JP4083517B2 - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP4083517B2
JP4083517B2 JP2002259265A JP2002259265A JP4083517B2 JP 4083517 B2 JP4083517 B2 JP 4083517B2 JP 2002259265 A JP2002259265 A JP 2002259265A JP 2002259265 A JP2002259265 A JP 2002259265A JP 4083517 B2 JP4083517 B2 JP 4083517B2
Authority
JP
Japan
Prior art keywords
circuit
cantilever
sample
gain
deviation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002259265A
Other languages
English (en)
Other versions
JP2004101202A (ja
Inventor
敏夫 安藤
信明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Olympus Corp
Original Assignee
Kanazawa University NUC
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, Olympus Corp filed Critical Kanazawa University NUC
Priority to JP2002259265A priority Critical patent/JP4083517B2/ja
Publication of JP2004101202A publication Critical patent/JP2004101202A/ja
Application granted granted Critical
Publication of JP4083517B2 publication Critical patent/JP4083517B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走査型プローブ顕微鏡、特にカンチレバーを振動させるタイプの走査型プローブ顕微鏡に関する。
【0002】
【従来の技術】
このタイプの走査型プローブ顕微鏡は、カンチレバーを一定の周波数で振動させながら試料に対してカンチレバーをXY走査し、XY走査のあいだカンチレバーと試料の間の相互作用に依存して変動するカンチレバーの振幅を一定に保つようにカンチレバーと試料の間の距離をZ制御する。このZ制御の高さ情報をXY走査の位置情報と同期させて処理することにより試料の表面の情報を取得する。
【0003】
このタイプの走査型プローブ顕微鏡の構成は、後に「発明の実施の形態」の中で図1を参照しながら説明する走査型プローブ顕微鏡100とほぼ同じであり、唯一、Z制御回路の回路構成だけが異なっている。従って、従来の走査型プローブ顕微鏡の構成については、後の「発明の実施の形態」の中の説明から容易に理解できよう。より具体的には、図1の走査型プローブ顕微鏡の説明において、スキャナーをZ方向に変位させるZ駆動回路を制御するZ制御回路150を、図11に示される従来のZ制御回路150Aに読み換えればよい。
【0004】
【発明が解決しようとする課題】
XY走査の間、カンチレバーと試料の間の距離は一定に保たれるように制御される。そのようにZ駆動回路を制御するためのZ制御回路150Aの回路構成を図11に示す。Z制御回路150Aは、カンチレバーと試料の間の距離の目標値を示す制御基準値からカンチレバーの振動振幅を示すカンチレバーの振幅信号を減算する減算器152と、減算器152から出力される偏差信号を増幅するPID回路154とで構成されており、減算器152から出力される偏差信号が常に0になるようにZ駆動回路を制御する信号を出力する。
【0005】
カンチレバーを振動させるタイプの走査型プローブ顕微鏡のフォースカーブを図12に示す。フォースカーブは、カンチレバーと試料の間の距離がある値よりも大きいところでは一定であり、その値よりも小さくなるにつれて減少する。前述の制御基準値は、このようなフォースカーブが一定値よりも僅かに低い値に設定される。なお、フォースカーブについては後に「発明の実施の形態」の中で詳しく説明する。
【0006】
このような制御基準値に対するZ制御回路150Aによる制御は、カンチレバーと試料の間の距離を減少させる方向の応答性が悪い。これは次のような理由による。振動振幅回路の出力信号は、カンチレバーと試料の間の距離がある値よりも大きいと一定である。このため、カンチレバーと試料が大きく離れた場合であっても、減算器152から出力される偏差信号はそれに応じて大きくならない。
【0007】
これは、実際にはカンチレバーと試料が大きく離れているにも関わらず、Z駆動回路には、それよりも短い距離だけカンチレバーと試料の間の距離を減少させるように、スキャナーを駆動する指示が入力されることに相当すると言える。その結果、カンチレバーと試料の間の距離が本当に目標値に達するまでに多くに時間が掛かってしまう。
【0008】
その結果、図13に示されるように、測定像は、特に走査方向に対してカンチレバーと試料の間の距離を増大させる段差部分では、実際の試料表面形状を忠実に反映していないものとなってしまう。なお、図13においては、カンチレバーは試料に対する左から右へ移動されるものとしている。従って、試料表面の凸部の右側部分がカンチレバーと試料の間の距離を増大させる段差部分となっており、測定像はこの部分において試料表面形状を忠実に反映していない。
【0009】
このような応答性の低下を避ける一つの手法として、図14に示されるように、制御基準値を低く設定することが考えられる。この場合、制御基準値を超える範囲においても、振幅検出回路の出力信号がカンチレバーと試料の間の距離に依存して変化する範囲が図12の場合よりも広い。従って、図11に示されるZ制御回路150Aにおいて、減算器152から出力される偏差信号は、カンチレバーと試料の間の距離が増大した場合であっても、比較的広い範囲においてカンチレバーと試料の間の距離を反映している。これにより、カンチレバーと試料の間の距離を増大させる段差部分においても応答性が向上される。その結果、その部分においても試料表面形状を忠実に反映した測定像が得られる。
【0010】
特に近年においては、遺伝子などの生体試料の測定や観察が盛んに進められており、走査型プローブ顕微鏡はその目的に好適な測定観察装置として期待されている。
【0011】
前述した制御基準値を低く設定する手法は、半導体や金属などの固い試料に対しては確かに有効であるが、生体試料などの柔らかい試料に対しては具合が悪い。生体試料は柔らかく損傷し易いため、生体試料の測定においては、カンチレバーと生体試料の接触は必要最小限に抑えることが望まれる。生体試料などの柔らかい試料に対して、前述したように制御基準値を低く設定した場合、試料は大きな損傷を受けてしまう。これでは、単に試料を破壊しているだけで、もはや試料を測定しているとはいえない。
【0012】
本発明の目的は、生体試料等の柔らかい試料に対して損傷を与えることを極力避けながらも正確な測定を行なえる、カンチレバーを振動させるタイプの走査型プローブ顕微鏡を提供することである。
【0013】
【課題を解決するための手段】
本発明は、カンチレバーを振動させるタイプの走査型プローブ顕微鏡であり、カンチレバーと、カンチレバーを振動させるための振動子と、カンチレバーの変位を検出するためのセンサーと、カンチレバーの振動振幅を検出するための振幅検出回路と、カンチレバーに対して試料をX方向とY方向とZ方向に移動させるためのスキャナーと、スキャナーをX方向に変位させるためのX駆動回路と、スキャナーをY方向に変位させるためのY駆動回路と、スキャナーをZ方向に変位させるためのZ駆動回路と、予め与えられる制御基準値と振幅検出回路の出力信号とに基づいてZ駆動回路を制御するZ制御回路とを有しており、カンチレバーと試料の間の距離はセンサーと振幅検出回路とZ制御回路とZ駆動回路とによって一定に保たれるように閉ループ制御され、Z制御回路は、制御基準値とカンチレバーの振幅信号に対して減算処理するための減算器と、前記減算器から出力される偏差信号を増幅するためのPID回路と、前記PID回路による偏差信号のゲインを補正するための補正ゲイン回路とを有しており、前記補正ゲイン回路は、前記減算器から出力される偏差信号に応じて前記PID回路によるゲインを変更し、前記減算器から出力される偏差信号が負のときに閉ループゲインを高くする構成であり、偏差信号が正のときはゲインの補正を行わず、偏差信号が負のときはより大きいゲインに補正する。
【0014】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0015】
本発明の走査型プローブ顕微鏡の一実施形態を図1に示す。続く説明においては、水平面に平行で互いに直交する二つの方向あるいは軸をX方向とY方向あるいはX軸とY軸と呼び、水平面に直交する方向あるいは軸をZ方向あるいはZ軸と呼ぶものとする。またZ方向は場合によっては高さ方向とも表現することとする。
【0016】
本実施形態の走査型プローブ顕微鏡100は、カンチレバー110と、カンチレバー110を保持するためのホルダー116と、カンチレバー110を振動させるための振動子118と、カンチレバー110の変位を検出するためのセンサー132と、カンチレバー110の振動振幅を検出するための振幅検出回路134とを有している。
【0017】
カンチレバー110は、弾性的にたわみ変形し得るレバー部114と、レバー部114の端部に設けられた探針112とを有している。レバー部114はホルダー116によって片持ち支持される。つまり、探針112の反対側のレバー部114の端部がホルダー116に保持される。
【0018】
振動子118は例えば圧電振動子で構成される。センサー132は好ましくは光学式センサーで構成され、例えば光テコ法によるセンサーで構成される。振動子118で発生される振動はホルダー116を介してカンチレバー110に伝わり、レバー部114を高さ方向のたわみ変形させる。センサー132は、レバー部114の自由端部の高さ方向の変位を検知し、その高さ位置を示す電気信号を出力する。
【0019】
実際に知りたい情報は探針112の先端の高さ方向の変位であるが、探針112はレバー部114の自由端部に設けられているため、レバー部114の自由端部の高さ方向の変位は実質的に探針112の先端の高さ方向の変位を反映している。従って、センサー132は実質的に探針112の先端の高さ方向の変位を検知し得る。
【0020】
なお、続く説明においては、センサー132で検知されるレバー部114の自由端部の高さ方向の変位を単にカンチレバー110の変位と呼ぶものとする。また、レバー部114の自由端部や探針112の高さ方向の振動も単にカンチレバー110の振動と呼ぶものとする。
【0021】
センサー132の出力信号は、カンチレバー110の変位の時系列的な変動、つまりカンチレバー110の振動状態を示している。振幅検出回路134はセンサー132の出力信号からカンチレバー110の振動振幅を求め、その振動振幅を表す電気信号を出力する。
【0022】
走査型プローブ顕微鏡100は、また、測定対象である試料120をカンチレバー110に対してX方向とY方向とZ方向に移動させるためのスキャナー122と、スキャナー122をX方向に変位させるためのX駆動回路124と、スキャナー122をY方向に変位させるためのY駆動回路126と、スキャナー122をZ方向に変位させるためのZ駆動回路128とを有している。
【0023】
スキャナー122は例えば円筒型圧電素子、いわゆる圧電チューブスキャナーで構成される。スキャナー122は、一方の端部が固定され、その反対側の自由端に試料台が取り付けられ、その試料台の上に試料120が載せられる。
【0024】
円筒型圧電体素子は、通常、円筒形状の圧電体と、その外周面に設けられた四つの駆動電極と、その内周面に設けられた一つの共通電極とで構成されている。四つの駆動電極は、周に沿って間隔を置いて90°の角度ピッチで並んでいる。例えば、共通電極は接地され、対向する二枚の駆動電極間に逆極性の電圧が印加される。このような電圧印加に対して、スキャナー122の自由端は電圧印加された駆動電極が並ぶ方向に変位する。
【0025】
走査型プローブ顕微鏡100は更にコントローラー140とホストコンピューター142とを有している。コントローラー140とホストコンピューター142は共働して装置全体の制御や取得した情報の処理などを行なう。
【0026】
例えば、コントローラー140は、カンチレバー110を振動させるための励振信号を振動子118に供給すると共に、探針112が試料120に対してXY走査されるようにX駆動回路124とY駆動回路126を制御する。また、XY走査の間、カンチレバー110の振幅検出を一定に保つようにZ駆動回路128を制御する。
【0027】
またホストコンピューター142は、例えば、コントローラー140からX駆動回路124とY駆動回路126とZ駆動回路128の各制御信号を取得し、それらから試料120の表面の位置情報を算出する。さらには、試料120の表面の画像を構築して表示する。
【0028】
ホストコンピューター142は、装置の使用者との間のインターフェースでもあり、Z制御における制御基準値を入力するための入力部と、入力された制御基準値を記憶する記憶部とを含んでいる。コントローラー140は、ホストコンピューター142から予め与えられる制御基準値と振幅検出回路134からの出力信号とに基づいてZ駆動回路128を制御するZ制御回路150を含んでいる。
【0029】
走査型プローブ顕微鏡100においては、測定の際、カンチレバー110は振動子118により振動される。カンチレバー110の振動振幅、すなわち振幅検出回路134の出力信号は、カンチレバー110と試料120の間の距離に依存している。カンチレバー110と試料120の間の距離に対する振幅検出回路134の出力信号の特性を図2に示す。
【0030】
図2から分かるように、カンチレバー110と試料120とが十分に離れている間は、振幅検出回路134の出力信号は一定の値を示す。カンチレバー110と試料120とを近づけていくと、振幅検出回路134の出力信号は、ある地点から減少し始め、さらに近づけていくと、ある地点で0になる。なお、それ以上近づけても、振幅検出回路134の出力信号は0のままである。
【0031】
一般に、カンチレバーを振動させるタイプの走査型プローブ顕微鏡においては、カンチレバーと試料とを近づけていき、カンチレバーの振動振幅が最初に0になった地点をカンチレバーと試料の間の距離の基準にしている。すなわち、そのとき、カンチレバーと試料の間の距離が0であるとしている。
【0032】
この基準に従えば、カンチレバーと試料とを近づけていく際にカンチレバーの振動振幅が有限の一定値から減少し始める地点は、前述の基準からちょうどカンチレバーの振動振幅に相当する距離だけ離れている。つまり、このときのカンチレバーと試料の間の距離はちょうどカンチレバーの振動振幅と等しくなっている。
【0033】
これは次のように考えることができる。カンチレバー110の振動振幅の最下端の位置、すなわち試料120に最も接近した探針112の先端の位置が、試料120の表面からカンチレバー110の振動振幅に等しい距離よりも離れている間は、探針112と試料120の間に何ら相互作用が生じないため、カンチレバー110は一定の振動振幅で振動する。
【0034】
カンチレバー110の振動振幅の最下端の位置がカンチレバー110の振動振幅に等しい距離を下回ると、振動中に探針112が一時的に試料120に接触し、探針112のそれ以上の下方への移動が妨げられるため、カンチレバー110の振動振幅が減少する。つまり、試料120との接触によってカンチレバー110の振動振幅が制限されていると言える。
【0035】
カンチレバー110と試料120の間の距離が小さくなるほど、探針112と試料120の接触期間は長くなり、従ってカンチレバー110の振動振幅は小さくなる。探針112と試料120が接触し始めた地点からカンチレバー110の振動振幅に等しい距離だけ近づけた地点では、もはや探針112は試料120から離れることなく接触し続ける結果、カンチレバー110と試料120の間の距離は0となる。
【0036】
ここで説明したカンチレバー110と試料120の間の距離に対するカンチレバー110の振動振幅の特性を示している図2の曲線は、走査型プローブ顕微鏡100のフォースカーブと呼ばれている。
【0037】
Z制御回路150は、カンチレバー110と試料120の間の距離を一定に保つように、つまり、振幅検出回路134から出力されるカンチレバーの振幅信号をホストコンピューター142から予め与えられた制御基準値に維持するように、Z駆動回路128を制御する。言い換えれば、カンチレバー110と試料120の間の距離は、センサー132と振幅検出回路134とZ制御回路150とZ駆動回路128とによって一定に保たれるように閉ループ制御される。
【0038】
試料120に損傷を与えることを極力避けるために、制御基準値は、図2に示されたフォースカーブに対して、図12に示されるように、カンチレバーの振幅信号が一定値から若干減少し始めたところに設定される。つまり、制御基準値はカンチレバーの振動振幅に近い値に設定される。
【0039】
本実施形態におけるZ制御回路150の回路構成を図3と図4に示す。Z制御回路150は、制御基準値とカンチレバーの振幅信号とに対して減算処理するための減算器152と、減算器152から出力される偏差信号を増幅するためのPID回路154とに加えて、PID回路154による偏差信号のゲイン(利得・増幅率)を補正するための補正ゲイン回路156を更に有している。
【0040】
補正ゲイン回路156は、図3に示されるように、減算器152とPID回路154の間に設けられても、あるいは、図4に示されるように、PID回路154の後段に設けられてもよい。すなわち、補正ゲイン回路156は、減算器152から出力された偏差信号に対して予めゲインの補正を行なってからPID回路154に渡しても、PID回路154によって増幅された偏差信号に対してゲインの補正を行なってもよい。
【0041】
本実施形態では、減算器152は、制御基準値からカンチレバーの振幅信号を減算する。従って、減算器152から出力される偏差信号は、カンチレバー110と試料120が近づくときに正に、カンチレバー110と試料120が離れるときに負になる。
【0042】
補正ゲイン回路156は、減算器152から出力される偏差信号に応じて、閉ループ制御のゲインを変更する。すなわち、補正ゲイン回路156は閉ループゲイン変更手段として機能する。具体的には、補正ゲイン回路156は、偏差信号が正のときは偏差信号に対して増幅を行なわず、偏差信号が負のときは偏差信号に対して(1より大きいゲインで)増幅を行なう。言い換えれば、補正ゲイン回路156は減算器152から出力される偏差信号が負のときに閉ループ制御のゲインを高くする。
【0043】
その結果、Z制御回路150の出力信号は、偏差信号が負のときは、偏差信号が正のときよりも、大きなゲイン(利得・増幅率)で増幅される。これは、図2に示されるフォースカーブを、図5に示されるように、基準値を上回る範囲を拡大するように、電気的に修正したことに相当する。
【0044】
補正ゲイン回路156の一例を図6に示す。図6の回路構成によれば、入力信号が正のとき、ゲインは1であり、入力信号が負のとき、ゲインは(1+R1/R3)である。言い換えれば、図6に示される補正ゲイン回路156すなわち閉ループゲイン変更手段は、減算器152から出力される偏差信号が負のとき、偏差信号に対する増幅を行なう。
【0045】
補正ゲイン回路156の別の例を図7に示す。図7の回路構成によれば、入力信号が正のとき、ゲインは1であり、入力信号が負のとき、ゲインは(1+R1/R3)である。言い換えれば、図7に示される補正ゲイン回路156すなわち閉ループゲイン変更手段は、減算器152から出力される偏差信号が負のとき、偏差信号に対する増幅を行なう。
【0046】
補正ゲイン回路156の別の例を図8に示す。図8の回路は、入力信号の負の成分だけを取り出す負半波整流回路162と、負半波整流回路162の出力信号を増幅する増幅器164と、増幅器164の出力信号を元の入力信号と加算する加算器166とで構成されている。この回路構成によれば、入力信号が正のとき、ゲインは1であり、増幅器164のゲインをg(>1)とすると、入力信号が負のとき、ゲインは1+gである。言い換えれば、図8に示される補正ゲイン回路156すなわち閉ループゲイン変更手段は、減算器152から出力される偏差信号が負のとき、偏差信号に対する増幅を行なう。
【0047】
補正ゲイン回路156の別の例を図9に示す。図9の回路は、入力信号の正負を判断するコンパレーター172と、コンパレーター172によって切り換えられるスイッチ174と、g(>1)のゲインを有する増幅器176とを有しており、スイッチ174は、コンパレーター172によって入力信号が負であると判断されたとき、増幅器176の側に切り替える。この回路構成によれば、入力信号が正のとき、ゲインは1であり、入力信号が負のとき、ゲインはgである。言い換えれば、図9に示される補正ゲイン回路156すなわち閉ループゲイン変更手段は、減算器152から出力される偏差信号が負のとき、偏差信号に対する増幅を行なう。
【0048】
補正ゲイン回路156の更に別の例を図10に示す。図10の回路構成は、正確には、図3または図4におけるPID回路154と補正ゲイン回路156の組み合わせに相当している。より正確には、PID回路154の主なゲインである積分ゲインと補正ゲイン回路156の組み合わせに相当している。この回路構成によれば、入力信号が正のとき、ゲインは1/(2πfC14)であり、入力信号が負のとき、ゲインは{1/(2πfC14)+1/(2πfC15)}である。なお、この回路構成においては、PID回路154と補正ゲイン回路156とが共働して閉ループゲイン変更手段として機能する。従って、図10に示された閉ループゲイン変更手段は、PID回路154と補正ゲイン回路156とを含み、減算器152から出力される偏差信号が負のとき、Z制御回路150の制御ゲイン、より詳しくは積分ゲインを高くする。
【0049】
これまでの説明から分かるように、本実施形態では、走査型プローブ顕微鏡100の実効的なフォースカーブは、補正ゲイン回路156によって、図5に示されるように、擬似的に制御基準値を超える範囲が拡大されたものとなる。これにより、試料120に損傷を与えることを極力避けるために、制御基準値をカンチレバーの振動振幅に近い値に設定したことにより引き起こされる、カンチレバー110と試料120の間の距離を減少させる方向におけるスキャナー122の応答性の低下が抑えられる。
【0050】
従って、本実施形態の走査型プローブ顕微鏡100は、生体試料等の柔らかく損傷し易い試料に対して、試料が受ける損傷を極力抑えつつも、試料の測定を正確に行なうことができる。
【0051】
これまで、図面を参照しながら本発明の実施の形態を述べたが、本発明は、これらの実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。
【0052】
【発明の効果】
本発明によれば、生体試料等の柔らかい試料に対して損傷を与えることを極力避けながらも正確な測定を行なえる、カンチレバーを振動させるタイプの走査型プローブ顕微鏡が提供される。
【図面の簡単な説明】
【図1】本発明の走査型プローブ顕微鏡の一実施形態を示している。
【図2】図1の走査型プローブ顕微鏡のフォースカーブ、すなわちカンチレバーと試料の間の距離に対する振幅検出回路の出力信号の特性を示している。
【図3】本実施形態におけるZ制御回路の回路構成を示している。
【図4】本実施形態におけるZ制御回路の別の回路構成を示している。
【図5】図3または図4のZ制御回路を有する走査型プローブ顕微鏡の実効的なフォースカーブを示している。
【図6】図3または図4に示された補正ゲイン回路の一例を示している。
【図7】図3または図4に示された補正ゲイン回路の別の一例を示している。
【図8】図3または図4に示された補正ゲイン回路の別の一例を示している。
【図9】図3または図4に示された補正ゲイン回路の別の一例を示している。
【図10】図3または図4に示された補正ゲイン回路の別の一例を示しており、より正確には、図3または図4に示されたPID回路と補正ゲイン回路の組み合わせに相当している。
【図11】従来例におけるZ制御回路の回路構成を示している。
【図12】走査型プローブ顕微鏡のフォースカーブと一般に設定される制御基準値とを示している。
【図13】図12の設定に従って得られる測定像と試料表面形状とを示している。
【図14】走査型プローブ顕微鏡のフォースカーブと応答性の低下を避けるために低く設定された制御基準値とを示している。
【符号の説明】
100 走査型プローブ顕微鏡
110 カンチレバー
118 振動子
120 試料
122 スキャナー
124 X駆動回路
126 Y駆動回路
128 Z駆動回路
132 センサー
134 振幅検出回路
150 Z制御回路
152 減算器
154 PID回路
156 補正ゲイン回路

Claims (1)

  1. カンチレバーを振動させるタイプの走査型プローブ顕微鏡であり、
    カンチレバーと、
    カンチレバーを振動させるための振動子と、
    カンチレバーの変位を検出するためのセンサーと、
    カンチレバーの振動振幅を検出するための振幅検出回路と、
    カンチレバーに対して試料をX方向とY方向とZ方向に移動させるためのスキャナーと、
    スキャナーをX方向に変位させるためのX駆動回路と、
    スキャナーをY方向に変位させるためのY駆動回路と、
    スキャナーをZ方向に変位させるためのZ駆動回路と、
    予め与えられる制御基準値と振幅検出回路の出力信号とに基づいてZ駆動回路を制御するZ制御回路とを有しており、カンチレバーと試料の間の距離はセンサーと振幅検出回路とZ制御回路とZ駆動回路とによって一定に保たれるように閉ループ制御され、
    Z制御回路は、制御基準値とカンチレバーの振幅信号に対して減算処理するための減算器と、前記減算器から出力される偏差信号を増幅するためのPID回路と、前記PID回路による偏差信号のゲインを補正するための補正ゲイン回路とを有しており、前記補正ゲイン回路は、前記減算器から出力される偏差信号に応じて前記PID回路によるゲインを変更し、前記減算器から出力される偏差信号が負のときに閉ループゲインを高くする構成であり、偏差信号が正のときはゲインの補正を行わず、偏差信号が負のときはより大きいゲインに補正することを特徴とする走査型プローブ顕微鏡。
JP2002259265A 2002-09-04 2002-09-04 走査型プローブ顕微鏡 Expired - Lifetime JP4083517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259265A JP4083517B2 (ja) 2002-09-04 2002-09-04 走査型プローブ顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259265A JP4083517B2 (ja) 2002-09-04 2002-09-04 走査型プローブ顕微鏡

Publications (2)

Publication Number Publication Date
JP2004101202A JP2004101202A (ja) 2004-04-02
JP4083517B2 true JP4083517B2 (ja) 2008-04-30

Family

ID=32260349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259265A Expired - Lifetime JP4083517B2 (ja) 2002-09-04 2002-09-04 走査型プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP4083517B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107833B2 (en) 2015-07-07 2018-10-23 Olympus Corporation Atomic force microscope and control method of the same
US10161959B2 (en) 2015-07-07 2018-12-25 Olympus Corporation Atomic force microscope and control method of the same
US10928417B2 (en) 2017-05-15 2021-02-23 Olympus Corporation Atomic force microscope, atomic force microscopy, and controlling method of an atomic force microscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678103B2 (en) * 2011-10-28 2017-06-13 Keysight Technologies, Inc. Automatic tuning of atomic force microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107833B2 (en) 2015-07-07 2018-10-23 Olympus Corporation Atomic force microscope and control method of the same
US10161959B2 (en) 2015-07-07 2018-12-25 Olympus Corporation Atomic force microscope and control method of the same
US10928417B2 (en) 2017-05-15 2021-02-23 Olympus Corporation Atomic force microscope, atomic force microscopy, and controlling method of an atomic force microscopy

Also Published As

Publication number Publication date
JP2004101202A (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
US7159452B2 (en) Method for measuring a configuration of an object
JP5252389B2 (ja) 走査型プローブ顕微鏡
JP4083517B2 (ja) 走査型プローブ顕微鏡
KR20210042358A (ko) 넓은 면적의 고속 원자력 프로파일
US8763160B2 (en) Measurement of the surface potential of a material
JP2006085383A (ja) 測定制御系における制御回路の制御パラメータ設定方法および測定装置
US9921241B2 (en) Scanning probe microscope and measurement range adjusting method for scanning probe microscope
JP6706519B2 (ja) 走査プローブ顕微鏡、走査プローブ顕微鏡の測定レンジ調整方法及び測定レンジ調整プログラム
US6740876B2 (en) Scanning probe microscope
JP3463798B2 (ja) 光学スキャナ装置
JP3859275B2 (ja) 走査型プローブ顕微鏡
KR20240004958A (ko) 크립 보정을 하는 afm 이미징
JP2009109377A (ja) 走査プローブ顕微鏡
TW202307435A (zh) 使用即時漂移修正的afm成像
JPH10206433A (ja) 走査型プローブ顕微鏡
JP3809893B2 (ja) 走査プローブ顕微鏡
JP2006085382A (ja) 測定制御系における制御回路の制御パラメータ補正方法および測定装置
JPH05180614A (ja) 表面観察方法
JP2002062245A (ja) 力顕微鏡
JP2012018076A (ja) 走査プローブ顕微鏡を用いた試料の磁気力測定方法及び装置
JP4268104B2 (ja) 傾斜補正装置及び傾斜補正方法
JP2003215018A (ja) 表面情報測定方法及び表面情報測定装置
WO2018211563A1 (ja) 原子間力顕微鏡
JP2009222548A (ja) 表面電位測定方法および表面電位計
JPH10332712A (ja) 走査型プローブ顕微鏡

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20021218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20021218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Ref document number: 4083517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term