである。例えば、図5においては、従来例の最適化波長は510nmであるが、この実施例では550nmである。
この実施例においては、回折効率の波長依存が、使用する波長帯域の短波長側でより効果的に低減される。したがって、回折効率が最大となるように最適化する波長は、従来の場合と比較してより長波長側に設定することが好ましい。具体的には、使用する波長帯域の中間波長に対し、使用する波長幅の±10%以内の波長範囲に最適化波長を設定するのが望ましい。ここで、使用する波長幅は、例えば、可視帯域光で用いる結像光学系の場合には、400nm〜700nmとするのが普通である。
さらに、この実施例によれば、第2の領域102を紫外線硬化樹脂をもって構成したので、第1,第2のレリーフパターン201,202を、それぞれ第1,第3の領域101,103に別々に形成し、その後、これらを紫外線硬化樹脂を介して貼り合わせるという極めて簡単な工程で、回折効率の波長依存性が低減された回折レンズを製造することができる。したがって、低コストにできるという効果もある。
なお、かかる効果は、第2の領域102を紫外線硬化樹脂をもって構成する場合に最も大きいが、より一般的には、第2の領域102をプラスチック材料をもって構成することにより、同様の効果を得ることができる。
また、第1,第2のレリーフパターン201,202を貼り合わせるにあたっては、第1,第2のレリーフパターン201,202によって発生するモアレ縞を位置合わせに用いることができる。すなわち、モアレ縞が完全に消えるように、第1,第2のレリーフパターン201,202を位置合わせすることにより、それらの対応する部分を対向させることができる。
図7は、第1実施例の変形例を示すものである。この回折レンズは、外側に面する2つの端面303,304のうち、一方の端面303を正の屈折力を有する曲面に、他方の端面304を負の屈折力を有する曲面に形成したもので、その他の構成は第1実施例と同様である。なお、端面303,304には、それぞれ反射防止コートを施す。
かかる回折レンズによれば、回折作用によるパワーと屈折作用によるパワーとの両方のパワーを有するので、全体として大きなパワーを持ったレンズ素子を実現することができる。また、回折作用によるパワーと屈折作用によるパワーとは、波長分散(アッベ数)が逆符号であるので、その波長分散の打ち消し合いにより、色収差が補正されたレンズ素子を実現することができる。特に、図7に示すように、外側に面する端面303,304の屈折力の符号を反転させることにより、2次スペクトルまで補正された色消し単レンズを実現することができる。
図8は、この発明の第2実施例を示すものである。この実施例は、透過型の回折レンズを示すもので、第1の領域104として旭硝子製のフッ素系樹脂サイトップ(nd=1.34149,νd=93.8)を、第2の領域105として紫外線硬化樹脂(nd=1.52,νd=51.8)を、第3の領域106としてポリカーボネイト(nd=1.58,νd=30.5)をそれぞれ用い、これらを順次積層する。また、第1の領域104と第2の領域105との境界面、および第2の領域105と第3の領域106との境界面には、等しいピッチ分布を有する第1のレリーフパターン203および第2のレリーフパターン204を、第1のレリーフパターン203の頂部と第2のレリーフパターン204の底部とが接するようにそれぞれ形成する。
第1,第2のレリーフパターン203,204は、所定のレンズ作用を持つように、各ピッチ配列を最適化すると共に、各断面を鋸歯波状で、凹凸が互いに反転した構造として、波長λ=550nmで1次回折効率が最大となるように、その溝深さを最適化する。したがって、第1のレリーフパターン203の溝深さdと第2のレリーフパターン204の溝深さdとは、互いに逆符号の関係にある。この実施例では、第1のレリーフパターン203の溝深さdを、d=−9.20μm、第2のレリーフパターン204の溝深さdを、d=17.84μmとして、上記(10)式で定義したパラメータαを、α≒−1.94とする。また、外側に面する2つの端面305および306は、ともに平面として、各端面上に反射防止コートを施す。
図9は、この実施例による回折レンズにおいて、(6)式で与えられるΔnと(7)式で与えられるΔnとのそれぞれの波長依存特性を示すものである。図9から明らかなように、サイトップ(第1の領域104)と紫外線硬化樹脂(第2の領域105)との屈折率差Δn、および紫外線硬化樹脂(第2の領域105)とポリカーボネイト(第3の領域106)との屈折率差Δnは、上述した屈折率の大小関係から、ともに可視波長帯域で負の値をとる。また、これら2つの材料の組み合わせは、ともに高屈折率高分散−低屈折率低分散の関係になるので、ΔnおよびΔnは、ともに波長の増加に伴って大きさ(絶対値)が減少する。
この実施例では、αΔnの大きさ(絶対値)が、Δnの大きさ(絶対値)を超えないような負の値のαを選んで設定してあるので、(12)式で定義した屈折率差の項N(λ)の波長依存は、波長λの増加に伴って増加するようになる。したがって、(9)式の分母に現れるλは、この屈折率差の項N(λ)で良好に相殺され、これにより位相振幅の波長依存が低減され、回折効率の波長依存が低減される。
図10は、この実施例による回折レンズと、従来の回折レンズとの回折効率の波長依存特性を比較して示すものである。図10において、実線はこの実施例による回折レンズの場合を、破線はサイトップ製の基板にブレーズパターンを形成した従来の回折レンズ(最適化波長λ=510nm)の場合をそれぞれ示している。図10から明らかなように、この実施例による回折レンズによれば、従来のものと比較して回折効率の波長依存がきわめて良好に補正されていることがわかる。
このように、この実施例によれば、可視帯域光の全域において高い回折効率を得ることができるので、可視帯域光で用いた場合にフレアやゴーストの問題が生じにくく、したがって、例えばカメラのような撮像光学系に好適に適用することができる。また、第1、第3の領域104,106をプラスチック材料をもって構成したので、第1,第2のレリーフパターン203,204を極めて容易に形成することができると共に、特に、第2の領域105を紫外線硬化樹脂をもって構成しているので、第1,第3の領域104,106に形成した第1,第2のレリーフパターン203,204どうしを容易に貼り合わせることができ、これにより、回折効率の波長依存が低減された回折光学素子を容易に製造することができる。
図11は、この発明とともに開発した回折光学素子の第3参考例を示す断面図である。この回折光学素子は、2重焦点の回折レンズで、順次積層した第1,第2,第3の領域101,102,103は、第1実施例におけると同じ材料をもって構成する。すなわち、第1の領域101をオハラ製の光学ガラスLaL14(nd=1.6968,νd=55.5)で、第2の領域102を紫外線硬化樹脂(nd=1.52,νd=52)で、第3の領域103をポリカーボネイト(nd=1.58,νd=30.5)で構成する。また、第1の領域101と第2の領域102との境界面、および第2の領域102と第3の領域103との境界面には、等しいピッチ分布を有する第1のレリーフパターン205および第2のレリーフパターン206を、第1のレリーフパターン205の頂部と第2のレリーフパターン206の底部とが接するようにそれぞれ形成する。
第1,第2のレリーフパターン205,206は、所定のレンズ作用を持つように、各ピッチ配列を最適化すると共に、各断面を凹凸比の等しい矩形状として、波長λ=600nmで±1次回折効率が最大となるように、その溝深さを最適化する。この参考例では、第1のレリーフパターン205の溝深さdを、d=4.02μm、第2のレリーフパターン206の溝深さdを、d=7.03μmとして、上記(10)式で定義したパラメータαを、α≒1.75とする。また、外側に面する2つの端面307および308は、ともに平面として、各端面上に反射防止コートを施す。
この参考例において、±1次回折効率が最大となるときの、上記(9)式に相当する位相振幅は、
Figure 0004088283

で表され、そのときのm次回折効率ηは、
Figure 0004088283

で与えられる。上記(18)式で表される位相振幅は、(9)式で表される位相振幅に、係数1/2が掛かっただけであるので、第1実施例の場合と全く同じ作用で、位相振幅の波長依存を低減することができる。
図12は、この参考例による回折レンズの±1次回折効率の波長依存特性を示すもので、(18)式を(19)式に適用した結果を示すものである。図12において、実線はこの参考例による回折レンズの場合を、破線はLaL14の材料基板に矩形位相格子を形成した従来の回折レンズ(最適化波長λ=510nm)の場合を示す。図12から明らかなように、この参考例によれば、従来のものと比較して回折効率の波長依存が良好に補正されていることがわかる。このように、この参考例によれば、可視帯域光の全域において、回折効率の波長依存を低減できるので、可視帯域光で使用する2重焦点光学系に好適に適用することができる。
図13は、この発明の第3実施例を示すものである。この実施例は、透過型の回折レンズを示すもので、第1の領域107としてアクリル樹脂(nd=1.49,νd=57.7)を、第2の領域108としてポリカーボネイト(nd=1.58,νd=30.5)をそれぞれ用い、これらを順次積層する。また、第3の領域は、該回折レンズが置かれる雰囲気、実用上は空気とする。第1の領域107と第2の領域108との境界面、および第2の領域108と空気との境界面には、等しいピッチ分布を有する第1のレリーフパターン207、および第2のレリーフパターン208を、第1のレリーフパターン207の頂部と第2のレリーフパターン208の底部とが接するようにそれぞれ形成する。
第1,第2のレリーフパターン207,208は、集光作用を持つように、各ピッチ配列を最適化すると共に、各断面を鋸歯波状として、波長λ=550nmで1次回折効率が最大となるように、その溝深さを最適化する。この実施例では、第1のレリーフパターン207の溝深さdを、d=15.16μm、第2のレリーフパターン208の溝深さdを、d=3.34μmとして、上記(10)式で定義したパラメータαを、α≒0.22とする。
この実施例では、第3の領域を、この回折レンズが置かれる雰囲気、実用上は空気として、その屈折率を1としているので、上述した実施例の場合と同様の作用により、回折効率の波長依存を補正することができる。さらに、この実施例では、第3の領域の屈折率が低いので、第2の領域108と第3の領域との屈折率差Δnが十分大きな値となり、第2のレリーフパターン208の溝深さdを比較的浅くすることができる。これにより、回折レンズをより薄型にできるので、レリーフパターンのピッチをより小さくすることができる。
図14は、この実施例による回折レンズと、従来の回折レンズとの回折効率の波長依存特性を比較して示すものである。図14において、実線はこの実施例による回折レンズの場合を、破線はアクリル基板にブレーズパターンを形成した従来の回折レンズ(最適化波長λ=510nm)の場合を示している。図14から明らかなように、この実施例の場合も、従来のものと比較して回折効率の波長依存を極めて良好に補正できることがわかる。
図15は、この発明とともに開発した回折光学素子の第4参考例を示す断面図である。この参考例は、反射型の回折格子を示すもので、第1の領域111として金属アルミ(Al)を、第2の領域112としてポリカーボネイト(nd=1.58,νd=30.5)を、第3の領域113としてアクリル樹脂(nd=1.49,νd=57.7)をそれぞれ用い、これらを順次積層する。また、第1の領域111と第2の領域112との境界面、および第2の領域112と第3の領域113との境界面には、等しいピッチ分布を有する第1のレリーフパターン211および第2のレリーフパターン212を、第1のレリーフパターン211の頂部と第2のレリーフパターン212の底部とが互いの領域に食い込むように、すなわち第1,第2のレリーフパターン211,212の間隔dが負の値となるようにそれぞれ形成する。
第1,第2のレリーフパターン211,212は、各ピッチを一定とすると共に、各断面を鋸歯波状として、波長λ=550nmにおける1次回折効率が最大となるようにその溝深さを最適化する。この参考例では、第1のレリーフパターン211の溝深さdを、d=0.53μm、第2のレリーフパターン212の溝深さdを、d=6.04μmとして、上記(10)式で定義したパラメータαを、α≒11.40とする。
この回折格子においては、第1の領域111が金属アルミよりなる反射材料で構成されているので、入射面311から入射した光は、第1のレリーフパターン211で反射される。したがって、かかる回折格子は、反射型回折格子として機能する。また、この回折格子における回折効率の波長依存については、上述した(11)式で説明することができる。すなわち、(11)式は、ここまで説明してきた透過型回折レンズの位相振幅を表す(9)式において、第1の領域の屈折率をゼロとおいた特別な場合とみなせるので、この参考例の作用も本質的には上述した透過型回折レンズの作用と同じである。
この参考例によれば、αを最適に設定することにより、第2の領域112を構成するポリカーボネイトの屈折率の波長依存を、該ポリカーボネイトと第3の領域113を構成するアクリル樹脂との屈折率差の波長依存により好適に補正することができる。これにより、(11)式で示された位相振幅の波長依存が低減され、さらに、回折効率の波長依存が低減される。
図16は、この参考例による反射型回折格子と、従来の反射型回折格子との回折効率の波長依存特性を比較して示すものである。図16において、実線はこの参考例による反射型回折格子の場合を、破線は従来の反射型ブレーズ格子(最適化波長λ=510nm)の場合を示している。図16から明らかなように、この参考例の場合も、従来のものと比較して回折効率の波長依存を極めて良好に補正できることがわかる。
この発明とともに開発した回折光学素子の第1参考例を示す概念図である。 同じく、第2参考例を示す概念図である。 この発明の第1実施例を示す断面図である。 第1実施例の回折レンズにおける順次の領域間の屈折率差の波長依存特性を示す図である。 第1実施例による回折レンズと従来の回折レンズとの位相振幅の波長依存特性を比較して示す図である。 図5に示した位相振幅の波長依存特性に対応する回折効率の波長依存特性を示す図である。 第1実施例の変形例を示す断面図である。 この発明の第2実施例を示す断面図である。 第2実施例の回折レンズにおける順次の領域間の屈折率差の波長依存特性を示す図である。 第2実施例による回折レンズと従来の回折レンズとの回折効率の波長依存特性を比較して示す図である。 この発明とともに開発した回折光学素子の第3参考例を示す断面図である。 第3参考例の回折レンズにおける±1次回折効率の波長依存特性を示す図である。 この発明の第3実施例を示す断面図である。 第3実施例による回折レンズと従来の回折レンズとの回折効率の波長依存特性を比較して示す図である。 この発明とともに開発した回折光学素子の第4参考例を示す断面図である。 第4参考例による反射型回折格子と従来の反射型回折格子との回折効率の波長依存特性を比較して示す図である。 この発明に係る回折光学素子を用いる光学装置の一例を示す図である。 同じく、他の例を示す図である。 従来の回折光学素子を示す断面図である。 図19に示す従来の回折光学素子における1次回折効率の波長依存特性の一例を示す図である。 図19に示す断面鋸歯波状のレリーフパターンの位相シフト関数φ(x)を示す図である。 本出願人が先に提案した回折光学素子の基本構成を示す断面図である。 図22に示す回折光学素子における2種類の光学材料の屈折率の波長依存特性の一例を示す図である。
符号の説明
11,14,101,104,107,111 第1の領域
12,15,102,105,108,112 第2の領域
13,16,103,106,113 第3の領域
21,23,201,203,205,207,211 第1のレリーフパターン
22,24,202,204,206,208,212 第2のレリーフパターン

Claims (8)

  1. 第1の領域と第2の領域との境界に形成された第1のレリーフパターンと、前記第2の領域と第3の領域との境界に形成された第2のレリーフパターンとを有する回折光学素子であって、
    前記第1、第2および第3の領域は、いずれも使用する波長に対して実質的に透明で、互いに異なる屈折率を有し、
    前記第1および第2のレリーフパターンは、面内に存在する共通の回転対称軸を通る断面形状がそれぞれ鋸歯波状で、前記回転対称軸を中心にして、それぞれ同心円状に交互に連続して形成された複数の第1の傾斜部および複数の第2の傾斜部を有し、
    前記第1の傾斜部は前記第2の傾斜部よりも傾斜が緩やかになっていると共に、前記回転対称軸から外周部に向けて傾斜部の長さが徐々に短くなっており、
    前記第1の傾斜部のうち、最も長い傾斜部の一端が前記回転対称軸と一致していることを特徴とする回折光学素子。
  2. 前記第1および第2のレリーフパターンは、前記回転対称軸を通る断面形状が実質的に同一形状であることを特徴とする請求項1に記載の回折光学素子。
  3. 前記第1、第2および第3の領域をそれぞれ構成する材料の屈折率を、n(λ) 、n(λ) およびn(λ) とし、
    前記第1および第2のレリーフパターンのそれぞれの溝深さを、dおよびd、それらの比を、α=d/dとして、
    Figure 0004088283

    ただし、λ:光の波長
    とするとき、
    Figure 0004088283

    ただし、λ:使用する光の波長域の短波長端の波長
    λ:使用する光の波長域の長波長端の波長
    を満たすことを特徴とする請求項1または2に記載の回折光学素子。
  4. 前記第3の領域側から見て、前記第1の傾斜部は、前記外周部に向かって高さが低くなるように傾斜していることを特徴とする請求項1〜3のいずれか一項に記載の回折光学素子。
  5. 前記第1の領域の前記第1のレリーフパターンを有する面とは反対側の面は、曲率を有することを特徴とする請求項1〜4のいずれか一項に記載の回折光学素子。
  6. 前記第3の領域の前記第2のレリーフパターンを有する面とは反対側の面は、曲率を有することを特徴とする請求項1〜5のいずれか一項に記載の回折光学素子。
  7. 請求項1〜6のいずれか一項に記載の回折光学素子を備える光学系。
  8. 請求項1〜6のいずれか一項に記載の回折光学素子または請求項7に記載の光学系を備える光学装置。
JP2004264086A 1995-08-29 2004-09-10 回折光学素子およびそれを備える光学系並びに光学装置 Expired - Lifetime JP4088283B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264086A JP4088283B2 (ja) 1995-08-29 2004-09-10 回折光学素子およびそれを備える光学系並びに光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22075395 1995-08-29
JP2004264086A JP4088283B2 (ja) 1995-08-29 2004-09-10 回折光学素子およびそれを備える光学系並びに光学装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13864596A Division JP3618464B2 (ja) 1995-08-29 1996-05-31 回折光学素子、およびそれを用いる光学装置

Publications (2)

Publication Number Publication Date
JP2004348165A JP2004348165A (ja) 2004-12-09
JP4088283B2 true JP4088283B2 (ja) 2008-05-21

Family

ID=33542808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264086A Expired - Lifetime JP4088283B2 (ja) 1995-08-29 2004-09-10 回折光学素子およびそれを備える光学系並びに光学装置

Country Status (1)

Country Link
JP (1) JP4088283B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048997A (ja) * 2008-08-21 2010-03-04 Asahi Glass Co Ltd 撮像レンズ
JP2010271590A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 回折光学素子を用いた光学系および装置
JP5059079B2 (ja) 2009-10-21 2012-10-24 キヤノン株式会社 積層型回折光学素子および光学系

Also Published As

Publication number Publication date
JP2004348165A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3618464B2 (ja) 回折光学素子、およびそれを用いる光学装置
JP3472097B2 (ja) 回折光学素子及びそれを用いた光学系
US6157488A (en) Diffractive optical element
JP3717555B2 (ja) 回折光学素子
US6560019B2 (en) Diffractive optical element and optical system having the same
US6781756B1 (en) Diffractive optical element
JP5137432B2 (ja) 密着2層型の回折光学素子とそれを用いた光学系及び光学機器
US5847877A (en) Diffractive optical element
JP4587418B2 (ja) 回折光学素子及び該回折光学素子を有する光学系
JP4336412B2 (ja) 回折光学素子及びそれを用いた光学系
US8693096B2 (en) Diffractive optical element, optical system including the same, and image pickup apparatus
JP3495884B2 (ja) 回折光学素子及びそれを用いた光学系
JP5258204B2 (ja) 回折光学素子とそれを用いた光学系並びに光学機器
JP4006362B2 (ja) 回折光学素子、及びそれを有する光学系
JP3472154B2 (ja) 回折光学素子及びこれを有する光学系
JP3833754B2 (ja) 回折型光学素子を有する電子カメラ
US6930833B2 (en) Diffractive optical element, and optical system and optical apparatus provide with the same
KR20020071752A (ko) 회절광학소자와, 이 회절광학소자를 가진 광학계 및광학장치
JP3618465B2 (ja) 回折光学素子、およびそれを用いる光学装置
JP4088283B2 (ja) 回折光学素子およびそれを備える光学系並びに光学装置
JP3860261B2 (ja) 両面が回折面からなる回折型光学素子
JP2002082214A (ja) 回折光学素子およびそれを用いた光学系
JP5459966B2 (ja) 回折光学素子及びそれを有する光学系並びに光学機器
JP2002071925A (ja) 回折光学素子およびそれを用いた光学系
JP3655697B2 (ja) 測距装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term