JP4087155B2 - Deposition equipment - Google Patents

Deposition equipment Download PDF

Info

Publication number
JP4087155B2
JP4087155B2 JP2002153625A JP2002153625A JP4087155B2 JP 4087155 B2 JP4087155 B2 JP 4087155B2 JP 2002153625 A JP2002153625 A JP 2002153625A JP 2002153625 A JP2002153625 A JP 2002153625A JP 4087155 B2 JP4087155 B2 JP 4087155B2
Authority
JP
Japan
Prior art keywords
base material
substrate
auxiliary electrode
film
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002153625A
Other languages
Japanese (ja)
Other versions
JP2003342727A (en
Inventor
勲 床本
毅士 古塚
淳史 生水出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP2002153625A priority Critical patent/JP4087155B2/en
Publication of JP2003342727A publication Critical patent/JP2003342727A/en
Application granted granted Critical
Publication of JP4087155B2 publication Critical patent/JP4087155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成膜装置および成膜方法に関し、特に、電界を与えて膜形成材料を励起させることにより成膜を行う成膜装置および成膜方法に関する。
【0002】
【従来の技術】
従来の成膜装置のひとつとして、イオンプレーティング装置がある。例えば、高周波電圧、または高周波電圧と直流電圧とを印加して成膜を行うイオンプレーティング装置では、一方の電極として導電性の基材ホルダがチャンバ内に配置されるとともに、薄膜形成材料を充填した蒸発源が基材ホルダと対向するように配置される。そして、この基材ホルダに設けられた開口部に、光学用ガラス基材等の成膜対象たる絶縁性基材が取り付けられる。
【0003】
【発明が解決しようとする課題】
成膜時に高周波電圧を印加すると、基材ホルダに直接接触している基材外周部では、高周波電力の放電によって生じたプラズマによるセルフバイアスが発生する。このプラズマにより、蒸発した薄膜形成材料が励起され、そのセルフバイアスによって加速されて勢いよく基材表面に衝突する。その結果、緻密な膜が形成され、膜の屈折率や密着性等の向上が図られる(これをイオンプレーティング効果と呼ぶ)。
【0004】
一方、基材の中央部では、基材ホルダと接触しておらずかつ基材が絶縁性であるため、ほとんどセルフバイアスが発生しない。このため、薄膜形成材料を勢いよく基材表面に衝突させることができない。それゆえ、基材への密着性が低下するとともに、成膜された薄膜の緻密さが低くなることで、膜内に空隙ができ、屈折率が低下する。また、この空隙に空気中の水分が混入することで、屈折率が変化しやすくなる。このように、基材中央部に対応する薄膜の領域では、イオンプレーティング効果がほとんど得られない。
【0005】
以上のように、基材の外周部と中央部とでは、薄膜形成材料が基材に衝突する際の勢いが異なるため、成膜された薄膜の屈折率や密着性等に部分的なむらが発生してしまい、得られた薄膜の膜質が不均一となる。特に、寸法が大きな基材を用いて成膜する場合や多層膜を成膜する場合には、このような膜質の不均一が生じやすい。例えば、光学用の多層膜フィルタを成膜した場合には、基材の外周部および中央部に対応する各領域で膜質に不均一が生じるため、各領域における透過率等の光学特性が大きく異なることがある。
【0006】
本発明は、上記のような課題を解決するためになされたもので、均一な膜質を有する膜を成膜することが可能な成膜装置および成膜方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明に係る成膜装置は、その内部で電界を用いて基材に成膜を行うためのチャンバと、前記電界を発生させるための電源と、成膜材料を供給するための材料供給源装置と、前記チャンバ内に配置され、開口部を有して前記電源と電気的に接続されている導電性の基材ホルダと、前記開口部に装着された筒状の導電性の基材支持部材と、前記基材ホルダと電気的に接続されている補助電極と、を備え、前記基材支持部材の内部に絶縁性の基材が嵌め込まれ、前記補助電極が、前記基材を含めて前記基材支持部材を、前記基材の成膜面と反対の裏面側から覆うように構成されている(請求項1)。
【0008】
かかる構成によれば、補助電極を基材の成膜面と反対側の面に配置することにより、電界を与えた際に、基材外周部だけでなく基材中央部においても十分なセルフバイアスを発生させることが可能となる。このため、基材の外周部および中央部において、均一かつ十分な勢いで膜形成材料を基材に衝突させることが可能となり、よって、均一かつ良好な膜質を有する膜を成膜することが可能となる。
【0009】
記補助電極がメッシュ状であってもよい(請求項)。
【0010】
補助電極がメッシュ状である場合には、基材を加熱した際に、メッシュの間で露出した基材に効率よく熱が伝えられる。このため、補助電極により基材の昇温が妨げられるのを抑制して、効率よく基材の加熱を行うことが可能となる。
【0011】
前記基材ホルダが複数の前記開口部を有するとともに前記開口部にそれぞれ前記基材支持部材および前記基材が装着され、個々の前記基材に対応して複数の前記補助電極が配置されてもよく(請求項)、また、前記基材ホルダが複数の前記開口部を有するとともに前記開口部にそれぞれ前記基材支持部材および前記基材が装着され、前記複数の基材の前記成膜面と反対側の面を覆う共通の前記補助電極が配置されてもよい(請求項)。
【0012】
複数の基材に共通な補助電極が配置される場合には、個々の基材に個別に補助電極を配置する必要がないため、容易に補助電極を配置することが可能となるとともに、装置の部品数が減るので装置コストの低減化を図ることが可能となる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。ここでは、本発明に係る成膜装置として、イオンプレーティング装置について説明する。
(実施の形態1)
図1は本発明の実施の形態1に係るイオンプレーティング装置の構造を示す模式図である。
【0021】
図1に示すように、イオンプレーティング装置は、導電性部材からなる真空チャンバ1内に、成膜材料を供給するための材料供給源装置、すなわち薄膜形成材料を蒸発させる蒸発源2が配設され、この蒸発源2に対向するように導電性の部材からなるドーム状の基材ホルダ3が配置されている。この基材ホルダ3には、後述するように、成膜対象たる例えば円板状の基材4が取り付けられる。基材ホルダ3の背面中央部には、導電性の部材からなる回転軸5が真空チャンバ1の壁部を貫通して外部に延びるように配設されている。回転軸5は、軸受けにより回転可能に支持されている。回転軸5のチャンバ壁部貫通部分から先端に至る部分(以下、突出部と呼ぶ)は、回転駆動部たるモータ6に接続されている。
【0022】
回転軸5の突出部の所定部分には、回転軸5と直接接するようにブラシ(図示せず)が設けられている。ブラシは、ケーブルを通じて、高周波電源(RF)7に接続されるとともに、直流電源(DC)8に接続されている。この高周波電源7、直流電源8および真空チャンバ1は、それぞれ接地されている。
【0023】
基材ホルダ3には、大きさの等しい複数の円形の開口部が設けられており、この開口部に基材4が取り付けられる。開口部の配列は特に限定されるものではないが、例えばここでは、回転軸5を中心とする同心円上に等間隔で開口部が配置され、その開口部にそれぞれ基材4が取り付けられる。このような基材ホルダ3は、アルミニウム、SUS等の導電性材料から構成される。
【0024】
図2は、図1の基材ホルダの詳細な構造を示す模式的な断面図であり、ここでは、複数の開口部のうちの1つを例示している。
【0025】
図2に示すように、基材ホルダ3の開口部3aには、基材4を基材ホルダ3に取り付けるための基材支持部材9が嵌め込まれる。基材支持部材9は、アルミニウム、SUS、真鍮等の導電性材料から構成され、以下のような構造を有する。
【0026】
基材支持部材9の本体は円筒形であり、下端部に内方に突出する爪9Aを有するとともに上端部に鍔部9Bを有する。鍔部9Bの下面が基材ホルダ3の開口部3aの周縁部上面に当接することにより基材支持部材9が基材ホルダ3に支持され、開口部に基材支持部材9が嵌合される。
【0027】
開口部3aに取り付けられた基材支持部材9の内部に、爪9Aにより支持されるように基材4が嵌め込まれて収容される。基材4は、本実施の形態では、絶縁性材料から構成され、円板状である。基材支持部材9内に嵌め込まれた基材4では、基材ホルダ3のドーム内部側の面が成膜面となる。
【0028】
そして、基材4の前記成膜面と反対側の面(以下、これを裏面と呼ぶ)は、上方に配置された補助電極10Aにより完全に覆われる。補助電極10Aは、収容された基材4も含め基材支持部材9全体を裏面側から覆い、かつ、基材ホルダ3の開口部3aの周縁部を覆うように配置される。このような補助電極10Aは、基材ホルダ9の開口部3a周縁と直接接触することにより、基材ホルダ3と電気的に接続される。補助電極10Aは、電極材料として利用可能な材料、例えばアルミニウム、SUS等から構成される。例えば、アルミホイルにより補助電極10Aを形成してもよい。
【0029】
次に、以上のように構成されたイオンプレーティング装置の動作を説明する。
【0030】
図1および図2において、基材4を配置した基材支持部材9を基材ホルダ3の開口部3aに装着し、モータ6を駆動させる。すると、回転軸5およびその一端に取り付けられた基材ホルダ3が回転する。一方、高周波電源7および直流電源8を動作させる。すると、高周波電圧および直流電圧がケーブルを介してブラシ(図示せず)に与えられ、さらに、ブラシに接触している回転軸5に与えられる。それにより、基材ホルダ3と真空チャンバ1との間に高周波電圧および直流電圧が与えられる。
【0031】
次いで、蒸発源2に充填した薄膜形成材料を蒸発させる。すると、蒸発した薄膜形成材料が高周波電圧により発生したプラズマにより励起され、この励起された薄膜形成材料が、セルフバイアスおよび直流電界により加速され、基材4の表面に衝突して付着する。それにより、基材4の表面に薄膜が形成される。
【0032】
この際、基材4の裏面には基材ホルダ3と電気的に接続される補助電極10Aが設けられているため、基材ホルダ3を通じて高周波電圧が補助電極10Aに与えられる。基材4の裏面全体は補助電極10Aにより覆われているため、絶縁性の基材4であっても、導電性の基材支持部材9と接触している外周部だけでなく、基材中央部でも十分なセルフバイアスが発生する。それにより、薄膜形成材料が基材4の表面に衝突する際の勢いが、基材4の外周部と中央部とでほぼ均一となる。このため、基材4の表面に形成された薄膜では、基材4の外周部および中央部に対応する領域において、屈折率や密着性等の膜質の均一化が図られるとともに、セルフバイアスにより勢いよく薄膜形成材料を基材4に衝突させることができるため、緻密な膜が形成されて屈折率や密着性等の膜質の向上、すなわち十分なイオンプレーティング効果が得られる。
【0033】
以上のような本実施の形態における効果は、薄膜を多数積層してなる光学用の多層フィルタや、直径の大きな基材を用いて成膜を行う場合において、特に有効である。
(実施の形態2)
本実施の形態に係るイオンプレーティング装置は、実施の形態1の装置と同様の構成を有するが、以下の点が実施の形態1の装置と異なっている。
【0034】
図3は、本実施の形態のイオンプレーティング装置に用いられる基材ホルダの構造を示す模式的な上面図である。
【0035】
図3に示すように、本実施の形態では、補助電極10Bがメッシュ状になっており、メッシュの間で基材4の裏面が露出している。このような構成によれば、成膜時にヒータにより基材4の加熱を行った際に、ヒータの熱をメッシュの間から基材4の裏面に効率よく伝えることができるため、補助電極10Bにより基材4の昇温が妨げられるのを抑制することができる。このため、効率よく基材4の加熱を行うことが可能となる。
(実施の形態3)
本実施の形態に係るイオンプレーティング装置は、実施の形態1の装置と同様の構成を有するが、以下の点が実施の形態1の装置と異なっている。
【0036】
図4は、本実施の形態のイオンプレーティング装置に用いられる基材ホルダの構造を示す模式的な断面図である。なお、実施の形態1の図2においては、基材ホルダ3に設けられた複数の開口部3aのうちの1つを例示したが、図4においては、複数の開口部およびそこに取り付けられる各基材4について示している。
【0037】
図4に示すように、本実施の形態では、実施の形態1の場合のように基材ホルダ3の各開口部3aに配置される個々の基材4ごとに補助電極10Aが設けられるのではなく、複数の基材4に共通な補助電極10Cが、基材ホルダ3のドーム外面全体を覆うように設けられている。この補助電極10Cは、導電性材料から構成される複数のスペーサ11により、基材ホルダ3と電気的に接続される。このような構成によれば、複数の基材4に対して個々に補助電極を配置する必要がないため、容易に補助電極10Cを配置することが可能となる。また、装置の部品数が減るため、装置コストの低減化を図ることが可能となる。
(実施の形態4)
本実施の形態に係るイオンプレーティング装置は、実施の形態3の装置と同様の構成を有するが、補助電極がメッシュ状である点が実施の形態3の装置と異なっている。このような構成によれば、実施の形態3と同様の効果が得られるとともに、効率よく基材の加熱を行うことが可能となるいう実施の形態2と同様の効果が得られる。
(実施の形態5)
本実施の形態に係るイオンプレーティング装置は、実施の形態1の装置と同様の構成を有するが、以下の点が実施の形態1の装置と異なっている。
【0038】
図5は、本実施の形態のイオンプレーティング装置に用いられる基材ホルダの構造を示す模式的な断面図である。ここでは、図2の場合と同様、基材ホルダの開口部の1つを例示している。
【0039】
図5に示すように、本実施の形態では、補助電極10Dが、実施の形態1における基材支持部材9としての機能も果たしている。すなわち、補助電極と基材支持部材とが一体化した構成を有する。補助電極10Dは、基材4の裏面および基材ホルダ3の開口部周縁を覆う電極本体部10aと、電極本体部10aから基材ホルダ3内部に延びて端部に設けられた爪により基材4を支持する支持部10bとから構成される。支持部10bが基材ホルダ3の開口部に嵌め込まれるとともに、電極本体部10aの外周部下面が基材ホルダ3の外面と当接することにより補助電極10Dが支持される。
【0040】
このような構成によれば、基材支持部材が不要となるため、装置の部品数を減らすことが可能となる。したがって、装置コストの低減化を図ることが可能となる。なお、本実施の形態において、補助電極10Dは、基材4の裏面を完全に覆ってもよく、あるいは、メッシュ状であってもよい。
【0041】
上記の実施の形態1〜5においては、ドーム型形状を有し複数の円形の開口部を有する基材ホルダを用いる場合について説明したが、基材ホルダの形状はこれに限定されるものではなく、また、開口部の数および形状は特に限定されるものではない。
【0042】
また、上記の実施の形態1〜5においては、高周波電界と直流電界とを与えて成膜を行っているが、高周波電界のみを与えて成膜を行う場合においても本発明は適用可能である。
【0043】
上記の実施の形態1〜5においては、本発明をイオンプレーティング装置に適用する場合について説明したが、本発明に係る成膜装置はこれに限定されるものではなく、高周波電界、または高周波電界と直流電界とを与えて成膜を行う成膜装置、例えばスパッタ成膜装置やCVD(Chemical Vapor Deposition)等においても適用可能である。
【0044】
【発明の効果】
本発明は、以上に説明したような形態で実施され、以下のような効果を奏する。
(1)補助電極を基材の裏面に配置することにより、基材中央部においても十分なセルフバイアスを発生させることが可能となるため、成膜時において、基材の周辺部および中央部における薄膜形成材料の衝突の勢いがほぼ均一となる。それにより、成膜された薄膜において、基材の周辺部および中央部に対応する領域の膜質の均一化を図ることが可能となるとともに、膜質の向上を図ることが可能となる。
(2)補助電極がメッシュ状であるとすると、基材を加熱した際に、メッシュの間で露出した基材に効率よく熱が伝えられる。このため、補助電極により基材の昇温が妨げられるのを抑制して、効率よく基材の加熱を行うことが可能となる。
(3)基材ホルダが複数の開口部を有するとともに開口部にそれぞれ基材が装着され、複数の基材の成膜面と反対側の面を覆う共通の補助電極が配置されるとすると、個々の基材に個別に補助電極を配置する必要がないため、容易に補助電極を配置することが可能となるとともに、装置の部品数が減るので装置コストの低減化を図ることが可能となる。
(4)基材は基材支持部材を介して基材ホルダの開口部に装着され、補助電極が支持部材を兼ねるとすると、基材支持部材を別に設ける必要がないため部品点数を減らすことが可能となり、よって、装置コストの低減化を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係るイオンプレーティング装置の構造を示す模式図である。
【図2】図1の基材ホルダの構造を模式的に示す断面図である。
【図3】実施の形態2に係るイオンプレーティング装置に用いられる補助電極の構造を示す模式的な上面図である。
【図4】実施の形態3に係るイオンプレーティング装置に用いられる補助電極の構造を示す模式的な断面図である。
【図5】実施の形態5に係るイオンプレーティング装置に用いられる補助電極の構造を示す模式的な断面図である。
【符号の説明】
1 真空チャンバ
2 蒸発源
3 基材ホルダ
4 基材
5 回転軸
6 モータ
7 高周波電源
8 直流電源
9 基材支持部材
10A〜10D 補助電極
11 スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming apparatus and a film forming method, and more particularly to a film forming apparatus and a film forming method for forming a film by applying an electric field to excite a film forming material.
[0002]
[Prior art]
One conventional film deposition apparatus is an ion plating apparatus. For example, in an ion plating apparatus that forms a film by applying a high-frequency voltage or a high-frequency voltage and a direct-current voltage, a conductive substrate holder is placed in the chamber as one electrode and filled with a thin film forming material. The evaporated source is arranged to face the substrate holder. And the insulating base material which is film-forming objects, such as an optical glass base material, is attached to the opening part provided in this base material holder.
[0003]
[Problems to be solved by the invention]
When a high-frequency voltage is applied during film formation, self-bias due to plasma generated by the discharge of the high-frequency power is generated in the outer peripheral portion of the substrate that is in direct contact with the substrate holder. The evaporated thin film forming material is excited by this plasma, accelerated by the self-bias, and vigorously collides with the substrate surface. As a result, a dense film is formed, and the refractive index and adhesion of the film are improved (this is called an ion plating effect).
[0004]
On the other hand, in the central part of the base material, since it is not in contact with the base material holder and the base material is insulative, almost no self-bias is generated. For this reason, the thin film forming material cannot be vigorously collided with the substrate surface. Therefore, the adhesiveness to the substrate is lowered, and the denseness of the formed thin film is lowered, so that voids are formed in the film and the refractive index is lowered. In addition, since the moisture in the air is mixed into the gap, the refractive index is likely to change. Thus, the ion plating effect is hardly obtained in the thin film region corresponding to the central portion of the substrate.
[0005]
As described above, since the moment when the thin film forming material collides with the base material is different between the outer peripheral portion and the central portion of the base material, there is partial unevenness in the refractive index, adhesion, etc. of the formed thin film. It will occur and the film quality of the resulting thin film will be non-uniform. In particular, when the film is formed using a base material having a large size or when a multilayer film is formed, such non-uniform film quality is likely to occur. For example, when an optical multilayer filter is formed, the film quality is uneven in each region corresponding to the outer peripheral portion and the central portion of the base material, so that optical characteristics such as transmittance in each region are greatly different. Sometimes.
[0006]
SUMMARY An advantage of some aspects of the invention is to provide a film forming apparatus and a film forming method capable of forming a film having a uniform film quality.
[0007]
[Means for Solving the Problems]
A film forming apparatus according to the present invention includes a chamber for forming a film on a substrate using an electric field therein, a power source for generating the electric field, and a material supply source apparatus for supplying a film forming material. When the disposed in the chamber, a conductive substrate holder which is connected the with a power source electrically to have a opening, mounted in the opening cylindrical conductive substrate supporting member And an auxiliary electrode electrically connected to the base material holder, an insulating base material is fitted inside the base material support member, and the auxiliary electrode includes the base material and includes the base material. The substrate support member is configured to cover from the back surface side opposite to the film formation surface of the substrate (Claim 1).
[0008]
According to such a configuration, by arranging the auxiliary electrode on the surface opposite to the film formation surface of the substrate, sufficient self-bias is applied not only at the outer periphery of the substrate but also at the center of the substrate when an electric field is applied. Can be generated. For this reason, it becomes possible to make the film-forming material collide with the base material with uniform and sufficient momentum at the outer peripheral part and the central part of the base material, and thus it is possible to form a film having a uniform and good film quality. It becomes.
[0009]
Before SL auxiliary electrode may be a mesh-like (claim 2).
[0010]
When the auxiliary electrode has a mesh shape, when the substrate is heated, heat is efficiently transferred to the substrate exposed between the meshes. For this reason, it is possible to efficiently heat the base material while preventing the auxiliary electrode from hindering the temperature rise of the base material.
[0011]
The substrate holder has a plurality of the openings, and the substrate support member and the substrate are respectively attached to the openings, and the plurality of auxiliary electrodes are arranged corresponding to the individual substrates. Well (Claim 3 ), the substrate holder has a plurality of the openings, and the substrate support member and the substrate are respectively mounted in the openings, and the film formation surfaces of the plurality of substrates The common auxiliary electrode that covers the surface opposite to the surface may be arranged (claim 4 ).
[0012]
In the case where auxiliary electrodes common to a plurality of substrates are arranged, it is not necessary to individually arrange auxiliary electrodes on each substrate, so that it is possible to easily arrange auxiliary electrodes and Since the number of parts is reduced, the apparatus cost can be reduced.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. Here, an ion plating apparatus will be described as a film forming apparatus according to the present invention.
(Embodiment 1)
FIG. 1 is a schematic diagram showing the structure of an ion plating apparatus according to Embodiment 1 of the present invention.
[0021]
As shown in FIG. 1, in an ion plating apparatus, a material supply source apparatus for supplying a film forming material, that is, an evaporation source 2 for evaporating a thin film forming material is disposed in a vacuum chamber 1 made of a conductive member. A dome-shaped substrate holder 3 made of a conductive member is disposed so as to face the evaporation source 2. As will be described later, for example, a disk-shaped substrate 4 that is a film formation target is attached to the substrate holder 3. A rotating shaft 5 made of a conductive member is disposed at the center of the back surface of the substrate holder 3 so as to penetrate the wall of the vacuum chamber 1 and extend to the outside. The rotating shaft 5 is rotatably supported by a bearing. A portion (hereinafter referred to as a protruding portion) from the chamber wall portion penetrating portion of the rotating shaft 5 to the tip is connected to a motor 6 serving as a rotation driving portion.
[0022]
A brush (not shown) is provided at a predetermined portion of the protruding portion of the rotating shaft 5 so as to be in direct contact with the rotating shaft 5. The brush is connected to a high frequency power source (RF) 7 and a direct current power source (DC) 8 through a cable. The high-frequency power source 7, the DC power source 8, and the vacuum chamber 1 are grounded.
[0023]
The base material holder 3 is provided with a plurality of circular openings having the same size, and the base material 4 is attached to the openings. The arrangement of the openings is not particularly limited, but here, for example, the openings are arranged at equal intervals on a concentric circle with the rotation axis 5 as the center, and the base material 4 is attached to each of the openings. Such a base material holder 3 is comprised from electroconductive materials, such as aluminum and SUS.
[0024]
FIG. 2 is a schematic cross-sectional view showing a detailed structure of the substrate holder of FIG. 1, and here, one of a plurality of openings is illustrated.
[0025]
As shown in FIG. 2, a base material support member 9 for attaching the base material 4 to the base material holder 3 is fitted into the opening 3 a of the base material holder 3. The substrate support member 9 is made of a conductive material such as aluminum, SUS, or brass, and has the following structure.
[0026]
The main body of the base material supporting member 9 has a cylindrical shape, and has a claw 9A protruding inward at the lower end portion and a flange portion 9B at the upper end portion. The base material support member 9 is supported by the base material holder 3 by the lower surface of the flange portion 9B coming into contact with the peripheral surface of the opening 3a of the base material holder 3, and the base material support member 9 is fitted into the opening. .
[0027]
The base material 4 is fitted and accommodated inside the base material support member 9 attached to the opening 3a so as to be supported by the claws 9A. In the present embodiment, the substrate 4 is made of an insulating material and has a disk shape. In the base material 4 fitted in the base material support member 9, the surface on the inner side of the dome of the base material holder 3 becomes a film formation surface.
[0028]
The surface of the substrate 4 opposite to the film formation surface (hereinafter referred to as the back surface) is completely covered by the auxiliary electrode 10A disposed above. 10 A of auxiliary electrodes are arrange | positioned so that the base-material support member 9 whole including the accommodated base material 4 may be covered from a back surface side, and the peripheral part of the opening part 3a of the base-material holder 3 may be covered. Such an auxiliary electrode 10 </ b> A is electrically connected to the substrate holder 3 by directly contacting the periphery of the opening 3 a of the substrate holder 9. The auxiliary electrode 10A is made of a material that can be used as an electrode material, such as aluminum or SUS. For example, the auxiliary electrode 10A may be formed of aluminum foil.
[0029]
Next, the operation of the ion plating apparatus configured as described above will be described.
[0030]
1 and 2, the base material supporting member 9 on which the base material 4 is arranged is mounted on the opening 3 a of the base material holder 3, and the motor 6 is driven. Then, the rotating shaft 5 and the substrate holder 3 attached to one end thereof rotate. On the other hand, the high frequency power supply 7 and the DC power supply 8 are operated. Then, a high frequency voltage and a direct current voltage are applied to the brush (not shown) via the cable, and further applied to the rotating shaft 5 in contact with the brush. Thereby, a high-frequency voltage and a DC voltage are applied between the substrate holder 3 and the vacuum chamber 1.
[0031]
Next, the thin film forming material filled in the evaporation source 2 is evaporated. Then, the evaporated thin film forming material is excited by the plasma generated by the high frequency voltage, and this excited thin film forming material is accelerated by the self-bias and the direct current electric field, and collides with and adheres to the surface of the substrate 4. Thereby, a thin film is formed on the surface of the substrate 4.
[0032]
At this time, since the auxiliary electrode 10 </ b> A that is electrically connected to the substrate holder 3 is provided on the back surface of the substrate 4, a high-frequency voltage is applied to the auxiliary electrode 10 </ b> A through the substrate holder 3. Since the entire back surface of the base material 4 is covered with the auxiliary electrode 10A, not only the outer peripheral portion in contact with the conductive base material support member 9 but also the center of the base material, even the insulating base material 4 Sufficient self-bias is generated even in the area. Thereby, the momentum when the thin film forming material collides with the surface of the substrate 4 becomes substantially uniform between the outer peripheral portion and the central portion of the substrate 4. For this reason, in the thin film formed on the surface of the base material 4, the film quality such as the refractive index and the adhesiveness is made uniform in the regions corresponding to the outer peripheral portion and the central portion of the base material 4, and the self-bias provides momentum. Since the thin film forming material can be made to collide with the base material 4 well, a dense film is formed, and the film quality such as refractive index and adhesion is improved, that is, sufficient ion plating effect is obtained.
[0033]
The effects in the present embodiment as described above are particularly effective when a film is formed using an optical multilayer filter in which a large number of thin films are laminated or a substrate having a large diameter.
(Embodiment 2)
The ion plating apparatus according to the present embodiment has the same configuration as that of the apparatus of the first embodiment, but differs from the apparatus of the first embodiment in the following points.
[0034]
FIG. 3 is a schematic top view showing the structure of the substrate holder used in the ion plating apparatus of the present embodiment.
[0035]
As shown in FIG. 3, in the present embodiment, the auxiliary electrode 10B has a mesh shape, and the back surface of the substrate 4 is exposed between the meshes. According to such a configuration, when the substrate 4 is heated by the heater at the time of film formation, the heat of the heater can be efficiently transmitted from between the meshes to the back surface of the substrate 4. It can suppress that the temperature rising of the base material 4 is prevented. For this reason, it becomes possible to heat the base material 4 efficiently.
(Embodiment 3)
The ion plating apparatus according to the present embodiment has the same configuration as that of the apparatus of the first embodiment, but differs from the apparatus of the first embodiment in the following points.
[0036]
FIG. 4 is a schematic cross-sectional view showing the structure of the substrate holder used in the ion plating apparatus of the present embodiment. In FIG. 2 of the first embodiment, one of the plurality of openings 3a provided in the base material holder 3 is illustrated. However, in FIG. 4, the plurality of openings and each of the openings attached thereto. The substrate 4 is shown.
[0037]
As shown in FIG. 4, in the present embodiment, the auxiliary electrode 10 </ b> A is not provided for each individual base material 4 arranged in each opening 3 a of the base material holder 3 as in the first embodiment. The auxiliary electrode 10 </ b> C common to the plurality of base materials 4 is provided so as to cover the entire dome outer surface of the base material holder 3. The auxiliary electrode 10C is electrically connected to the substrate holder 3 by a plurality of spacers 11 made of a conductive material. According to such a configuration, it is not necessary to individually arrange the auxiliary electrodes with respect to the plurality of base materials 4, and thus the auxiliary electrodes 10C can be easily arranged. In addition, since the number of parts of the apparatus is reduced, it is possible to reduce the apparatus cost.
(Embodiment 4)
The ion plating apparatus according to the present embodiment has the same configuration as that of the apparatus of the third embodiment, but differs from the apparatus of the third embodiment in that the auxiliary electrode has a mesh shape. According to such a configuration, the same effect as that of the third embodiment can be obtained, and the same effect as that of the second embodiment that enables the base material to be efficiently heated can be obtained.
(Embodiment 5)
The ion plating apparatus according to the present embodiment has the same configuration as that of the apparatus of the first embodiment, but differs from the apparatus of the first embodiment in the following points.
[0038]
FIG. 5 is a schematic cross-sectional view showing the structure of the substrate holder used in the ion plating apparatus of the present embodiment. Here, as in the case of FIG. 2, one of the openings of the substrate holder is illustrated.
[0039]
As shown in FIG. 5, in the present embodiment, the auxiliary electrode 10 </ b> D also functions as the base material support member 9 in the first embodiment. That is, the auxiliary electrode and the substrate support member are integrated. The auxiliary electrode 10D is formed of an electrode body 10a that covers the back surface of the substrate 4 and the periphery of the opening of the substrate holder 3, and nails that extend from the electrode body 10a into the substrate holder 3 and are provided at the ends. 4 and a support portion 10b for supporting the The support portion 10 b is fitted into the opening of the base material holder 3, and the auxiliary electrode 10 </ b> D is supported by the lower surface of the outer periphery of the electrode main body portion 10 a coming into contact with the outer surface of the base material holder 3.
[0040]
According to such a configuration, since the base material supporting member is not necessary, the number of parts of the apparatus can be reduced. Therefore, it is possible to reduce the apparatus cost. In the present embodiment, the auxiliary electrode 10D may completely cover the back surface of the substrate 4 or may have a mesh shape.
[0041]
In the above first to fifth embodiments, the case of using a base material holder having a dome shape and having a plurality of circular openings has been described, but the shape of the base material holder is not limited to this. Further, the number and shape of the openings are not particularly limited.
[0042]
In the first to fifth embodiments, film formation is performed by applying a high-frequency electric field and a direct current electric field. However, the present invention can be applied even when film formation is performed by applying only a high-frequency electric field. .
[0043]
In the above first to fifth embodiments, the case where the present invention is applied to an ion plating apparatus has been described. However, the film forming apparatus according to the present invention is not limited to this, and a high-frequency electric field or a high-frequency electric field is used. And a direct current electric field to form a film, for example, a sputtering film forming apparatus or a CVD (Chemical Vapor Deposition).
[0044]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
(1) By arranging the auxiliary electrode on the back surface of the base material, it becomes possible to generate a sufficient self-bias even in the central part of the base material. The momentum of impact of the thin film forming material becomes substantially uniform. Thereby, in the formed thin film, it is possible to make the film quality uniform in the region corresponding to the peripheral part and the central part of the base material, and to improve the film quality.
(2) Assuming that the auxiliary electrode has a mesh shape, when the substrate is heated, heat is efficiently transferred to the substrate exposed between the meshes. For this reason, it is possible to efficiently heat the base material while preventing the auxiliary electrode from hindering the temperature rise of the base material.
(3) When the base material holder has a plurality of openings and a base material is attached to each of the openings, and a common auxiliary electrode that covers the surface opposite to the film formation surface of the plurality of base materials is disposed, Since it is not necessary to separately arrange auxiliary electrodes on individual substrates, it is possible to easily arrange auxiliary electrodes, and it is possible to reduce the cost of the apparatus because the number of parts of the apparatus is reduced. .
(4) If the base material is attached to the opening of the base material holder via the base material support member, and the auxiliary electrode also serves as the support member, the number of parts can be reduced because there is no need to provide a separate base material support member. Therefore, the apparatus cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the structure of an ion plating apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view schematically showing the structure of the base material holder of FIG.
3 is a schematic top view showing the structure of an auxiliary electrode used in the ion plating apparatus according to Embodiment 2. FIG.
4 is a schematic cross-sectional view showing the structure of an auxiliary electrode used in the ion plating apparatus according to Embodiment 3. FIG.
5 is a schematic cross-sectional view showing the structure of an auxiliary electrode used in the ion plating apparatus according to Embodiment 5. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation source 3 Base material holder 4 Base material 5 Rotating shaft 6 Motor 7 High frequency power supply 8 DC power supply 9 Base material supporting member 10A-10D Auxiliary electrode 11 Spacer

Claims (4)

その内部で電界を用いて基材に成膜を行うためのチャンバと、
前記電界を発生させるための電源と、
成膜材料を供給するための材料供給源装置と、
前記チャンバ内に配置され、開口部を有して前記電源と電気的に接続されている導電性の基材ホルダと、
前記開口部に装着された筒状の導電性の基材支持部材と、
前記基材ホルダと電気的に接続されている補助電極と、を備え、
前記基材支持部材の内部に絶縁性の基材が嵌め込まれ、前記補助電極が、前記基材を含めて前記基材支持部材を、前記基材の成膜面と反対の裏面側から覆うように構成されている成膜装置。
A chamber for forming a film on the substrate using an electric field therein;
A power source for generating the electric field;
A material supply source device for supplying a film forming material;
Disposed in said chamber, an electrically conductive substrate holder which possess an opening is connected the with a power source electrically,
A cylindrical conductive base material support member mounted in the opening;
An auxiliary electrode electrically connected to the substrate holder,
An insulating base material is fitted into the base material support member, and the auxiliary electrode covers the base material support member including the base material from the back side opposite to the film formation surface of the base material. The film-forming apparatus comprised in this .
前記補助電極がメッシュ状である請求項1記載の成膜装置。  The film forming apparatus according to claim 1, wherein the auxiliary electrode has a mesh shape. 前記基材ホルダが複数の前記開口部を有するとともに前記開口部にそれぞれ前記基材支持部材および前記基材が装着され、個々の前記基材に対応して複数の前記補助電極が配置される請求項1記載の成膜装置。The substrate holder has a plurality of openings, and the substrate support member and the substrate are respectively attached to the openings, and the plurality of auxiliary electrodes are arranged corresponding to the respective substrates. Item 2. The film forming apparatus according to Item 1. 前記基材ホルダが複数の前記開口部を有するとともに前記開口部にそれぞれ前記基材支持部材および前記基材が装着され、前記複数の基材の前記裏面側を覆う共通の前記補助電極が配置される請求項1記載の成膜装置。The substrate holder has a plurality of openings, the substrate support member and the substrate are mounted in the openings, respectively, and the common auxiliary electrode that covers the back side of the plurality of substrates is disposed. The film forming apparatus according to claim 1.
JP2002153625A 2002-05-28 2002-05-28 Deposition equipment Expired - Fee Related JP4087155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153625A JP4087155B2 (en) 2002-05-28 2002-05-28 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153625A JP4087155B2 (en) 2002-05-28 2002-05-28 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2003342727A JP2003342727A (en) 2003-12-03
JP4087155B2 true JP4087155B2 (en) 2008-05-21

Family

ID=29770618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153625A Expired - Fee Related JP4087155B2 (en) 2002-05-28 2002-05-28 Deposition equipment

Country Status (1)

Country Link
JP (1) JP4087155B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253300A (en) * 2012-06-08 2013-12-19 Toshiba Corp Film forming method to insulator and high voltage equipment with formed film
CN112877648B (en) * 2021-01-14 2022-07-26 北方夜视技术股份有限公司 Micropore optical element input enhancement film coating tool

Also Published As

Publication number Publication date
JP2003342727A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP5421387B2 (en) Chamber shield for vacuum physical vapor deposition
WO2013005435A1 (en) Vacuum film formation device
JP2010500470A (en) ECR plasma source
JP2012512325A (en) Molded anode and anode-shield connection for vacuum physical vapor deposition
JP2011179120A (en) Apparatus and method of physical vapor deposition with multi-point clamp
CN103140601A (en) Apparatus for forming dielectric thin film and method for forming thin film
KR100509666B1 (en) Device for vaccum coating of bulk material
JP2012518722A (en) Physical vapor deposition with an impedance matching network.
US4269137A (en) Pretreatment of substrates prior to thin film deposition
TW201009101A (en) Bias sputtering apparatus
JP4087155B2 (en) Deposition equipment
JPH09235668A (en) Device for coating substrate by cathode sputtering using hollow target
JP2009120925A (en) Sputtering system
JP2005076095A (en) Thin film deposition system and thin film deposition method
US4938859A (en) Ion bombardment device with high frequency
JP4451571B2 (en) Vacuum deposition system
JP3283797B2 (en) Sputtering apparatus and sputtering processing method
US5859500A (en) Metal ion plasma generator having rotatable anode plate
KR20050046170A (en) Sputtering apparatus
KR20070074020A (en) Apparatus for sputter deposition and method of sputter deposition using the same
JP2004076160A (en) Shielding apparatus
JP2002226968A (en) Vacuum film deposition apparatus
JP3138810B2 (en) Ion plating equipment
JP2669602B2 (en) Sputtering equipment for semiconductor device manufacturing
JP3299721B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees