JP4079403B2 - Series-parallel switching capacitor power storage device - Google Patents

Series-parallel switching capacitor power storage device Download PDF

Info

Publication number
JP4079403B2
JP4079403B2 JP13506999A JP13506999A JP4079403B2 JP 4079403 B2 JP4079403 B2 JP 4079403B2 JP 13506999 A JP13506999 A JP 13506999A JP 13506999 A JP13506999 A JP 13506999A JP 4079403 B2 JP4079403 B2 JP 4079403B2
Authority
JP
Japan
Prior art keywords
series
voltage
capacitor
switch
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13506999A
Other languages
Japanese (ja)
Other versions
JP2000324710A (en
Inventor
廸夫 岡村
政章 山岸
Original Assignee
株式会社パワーシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パワーシステム filed Critical 株式会社パワーシステム
Priority to JP13506999A priority Critical patent/JP4079403B2/en
Publication of JP2000324710A publication Critical patent/JP2000324710A/en
Application granted granted Critical
Publication of JP4079403B2 publication Critical patent/JP4079403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のキャパシタバンクの接続を切り換えスイッチで切り換え制御し、全放電状態からの充電では直列に接続して充電を開始し、出力端子電圧が満充電電圧に達すると並列に接続して各キャパシタバンクが満充電電圧に達するまで充電する直並列切り換え型キャパシタ蓄電装置に関する。
【0002】
【従来の技術】
多数の大容量キャパシタを直列及び並列に接続したキャパシタ・バンクを使用する蓄電装置において、キャパシタ・バンクを直列に接続した状態で充電を開始し、充電電圧が上昇したことによりキャパシタ・バンクを並列接続に切り換えようとするとき、各バンクの電圧の差があるとバンク間に横流(cross current)と呼ばれる大電流が流れ、故障や損失の原因となる。
【0003】
図4はキャパシタ・バンクの直並列切り換え回路の構成例を示す図であり、C1、C2はキャパシタ・バンク、S1、S2a、S2bは切り換えスイッチを示す。図4に示すキャパシタ・バンクの直並列切り換え回路(例えば米国特許第5,734,205号、特開平8−168182号公報参照)では、満充電からまず、切り換えスイッチS1をオフ、切り換えスイッチS2a、S2bをオンにすることにより、キャパシタ・バンクC1、C2を並列に接続した状態で放電を開始する。そして放電に伴い出力端子間電圧が低下し、放電開始時の1/2になったところで、切り換えスイッチS1をオン、切り換えスイッチS2a、S2bをオフにする。この切り換え操作によりキャパシタ・バンクC1、C2が直列接続になるので、出力端子間電圧は、再び放電開始時の電圧まで上昇する。したがって、この後さらに続けて出力端子間電圧が放電開始時の1/2に低下するまで放電することができる。その結果、初期電圧の100%〜50%の電圧範囲で、各キャパシタバンクの全蓄電量の電圧の1/4、蓄電電量量で15/16=94%を利用することができる。
【0004】
【発明が解決しようとする課題】
上記キャパシタ・バンクの直並列切り換え回路では、全放電状態から充電を行う場合、切り換えスイッチS1だけをオンにして充電を開始し、キャパシタ・バンクC1、C2の合計電圧が所定の満充電電圧に達したところで、切り換えスイッチS1をオフにすると同時に、切り換えスイッチS2a、S2bをオンにして、さらに充電を続ける。しかしその際に、キャパシタ・バンクC1、C2の充電電圧が等しくないと、電圧の高い方から低い方に充電電流(横流)が流れるという問題が生じる。キャパシタによる蓄電装置では、高効率を得るため不要な抵抗成分をできるだけ除いて製造するので、キャパシタ・バンクC1、C2の電圧差が大きいと、上記横流の値が装置を破損する恐れが生じる。
【0005】
かかる破損を防ぐには、切り換えスイッチS2a、S2b、あるいは途中の配線のいずれかに電流を制限する機能を組み込むことが必要になる。その1つとして、切り換えスイッチS2a、S2bにアナログ動作が可能なパワースイッチ、例えばMOSFETやIGBTなどが用いられる。この場合には、スイッチに電流制限機能を持たせ、設定値以上の大きな電流では、抵抗が高くなって横流が流れないような制御を行うことができる。また、短時間の過渡的な電流であれば、チヨークコイルを挿入して横流を阻止することも可能である。
【0006】
しかし、近年の技術進歩により、キャパシタの静電容量が巨大となり、蓄電量も増しつつあるため、スイッチに電流制限を行わせようとすると、その際のエネルギー損失が無視できなくなり、また、チヨークコイルで電流を阻止しようとすると、巨大な鉄と銅の固まりを据え付けるようなものとなってしまう。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、簡単な構成で横流を流れないようにし、損失の軽減を図り、安全な動作を維持できるようにするものである。
【0008】
そのために本発明は、複数のキャパシタバンクの直並列接続を切り換え制御するように構成した直並列切り換え型キャパシタ蓄電装置において、一方のキャパシタバンクと他方のキャパシタバンクとの間に直列に接続され充放電電流をオン/オフする直列接続スイッチ、前記他方のキャパシタバンクと直列接続スイッチとの直列回路と並列に接続され一方のキャパシタバンクの充放電電流をオン/オフする第1の並列接続スイッチ、前記一方のキャパシタバンクと直列接続スイッチとの直列回路と並列に接続され他方のキャパシタバンクの充放電電流をオン/オフする第2の並列接続スイッチからなり前記複数のキャパシタバンクの直並列接続を切り換える複数のスイッチと、キャパシタバンクの電圧を検出する電圧検出手段と、前記電圧検出手段により検出した電圧を判定し前記複数のスイッチの制御を行う制御手段とを備え、前記制御手段は、前記直列接続スイッチをオフにしてキャパシタバンクを直列接続から並列接続に切り換えて充電を行うとき、前記並列接続に切り換える各キャパシタバンクの電圧を前記電圧検出手段により検出して比較し、所定値以上の電圧差がある場合に、前記電圧の低い方のキャパシタバンクの並列接続スイッチのみをオンにし、前記電圧差が所定値より小さくなったことを条件に他方の並列接続スイッチをオンにすることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係る直並列切り換え型キャパシタ蓄電装置の実施の形態を示す図であり、1は電圧検出回路、2は制御回路、4はPWMインバータ、C1、C2はキャパシタバンク、Ss、S1p、S2pは切り換えスイッチを示す。
【0010】
図1において、キャパシタバンクC1、C2は、充電電源からの充電、負荷への放電を行う蓄電手段として例えば電気二重層キャパシタのセルを1個乃至複数個接続したバンクであり、切り換えスイッチSs、S1p、S2pは、キャパシタバンクC1、C2の接続を直並列切り換えるものである。電圧検出回路1は、キャパシタバンクC1、C2を直並列接続した出力端子間電圧を検出すると共に、各キャパシタバンクC1、C2の充電電圧を検出するものであり、例えば▲1▼と▲2▼との間で切り換えスイッチS1pに加わる電圧(スイッチ開放電圧)Vs1p 、▲1▼と▲3▼との間でキャパシタバンクC2の電圧(充電レベル)Vc2、▲2▼と▲4▼との間でキャパシタバンクC1の電圧Vc1、▲3▼と▲4▼との間で切り換えスイッチS2pに加わる電圧Vs2p 、▲1▼と▲4▼との間で出力端子間電圧Voを検出する。制御回路2は、電圧検出回路1により検出した出力端子間電圧Voと満充電電圧との比較、キャパシタバンクC1、C2の各充電電圧Vc1、Vc2の比較判定を行い、切り換えスイッチSs、S1p、S2pのオン/オフ制御を行うものであり、その際に充電/放電モードと電圧比較判定回路2の判定結果に基づきキャパシタバンクC1、C2の間の充電レベルVc1、Vc2の不均一により横流が流れないようにオン/オフのタイミングを制御する。
【0011】
次に、上記直並列切り換え型キャパシタ蓄電装置により行う直並列切り換え制御について具体的に説明する。全放電状態から充電する場合には、図1(B)に示すようにまず制御回路2により切り換えスイッチSsだけをオンにしキャパシタバンクC1、C2を直列に接続した状態で充電を開始する。電圧検出回路1により出力端子間電圧Voを検出し、その出力端子間電圧Voを基準値である満充電電圧Vfと比較判定して、出力端子間電圧Voが所定の満充電電圧Vfに達したところで、制御回路2によりキャパシタバンクC1、C2の接続を直列から並列に切り換えるために切り換えスイッチSsだけをオフにする。このとき制御回路2では、電圧比較判定回路2によりキャパシタバンクC1、C2の各充電電圧Vc1、Vc2の比較判定を行い、これらの電圧差がゼロ付近であれば、図1(D)に示すように切り換えスイッチS1p、S2pをオンにしてキャパシタバンクC1、C2を並列に接続した状態で充電を続けるようにする。
【0012】
しかし、キャパシタバンクC1、C2を図1(B)に示す直列に接続した状態から図1(D)に示す並列に接続した状態に切り換える時、キャパシタバンクC1、C2の各充電電圧Vc1、Vc2の比較判定で所定値以上の電圧差がある(ゼロ付近でない)場合には、図1(C)に示すように先に充電レベルの低い方のキャパシタバンクC1(又はC2)の切り換えスイッチS1p(又はS2p)だけをオンにして充電を続ける。
【0013】
この状態では、充電レベルが低い方のキャパシタバンクC1だけが充電されるので、キャパシタバンクC1、C2間の電圧の差が減少し、そのまま充電を続ければ電圧の差がゼロになった後に逆転する。この電圧の差がゼロ付近になった状態を検出して、残った他方の切り換えスイッチS2p(又はS1p)をオンにし、図1(D)に示すようにキャパシタバンクC1、C2を並列に接続した状態で充電を続けるようにする。
【0014】
図2は多段接続切り換え制御キャパシタ電源装置による本発明の他の実施の形態を説明するための図であり、CA1〜CA3、CB1〜CB3はキャパシタ、SS、SA1〜SA3、SB1〜SB3はスイッチを示す。上記実施の形態では、単純に1バンクの直並列切り換えについて説明したが、複数のバンクを順次直並列切り換え接続する場合にも同様に適用できる。その実施の形態を示したのが図2である。
【0015】
図2において、キャパシタCA1〜CA3とCB1〜CB3は、電気エネルギー貯蔵用として、例えば電気二重層コンデンサのようなキャパシタ(単セル)であり、それぞれ同数ずつ直列に接続した2組のキャパシタ群A、Bを構成するものである。なお、それぞれのキャパシタCA1〜CA3、CB1〜CB3は、複数個を直列あるいはそれをさらに並列に接続したバンクであってもよい。スイッチSSは、2組のキャパシタ群A、Bを直列に接続する直列接続スイッチであり、スイッチSA1〜SA3は、一方のキャパシタ群AとスイッチSSとの直列接続点▲1▼を他方のキャパシタ群Bの直列接続他端▲3▼及びそれぞれのキャパシタCB1〜CB3の直列接続点に接続する一方のスイッチ群、スイッチSB1〜SB3は、他方のキャパシタ群BとスイッチSSとの直列接続点▲2▼を一方のキャパシタ群Aの直列接続他端▲4▼及びそれぞれのキャパシタの直列接続点に接続する他方のスイッチ群である。そして、図2(A)に示すようにスイッチSSのみをオンにすることにより、図2(D)に示すようにキャパシタCA1〜CA3、CB1〜CB3を直列に接続し、図2(B)に示すようにスイッチSSをオフにして一方のスイッチ群のスイッチSA3及びこれに対応する他方のスイッチ群のスイッチSB3をオンにすることにより、図2(E)に示すように一方のキャパシタ群Aの中央側接続キャパシタCA3と他方のキャパシタ群Bの中央側接続キャパシタCB3とを並列に接続する。同様に、図(C)に示すように一方のスイッチ群のスイッチSA2及びこれに対応する他方のスイッチ群のスイッチSB2をオンにし、他のスイッチは全てオフにすることにより、図2(F)に示すように一方のキャパシタ群Aの中央側接続キャパシタCA3、CA2の直列回路と他方のキャパシタ群Bの中央側接続キャパシタCB3、CB2の直列回路とを並列に接続する。さらに、一方のスイッチ群のスイッチSA1及びこれに対応する他方のスイッチ群のスイッチSB1をオンにし、他のスイッチは全てオフにすることにより、図2(G)に示すように一方のキャパシタ群AのキャパシタCA1〜CA3の直列回路と他方のキャパシタ群BのキャパシタCB1〜CB3の直列回路とを並列に接続する。
【0016】
上記のように一方のスイッチ群のいずれか1つのスイッチSA1〜SA3及びこれと反対側の他方のスイッチ群のスイッチSB1〜SB3又はスイッチSSのいずれかを選択的に接続して、図2(D)〜(G)のように複数のキャパシタCA1〜CA3、CB1〜CB3の接続を切り換え制御するので、電圧を調整し充放電に伴う電圧の変動を押さえることができる。例えば図2(D)に示すようにキャパシタCA1〜CA3、CB1〜CB3を全て直列に接続して充電を開始するが、充電側の端子電圧が所定値まで上昇すると、図2(E)に示す接続に切り換えることにより、キャパシタCA3、CB3の電圧分低下させる。さらに充電により再び充電側の端子電圧が所定値まで上昇すると、図2(F)、(G)に示す接続に順次切り換えることにより、充電側の端子電圧を所定値より上昇しないように押さえることができる。これら直列接続から並列接続に切り換え制御する場合に、本発明では、並列接続するキャパシタのうち、電圧(充電レベル)の低い方のキャパシタを先に接続して、充電を行い充電レベルが高い方に等しくなるのを待って、残ったもう一方のキャパシタを並列に接続する。
【0017】
また、図2(G)に示す接続状態から負荷に給電を行うため放電を開始する場合には、出力電圧が所定値まで低下すると、図2(F)に示す接続に切り換えることにより出力電圧の低下を補い、さらに出力電圧が所定値まで低下すると、図2(E)、(D)に示す接続に切り換えることにより、出力電圧を所定値より低下しないように押さえることができる。しかも、充放電の際の全電流を負担するのは、キャパシタCA1〜CA3、CB1〜CB3を全て直列に接続するスイッチSSのみであり、その他のスイッチSA1〜SA3、SB1〜SB3は、全電流の1/2の電流容量ですむ。さらに、いずれの段階でもキャパシタに直列に接続されるスイッチは1個だけとなるので、スイッチに半導体を用いたときに問題となるスイッチのオン電圧による損失も最小限にできる。
【0018】
図3は多段接続切り換え制御キャパシタ電源装置のさらに他の実施の形態を示す図であり、CM、CA1〜CAn、CB1〜CBnはキャパシタ、SA、SBはスイッチ、SS1、SS2、SSA1〜SSA3、SSB1〜SSB3は制御整流素子、SD1、SD2、SDA1〜SDA3、SDB1〜SDB3は整流素子、A1は制御回路、1は充電回路、2は出力制御回路、3は負荷を示す。
【0019】
図3(A)において、キャパシタCMは、負荷の定格電圧の範囲で充放電される出力用の主キャパシタバンクであり、キャパシタCA1〜CAn、CB1〜CBnは、負荷電圧の許容変動幅の範囲で電圧調整用に充放電される調整用キャパシタとして、キャパシタCMに直列に接続され、直並列接続の切り換えにより電圧の調整を行うものである。スイッチSA、SBは、キャパシタCMに直列に接続したキャパシタCA1〜CAn、CB1〜CBnを2組のキャパシタ群に分けて直並列接続の切り換えを行うものであり、直列接続から並列接続に切り換える場合に、電圧差があるとき、上記と同様の制御を行う。
【0020】
制御回路A1は、キャパシタCMにおける充放電状態(端子電圧)を検出し、その充放電状態に応じてスイッチSA、SBを制御してキャパシタCA1〜CAn、CB1〜CBnの直並列接続の切り換えを行う制御手段である。スイッチSA、SBは、この制御回路A1によりキャパシタCA1〜CAn、CB1〜CBnが全て直列接続となる実線のポジションから一方のキャパシタ群AのキャパシタCA1〜CAnの直列回路と他方のキャパシタ群BのキャパシタCB1〜CBnの直列回路とが並列接続となる点線のポジションまで段階的に切り換え制御される。
【0021】
充電回路11は、電源よりキャパシタCM、CA1〜CAn、CB1〜CBnに定電流充電するものであり、キャパシタCMに直列に接続されたキャパシタCA1〜CAn、CB1〜CBnの直並列接続の切り換えが段階的に制御され、最終的に一方のキャパシタ群AのキャパシタCA1〜CAnの直列回路と他方のキャパシタ群BのキャパシタCB1〜CBnの直列回路とが並列に接続され定格電圧まで充電されて充電を終了する。出力制御回路12は、例えば既に知られた電流ホンプのようにキャパシタCM、CA1〜CAn、CB1〜CBnから負荷13に供給する電流を制御、調節したり、負荷13から逆に電流源(充電回路)としてキャパシタCM、CA1〜CAn、CB1〜CBnを充電する、つまり負荷13が発電機となる回生制動の場合の切り換えを行ったりするものである。したがって、出力制御回路12としては、電子スイッチや、降圧チョッパ、昇圧チョッパ、その他のDC/DCコンバータが用いられるが、キャパシタCA1〜CAn、CB1〜CBnの接続切り換えの制御により、負荷13から見て調整の必要のない範囲に電圧が安定化される場合には省くこともでき、特に必要不可欠な構成要素というものではない。勿論、キャパシタCA1〜CAn、CB1〜CBnの接続切り換えの制御により、電圧変動範囲が小さくなれば、これとコンバータを組み合わせることにより、コンバータを高効率に設計でき、電圧安定性の高い電源を実現することもできる。
【0022】
また、切り換え回路を構成するスイッチSA、SBに図3(B)に示すようにサイリスタなどの半導体からなる単方向の制御整流素子SS1、SS2、SSA1〜SSA3、SSB1〜SSB3とダイオードからなる整流素子SD1、SD2、SDA1〜SDA3、SDB1〜SDB3との逆並列回路を用いることができる。このうち、少なくとも一方のキャパシタ群Aの直列接続1端と他方のキャパシタ群Bの直列接続他端との間を接続する回路は、制御整流素子SSA1と整流素子SDA1、及び他方のキャパシタ群Bの直列接続1端と一方のキャパシタ群Aの直列接続他端との間を接続する回路は、制御整流素子SSB1と整流素子SDB1により構成し、放電方向の整流素子SDA1、SDB1に逆方向(充電方向)の制御整流素子SSA1、SSB1を並列に接続する。これ以外の回路には、充電方向の制御整流素子SS2、SSA3、SSB3と逆方向の制御整流素子SS1、SSA2、SSB2とを直列に接続し、それぞれに逆方向の整流素子SD2、SDA3、SDB3、整流素子SD1、SDA2、SDB2を並列に接続する。勿論、これらの回路としては、サイリスタ(制御整流素子)を逆並列に接続した回路やトライアック(双方向制御整流素子)を接続した回路であってもよい。この場合には、電圧差があるとき、上記と同様の制御を行ってもよいが、単方向の制御整流素を選択的にオン/オフ制御することにより横流を阻止できるので、同時に並列接続に切り換える制御であってもよい。
【0023】
上記のようにサイリスタやトライアック、ダイオードを組み合わせて切り換え回路を構成することにより、突入電流に強く、長時間でのオンロス、ゲートロスを少なくすることができる。しかも、接続の切り換え時に主極にキャパシタの電圧が逆バイアスとして加わるので、ターンオフの制御が特別に必要でなくなり、ゲート制御回路を簡素化することができる。例えば図3(B)の回路において、充電時には、制御整流素子SS2のみをオンにし他の全てをオフにした状態からスタートする。そして、充電が進むに従ってまず制御整流素子SSA3、SSB3をオンにすることにより、制御整流素子SS2が逆バイアスでオフになる。次に制御整流素子SSA1、SSB1をオンにすることにより、制御整流素子SSA3、SSB3が逆バイアスでオフになる。放電時には、制御整流素子を全てオフにした状態から整流素子SDA1、SDB1が導通して放電をスタートし、制御整流素子SSA2、SSB2をオンにし、次に制御整流素子SS1をオンにすることにより、キャパシタCA1〜CAn、CB1〜CBnを全て直列に接続するまで切り換え制御することができる。
【0024】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、充電を行いながらキャパシタバンクを直列接続から並列接続に切り換える時、各キャパシタバンクの充電電圧を比較してその電圧差があれば電圧の低い方の切り換えスイッチをオンにし、電圧差がゼロ付近になるまで充電を続けるようにしたが、その際に、オンにしないで残っている切り換えスイッチに加わる電圧(図1の▲1▼ー▲2▼のVs1p 、▲3▼ー▲4▼Vs2p )を検出し、その電圧がゼロ付近になったときに切り換えスイッチをオンにするように制御してもよい。このようにすることにより、充電電圧の低い方のキャパシタバンクの切り換えスイッチをオンにした後は、キャパシタバンク間の充電電圧を比較することなく、オフのままに残っている切り換えスイッチに加わる電圧を監視して電圧がゼロ付近になったときにオンにしていくようにすればよい。このとき、オフ状態になったままの充電電圧の高い方のキャパシタバンクの切り換えスイッチに加わる電圧は、充電電圧の低い方のキャパシタバンクの充電に伴って小さくなり、そのままで充電を続ければゼロを通過して電圧の極性が反転する。したがって、この電圧がゼロ付近になった状態を検出してオンにすればよい。
【0025】
また、切り換えスイッチは、IGBT、FET、トランジスタのようなアナログ動作が可能な素子に限らず、サイリスタ、トライアック、GTO、あるいは機械的リレーのようなオン/オフ制御だけが可能な素子が使用できることはいうまでもない。したがって、原理的には、スイッチに加わる電圧がゼロになる瞬間を検出してスイッチをオンにするのが本発明であるが、スイッチ素子がサイリスタなどのようにオン電流を必要とする場合、ゼロでない一定の微小電圧を残した状態を検出してスイッチ素子をオンさせるようにしてもよい。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明によれば、複数のキャパシタバンクの直並列接続を切り換え制御するように構成した直並列切り換え型キャパシタ蓄電装置において、一方のキャパシタバンクと他方のキャパシタバンクとの間に直列に接続され充放電電流をオン/オフする直列接続スイッチ、他方のキャパシタバンクと直列接続スイッチとの直列回路と並列に接続され一方のキャパシタバンクの充放電電流をオン/オフする第1の並列接続スイッチ、一方のキャパシタバンクと直列接続スイッチとの直列回路と並列に接続され他方のキャパシタバンクの充放電電流をオン/オフする第2の並列接続スイッチからなり複数のキャパシタバンクの直並列接続を切り換える複数のスイッチと、キャパシタバンクの電圧を検出する電圧検出手段と、電圧検出手段により検出した電圧を判定し複数のスイッチの制御を行う制御手段とを備え、制御手段は、直列接続スイッチをオフにしてキャパシタバンクを直列接続から並列接続に切り換えて充電を行うとき、並列接続に切り換える各キャパシタバンクの電圧を電圧検出手段により検出して比較し、所定値以上の電圧差がある場合に、電圧の低い方のキャパシタバンクの並列接続スイッチのみをオンにし、電圧差が所定値より小さくなったことを条件に他方の並列接続スイッチをオンにするので、簡単な構成で複数のキャパシタバンクを直列に接続した状態から並列に接続を切り換えるとき、それらのキャパシタバンク間に充電レベルの差があっても横流が流れるのを防ぐことができる。したがって、直並列切り換え型キャパシタ蓄電装置の損失の軽減を図り、安全な動作を維持できる。
【図面の簡単な説明】
【図1】 本発明に係る直並列切り換え型キャパシタ蓄電装置の実施の形態を示す図である。
【図2】 多段接続切り換え制御キャパシタ電源装置による本発明の他の実施の形態を説明するための図である。
【図3】 多段接続切り換え制御キャパシタ電源装置のさらに他の実施の形態を示す図である。
【図4】 キャパシタ・バンクの直並列切り換え回路の構成例を示す図である。
【符号の説明】
1…電圧検出回路、2…電圧比較判定回路、3…スイッチ制御回路、4…PWMインバータ、C1、C2…キャパシタバンク、Ss、S1p、S2p…切り換えスイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention controls switching of a plurality of capacitor banks with a changeover switch, and starts charging by connecting in series when charging from a fully discharged state, and connecting in parallel when the output terminal voltage reaches the full charge voltage. The present invention relates to a series-parallel switching capacitor power storage device that charges each capacitor bank until it reaches a full charge voltage.
[0002]
[Prior art]
In a power storage device that uses a capacitor bank in which a large number of large-capacity capacitors are connected in series and in parallel, charging starts with the capacitor bank connected in series, and the capacitor bank is connected in parallel as the charging voltage rises When there is a voltage difference between the banks, a large current called a cross current flows between the banks, causing failure or loss.
[0003]
FIG. 4 is a diagram showing a configuration example of a series-parallel switching circuit for capacitor banks, C1 and C2 are capacitor banks, and S1, S2a and S2b are changeover switches. In the series-parallel switching circuit for capacitor banks shown in FIG. 4 (see, for example, US Pat. No. 5,734,205, Japanese Patent Laid-Open No. 8-168182), the switch S1 is turned off, the switch S2a, By turning on S2b, discharge is started with the capacitor banks C1 and C2 connected in parallel. Then, when the voltage between the output terminals decreases with the discharge and becomes half of the time when the discharge is started, the changeover switch S1 is turned on and the changeover switches S2a and S2b are turned off. Since the capacitor banks C1 and C2 are connected in series by this switching operation, the voltage between the output terminals rises again to the voltage at the start of discharge. Therefore, the discharge can be continued until the voltage between the output terminals is reduced to ½ of that at the start of discharge. As a result, in the voltage range of 100% to 50% of the initial voltage, it is possible to use 1/4 of the total amount of electricity stored in each capacitor bank and 15/16 = 94% of the amount of electricity stored.
[0004]
[Problems to be solved by the invention]
In the capacitor bank series / parallel switching circuit, when charging is performed from the fully discharged state, only the changeover switch S1 is turned on to start charging, and the total voltage of the capacitor banks C1 and C2 reaches a predetermined full charge voltage. At the same time, the changeover switch S1 is turned off, and at the same time, the changeover switches S2a and S2b are turned on to continue charging. However, at this time, if the charging voltages of the capacitor banks C1 and C2 are not equal, there arises a problem that the charging current (cross current) flows from the higher voltage to the lower voltage. The capacitor power storage device is manufactured by removing unnecessary resistance components as much as possible in order to obtain high efficiency. Therefore, if the voltage difference between the capacitor banks C1 and C2 is large, the cross current value may damage the device.
[0005]
In order to prevent such breakage, it is necessary to incorporate a function for limiting the current into one of the changeover switches S2a and S2b or an intermediate wiring. As one of them, a power switch that can perform an analog operation, such as a MOSFET or an IGBT, is used for the changeover switches S2a and S2b. In this case, the switch can be provided with a current limiting function, and control can be performed so that the cross current does not flow because the resistance becomes high at a current larger than a set value. If the current is transient for a short time, a cross yoke can be prevented by inserting a Chiyoke coil.
[0006]
However, due to recent technological advances, the capacitance of the capacitor has become enormous and the amount of electricity stored has increased, so if you try to limit the current to the switch, the energy loss at that time can not be ignored, Trying to block the current is like installing a massive iron and copper mass.
[0007]
[Means for Solving the Problems]
The present invention solves the above-described problem, and prevents a cross current from flowing with a simple configuration, reduces loss, and maintains a safe operation.
[0008]
For this purpose, the present invention relates to a series-parallel switching capacitor power storage device configured to switch and control the series-parallel connection of a plurality of capacitor banks, and is connected in series between one capacitor bank and the other capacitor bank. A series connection switch for turning on / off current, a first parallel connection switch connected in parallel with a series circuit of the other capacitor bank and the series connection switch, and turning on / off a charge / discharge current of one capacitor bank, the one A plurality of capacitor banks that are connected in parallel with a series circuit of the capacitor bank and the series connection switch and that turn on / off the charge / discharge current of the other capacitor bank . A switch, voltage detecting means for detecting a voltage of the capacitor bank, and the voltage detecting means. And control means for determining a voltage detected by means for controlling the plurality of switches, wherein, when the charging is switched to the parallel connection of the capacitor bank connected in series to turn off the series connection switch The voltage of each capacitor bank to be switched to the parallel connection is detected and compared by the voltage detection means, and when there is a voltage difference of a predetermined value or more, only the parallel connection switch of the capacitor bank having the lower voltage is turned on. The other parallel connection switch is turned on on condition that the voltage difference becomes smaller than a predetermined value .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a series-parallel switching type capacitor power storage device according to the present invention. 1 is a voltage detection circuit, 2 is a control circuit, 4 is a PWM inverter, C1 and C2 are capacitor banks, Ss and S1p. , S2p indicates a changeover switch.
[0010]
In FIG. 1, capacitor banks C1 and C2 are banks in which one or a plurality of cells of, for example, electric double layer capacitors are connected as power storage means for charging from a charging power source and discharging to a load, and changeover switches Ss and S1p. , S2p switches the connection of the capacitor banks C1, C2 in series and parallel. The voltage detection circuit 1 detects a voltage between output terminals in which the capacitor banks C1 and C2 are connected in series and parallel, and also detects a charging voltage of each capacitor bank C1 and C2. For example, (1) and (2) The voltage applied to the changeover switch S1p (switch open voltage) Vs1p, the voltage between the capacitor bank C2 (charge level) Vc2 between (1) and (3), and the capacitor between (2) and (4) Between the voltage Vc1 of the bank C1, (3) and (4), the voltage Vs2p applied to the changeover switch S2p, and the output terminal voltage Vo is detected between (1) and (4). The control circuit 2 compares the output terminal voltage Vo detected by the voltage detection circuit 1 with the full charge voltage, compares and determines the charge voltages Vc1 and Vc2 of the capacitor banks C1 and C2, and switches the changeover switches Ss, S1p, and S2p. ON / OFF control is performed, and no cross current flows due to uneven charging levels Vc1 and Vc2 between the capacitor banks C1 and C2 based on the determination result of the charge / discharge mode and the voltage comparison determination circuit 2 at that time. Thus, the on / off timing is controlled.
[0011]
Next, serial / parallel switching control performed by the serial / parallel switching capacitor power storage device will be described in detail. When charging from the fully discharged state, as shown in FIG. 1B, the control circuit 2 first turns on only the changeover switch Ss and starts charging with the capacitor banks C1 and C2 connected in series. The voltage between the output terminals Vo is detected by the voltage detection circuit 1, the output terminal voltage Vo is compared with the full charge voltage Vf which is the reference value, and the output terminal voltage Vo reaches the predetermined full charge voltage Vf. By the way, in order to switch the connection of the capacitor banks C1 and C2 from the series to the parallel by the control circuit 2, only the changeover switch Ss is turned off. At this time, in the control circuit 2, the voltage comparison determination circuit 2 performs comparison determination of the charging voltages Vc1 and Vc2 of the capacitor banks C1 and C2, and if these voltage differences are close to zero, as shown in FIG. The switches S1p and S2p are turned on, and charging is continued in a state where the capacitor banks C1 and C2 are connected in parallel.
[0012]
However, when the capacitor banks C1 and C2 are switched from the serial connection state shown in FIG. 1B to the parallel connection state shown in FIG. 1D, the charging voltages Vc1 and Vc2 of the capacitor banks C1 and C2 are changed. If there is a voltage difference equal to or greater than a predetermined value in the comparison determination (not near zero), as shown in FIG. Continue charging with only S2p) on.
[0013]
In this state, only the capacitor bank C1 with the lower charge level is charged, so that the voltage difference between the capacitor banks C1 and C2 decreases, and if the charging is continued as it is, the voltage difference becomes zero and then reverses. . When the voltage difference is detected to be close to zero, the other changeover switch S2p (or S1p) is turned on, and the capacitor banks C1 and C2 are connected in parallel as shown in FIG. Continue charging in the state.
[0014]
FIG. 2 is a diagram for explaining another embodiment of the present invention using a multi-stage connection switching control capacitor power supply device. CA1 to CA3 and CB1 to CB3 are capacitors, SS, SA1 to SA3, and SB1 to SB3 are switches. Show. In the above embodiment, the series-parallel switching of one bank is simply described. However, the present invention can be similarly applied to a case where a plurality of banks are sequentially connected in series-parallel switching. The embodiment is shown in FIG.
[0015]
In FIG. 2, capacitors CA1 to CA3 and CB1 to CB3 are capacitors (single cells) such as electric double layer capacitors for storing electrical energy, and two sets of capacitor groups A connected in series, respectively. B is constituted. Each of the capacitors CA1 to CA3 and CB1 to CB3 may be a bank in which a plurality of capacitors are connected in series or in parallel. The switch SS is a series connection switch that connects two sets of capacitor groups A and B in series, and the switches SA1 to SA3 have a series connection point (1) between one capacitor group A and the switch SS as the other capacitor group. One switch group, switches SB1 to SB3, connected to the other end of the series connection (3) of B and the series connection point of the capacitors CB1 to CB3, are connected to the series connection point (2) of the other capacitor group B and the switch SS. Is the other switch group connecting the other end of the series connection of the capacitor group A (4) and the series connection point of the respective capacitors. Then, by turning on only the switch SS as shown in FIG. 2A, capacitors CA1 to CA3 and CB1 to CB3 are connected in series as shown in FIG. 2D, and FIG. As shown in FIG. 2E, the switch SS is turned off and the switch SA3 of one switch group and the switch SB3 of the other switch group corresponding to the switch SS are turned on. The center side connection capacitor CA3 and the center side connection capacitor CB3 of the other capacitor group B are connected in parallel. Similarly, as shown in FIG. 2C, the switch SA2 of one switch group and the switch SB2 of the other switch group corresponding to the switch SA2 are turned on, and all the other switches are turned off, so that FIG. As shown in FIG. 2, the series circuit of the center side connection capacitors CA3 and CA2 of one capacitor group A and the series circuit of the center side connection capacitors CB3 and CB2 of the other capacitor group B are connected in parallel. Further, by turning on the switch SA1 of one switch group and the switch SB1 of the other switch group corresponding to the switch SA1 and turning off all the other switches, one capacitor group A as shown in FIG. Are connected in parallel to the series circuit of the capacitors CA1 to CA3 and the series circuit of the capacitors CB1 to CB3 of the other capacitor group B.
[0016]
As described above, any one of the switches SA1 to SA3 of one switch group and the switches SB1 to SB3 or the switch SS of the other switch group on the opposite side are selectively connected, and FIG. ) To (G), the switching of the connection of the plurality of capacitors CA1 to CA3 and CB1 to CB3 is controlled, so that the voltage can be adjusted to suppress voltage fluctuations associated with charging and discharging. For example, as shown in FIG. 2D, the capacitors CA1 to CA3 and CB1 to CB3 are all connected in series to start charging, but when the terminal voltage on the charging side rises to a predetermined value, the charging is shown in FIG. By switching to the connection, the voltage of the capacitors CA3 and CB3 is reduced. When the charging-side terminal voltage rises again to a predetermined value due to charging, the charging-side terminal voltage can be suppressed so as not to rise above the predetermined value by sequentially switching to the connections shown in FIGS. 2 (F) and 2 (G). it can. In the case of switching control from these series connection to parallel connection, in the present invention, among capacitors connected in parallel, the capacitor with the lower voltage (charge level) is connected first, and charging is performed so that the charge level is higher. Waiting for equality, connect the other remaining capacitor in parallel.
[0017]
In addition, when discharging is started to supply power to the load from the connection state shown in FIG. 2G, when the output voltage drops to a predetermined value, switching to the connection shown in FIG. When the decrease is compensated and the output voltage further decreases to a predetermined value, the output voltage can be suppressed so as not to decrease below the predetermined value by switching to the connection shown in FIGS. Moreover, it is only the switch SS that connects all the capacitors CA1 to CA3 and CB1 to CB3 in series, and the other switches SA1 to SA3 and SB1 to SB3 are responsible for the total current during charging and discharging. A current capacity of 1/2 is sufficient. Furthermore, since only one switch is connected in series with the capacitor at any stage, the loss due to the on-voltage of the switch, which is a problem when a semiconductor is used as the switch, can be minimized.
[0018]
FIG. 3 is a diagram showing still another embodiment of a multi-stage connection switching control capacitor power supply device. CM, CA1 to CAn, CB1 to CBn are capacitors, SA and SB are switches, SS1, SS2, SSA1 to SSA3, and SSB1. ˜SSB3 is a control rectifier, SD1, SD2, SDA1 to SDA3, SDB1 to SDB3 are rectifiers, A1 is a control circuit, 1 is a charging circuit, 2 is an output control circuit, and 3 is a load.
[0019]
In FIG. 3A, a capacitor CM is an output main capacitor bank that is charged and discharged within the rated voltage range of the load, and the capacitors CA1 to CAn and CB1 to CBn are within the allowable fluctuation range of the load voltage. An adjustment capacitor that is charged and discharged for voltage adjustment is connected in series to the capacitor CM, and the voltage is adjusted by switching the series-parallel connection. The switches SA and SB are for switching the series-parallel connection by dividing the capacitors CA1 to CAn and CB1 to CBn connected in series to the capacitor CM into two sets of capacitor groups. When there is a voltage difference, the same control as described above is performed.
[0020]
The control circuit A1 detects the charge / discharge state (terminal voltage) in the capacitor CM and controls the switches SA and SB in accordance with the charge / discharge state to switch the series-parallel connection of the capacitors CA1 to CAn and CB1 to CBn. It is a control means. The switches SA and SB are connected to the series circuit of the capacitors CA1 to CAn of one capacitor group A and the capacitors of the other capacitor group B from the solid line position where the capacitors CA1 to CAn and CB1 to CBn are all connected in series by the control circuit A1. Switching is controlled step by step up to the dotted line position where the series circuit of CB1 to CBn is connected in parallel.
[0021]
The charging circuit 11 charges the capacitors CM, CA1 to CAn, and CB1 to CBn with a constant current from a power source, and switching of the series-parallel connection of the capacitors CA1 to CAn and CB1 to CBn connected in series to the capacitor CM is a stage. And the series circuit of the capacitors CA1 to CAn of one capacitor group A and the series circuit of the capacitors CB1 to CBn of the other capacitor group B are connected in parallel and charged to the rated voltage to complete the charging. To do. The output control circuit 12 controls and adjusts the current supplied from the capacitors CM, CA1 to CAn, and CB1 to CBn to the load 13 as in a known current pump, for example. ) To charge capacitors CM, CA1 to CAn, and CB1 to CBn, that is, to perform switching in the case of regenerative braking in which load 13 serves as a generator. Therefore, an electronic switch, a step-down chopper, a step-up chopper, and other DC / DC converters are used as the output control circuit 12, but as viewed from the load 13 by controlling connection switching of the capacitors CA1 to CAn and CB1 to CBn. If the voltage is stabilized in a range that does not require adjustment, it can be omitted and is not a particularly essential component. Of course, if the voltage fluctuation range becomes smaller by controlling the connection switching of the capacitors CA1 to CAn and CB1 to CBn, the converter can be designed with high efficiency by combining this with the converter, thereby realizing a power supply with high voltage stability. You can also.
[0022]
Further, as shown in FIG. 3B, the switches SA and SB constituting the switching circuit are unidirectional control rectifier elements SS1, SS2, SSA1 to SSA3, SSB1 to SSB3 and a rectifier element made of a diode as shown in FIG. 3B. An antiparallel circuit with SD1, SD2, SDA1 to SDA3, and SDB1 to SDB3 can be used. Among these, a circuit that connects between one end of the series connection of at least one capacitor group A and the other end of the series connection of the other capacitor group B includes the control rectifier SSA1, the rectifier SDA1, and the other capacitor group B. A circuit that connects between one end of the series connection and the other end of the series connection of one capacitor group A is configured by the control rectifying element SSB1 and the rectifying element SDB1, and the reverse direction (charge direction) ) Control rectifying elements SSA1 and SSB1 are connected in parallel. In other circuits, the control rectifier elements SS2, SSA3, SSB3 in the charging direction and the control rectifier elements SS1, SSA2, SSB2 in the reverse direction are connected in series, and the reverse rectifier elements SD2, SDA3, SDB3, Rectifier elements SD1, SDA2, and SDB2 are connected in parallel. Of course, these circuits may be circuits in which thyristors (control rectifier elements) are connected in antiparallel or circuits in which triacs (bidirectional control rectifier elements) are connected. In this case, when there is a voltage difference, the same control as described above may be performed. However, by selectively turning on / off a unidirectional control rectifier, cross current can be prevented, so that parallel connection can be performed simultaneously. Switching control may be used.
[0023]
By configuring the switching circuit by combining thyristors, triacs, and diodes as described above, it is strong against inrush current, and it is possible to reduce on-loss and gate loss for a long time. In addition, since the capacitor voltage is applied to the main pole as a reverse bias at the time of switching the connection, the turn-off control is not required and the gate control circuit can be simplified. For example, in the circuit of FIG. 3B, at the time of charging, it starts from a state in which only the control rectifier element SS2 is turned on and all others are turned off. As the charging proceeds, the control rectifier elements SSA3 and SSB3 are first turned on, so that the control rectifier element SS2 is turned off with a reverse bias. Next, by turning on the control rectifier elements SSA1 and SSB1, the control rectifier elements SSA3 and SSB3 are turned off with a reverse bias. At the time of discharging, from the state where all the control rectifier elements are turned off, the rectifier elements SDA1 and SDB1 are conducted to start discharging, the control rectifier elements SSA2 and SSB2 are turned on, and then the control rectifier element SS1 is turned on, Switching control can be performed until the capacitors CA1 to CAn and CB1 to CBn are all connected in series.
[0024]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, when switching the capacitor bank from serial connection to parallel connection while charging, the charging voltage of each capacitor bank is compared and if there is a voltage difference, the lower voltage changeover switch is turned on, Charging was continued until the voltage difference was close to zero. At that time, the voltage applied to the remaining changeover switch without turning it on (Vs1p in (1)-(2) in FIG. 1, (3)- (4) Vs2p) may be detected, and control may be performed so that the changeover switch is turned on when the voltage approaches zero. In this way, after the switch of the capacitor bank having the lower charge voltage is turned on, the voltage applied to the switch that remains off is not compared without comparing the charge voltage between the capacitor banks. It is only necessary to monitor and turn on when the voltage is near zero. At this time, the voltage applied to the changeover switch of the capacitor bank with the higher charge voltage that remains in the off state decreases as the capacitor bank with the lower charge voltage is charged. Passes and reverses the polarity of the voltage. Therefore, it suffices to detect and turn on the voltage near zero.
[0025]
The changeover switch is not limited to an element capable of analog operation such as an IGBT, FET, or transistor, but an element capable of only on / off control such as a thyristor, triac, GTO, or mechanical relay can be used. Needless to say. Therefore, in principle, the present invention detects the moment when the voltage applied to the switch becomes zero and turns on the switch. However, when the switch element requires an on-current, such as a thyristor, it is zero. Alternatively, the switch element may be turned on by detecting a state in which a certain minute voltage remains.
[0026]
【The invention's effect】
As is apparent from the above description, according to the present invention, in a series-parallel switching capacitor power storage device configured to switch and control the series-parallel connection of a plurality of capacitor banks, one capacitor bank, the other capacitor bank, A series connection switch that is connected in series to turn on / off the charge / discharge current, and is connected in parallel with the series circuit of the other capacitor bank and the series connection switch to turn on / off the charge / discharge current of one capacitor bank. One parallel connection switch, and a second parallel connection switch connected in parallel with the series circuit of one capacitor bank and the series connection switch to turn on / off the charge / discharge current of the other capacitor bank. a plurality of switches for switching the parallel connection, the voltage detecting means for detecting the voltage of the capacitor bank , And control means for controlling the plurality of switches to determine the voltage detected by the voltage detecting means, the control means, when charging is switched to the parallel connection of the capacitor bank connected in series to turn off the series switch The voltage of each capacitor bank to be switched to the parallel connection is detected and compared by the voltage detection means, and when there is a voltage difference of a predetermined value or more, only the parallel connection switch of the capacitor bank having the lower voltage is turned on, and the voltage difference Since the other parallel connection switch is turned on under the condition that is smaller than a predetermined value, when switching a plurality of capacitor banks connected in series with a simple configuration, the connection between the capacitor banks is reduced. Even if there is a difference in charge level, cross current can be prevented from flowing. Therefore, the loss of the series-parallel switching capacitor power storage device can be reduced, and safe operation can be maintained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a series-parallel switching capacitor power storage device according to the present invention.
FIG. 2 is a diagram for explaining another embodiment of the present invention using a multistage connection switching control capacitor power supply device;
FIG. 3 is a diagram showing still another embodiment of a multistage connection switching control capacitor power supply device;
FIG. 4 is a diagram illustrating a configuration example of a series-parallel switching circuit of a capacitor bank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Voltage detection circuit, 2 ... Voltage comparison judgment circuit, 3 ... Switch control circuit, 4 ... PWM inverter, C1, C2 ... Capacitor bank, Ss, S1p, S2p ... Changeover switch

Claims (1)

複数のキャパシタバンクの直並列接続を切り換え制御するように構成した直並列切り換え型キャパシタ蓄電装置において、
一方のキャパシタバンクと他方のキャパシタバンクとの間に直列に接続され充放電電流をオン/オフする直列接続スイッチ、前記他方のキャパシタバンクと直列接続スイッチとの直列回路と並列に接続され一方のキャパシタバンクの充放電電流をオン/オフする第1の並列接続スイッチ、前記一方のキャパシタバンクと直列接続スイッチとの直列回路と並列に接続され他方のキャパシタバンクの充放電電流をオン/オフする第2の並列接続スイッチからなり前記複数のキャパシタバンクの直並列接続を切り換える複数のスイッチと、
キャパシタバンクの電圧を検出する電圧検出手段と、
前記電圧検出手段により検出した電圧を判定し前記複数のスイッチの制御を行う制御手段と
を備え、前記制御手段は、前記直列接続スイッチをオフにしてキャパシタバンクを直列接続から並列接続に切り換えて充電を行うとき、前記並列接続に切り換える各キャパシタバンクの電圧を前記電圧検出手段により検出して比較し、所定値以上の電圧差がある場合に、前記電圧の低い方のキャパシタバンクの並列接続スイッチのみをオンにし、前記電圧差が所定値より小さくなったことを条件に他方の並列接続スイッチをオンにすることを特徴とする直並列切り換え型キャパシタ蓄電装置。
In the series-parallel switching type capacitor power storage device configured to switch and control the series-parallel connection of a plurality of capacitor banks,
A series connection switch connected in series between one capacitor bank and the other capacitor bank to turn on / off charging / discharging current, and one capacitor connected in parallel with a series circuit of the other capacitor bank and the series connection switch A first parallel connection switch for turning on / off the charge / discharge current of the bank; a second switch for turning on / off the charge / discharge current of the other capacitor bank connected in parallel with the series circuit of the one capacitor bank and the series connection switch; A plurality of switches that switch the series-parallel connection of the plurality of capacitor banks,
Voltage detecting means for detecting the voltage of the capacitor bank;
Control means for determining the voltages detected by the voltage detection means and controlling the plurality of switches, the control means turning off the series connection switch and switching the capacitor bank from series connection to parallel connection to charge. The voltage of each capacitor bank to be switched to the parallel connection is detected and compared by the voltage detection means, and when there is a voltage difference of a predetermined value or more, only the parallel connection switch of the capacitor bank having the lower voltage is used. And the other parallel connection switch is turned on on the condition that the voltage difference is smaller than a predetermined value .
JP13506999A 1999-05-17 1999-05-17 Series-parallel switching capacitor power storage device Expired - Fee Related JP4079403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13506999A JP4079403B2 (en) 1999-05-17 1999-05-17 Series-parallel switching capacitor power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13506999A JP4079403B2 (en) 1999-05-17 1999-05-17 Series-parallel switching capacitor power storage device

Publications (2)

Publication Number Publication Date
JP2000324710A JP2000324710A (en) 2000-11-24
JP4079403B2 true JP4079403B2 (en) 2008-04-23

Family

ID=15143142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13506999A Expired - Fee Related JP4079403B2 (en) 1999-05-17 1999-05-17 Series-parallel switching capacitor power storage device

Country Status (1)

Country Link
JP (1) JP4079403B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233139A (en) * 2001-02-05 2002-08-16 Matsushita Electric Ind Co Ltd Dc-dc converter
JP4633960B2 (en) * 2001-05-10 2011-02-16 日清紡ホールディングス株式会社 Power storage system for automobiles
JP2003033009A (en) * 2001-07-13 2003-01-31 Takion Co Ltd Power device
JP2003111286A (en) * 2001-10-02 2003-04-11 Okumura Laboratory Inc Bank switching capacitor device equipped with parallel monitor
US7669419B2 (en) 2002-12-07 2010-03-02 Energetix Group Limited Electrical power supply system
GB0228599D0 (en) * 2002-12-07 2003-01-15 Energetix Group Ltd Electrical power supply system
JP3757219B2 (en) * 2003-06-27 2006-03-22 東光株式会社 Charge pump circuit
JP3781124B2 (en) * 2004-03-29 2006-05-31 東光電気株式会社 Capacitor power storage device
KR100637619B1 (en) 2004-11-22 2006-10-23 명지대학교 산학협력단 Method and apparatus for protecting shunt capacitor banks based on voltage difference
JP4812419B2 (en) * 2005-12-09 2011-11-09 ソニー株式会社 Battery pack and battery pack charging / discharging method
JP4640234B2 (en) * 2006-03-31 2011-03-02 日産自動車株式会社 Vehicle power supply device
JP5493472B2 (en) * 2009-05-28 2014-05-14 日産自動車株式会社 Capacitor charge control device
JP5794982B2 (en) * 2010-05-11 2015-10-14 大西 徳生 Power supply device and charging circuit
WO2012088447A1 (en) 2010-12-24 2012-06-28 Marc Henness Electrical circuit for controlling electrical power to drive an inductive load
JP5264940B2 (en) 2011-01-21 2013-08-14 本田技研工業株式会社 Electric vehicle power supply
JP5264941B2 (en) 2011-01-21 2013-08-14 本田技研工業株式会社 Electric vehicle power supply
JP5790767B2 (en) * 2011-09-21 2015-10-07 トヨタ自動車株式会社 VEHICLE BATTERY CONTROL DEVICE AND VEHICLE BATTERY CONTROL METHOD
JP5949365B2 (en) * 2012-09-13 2016-07-06 トヨタ自動車株式会社 Power system
JP2014079078A (en) * 2012-10-10 2014-05-01 Fuji Electric Co Ltd Motor driving system
JP5775895B2 (en) * 2013-03-07 2015-09-09 本田技研工業株式会社 Power supply control device and overvoltage prevention method
ES2735873T3 (en) * 2013-08-06 2019-12-20 Gogoro Inc Systems and methods to power electric vehicles that use a single or multiple power cells
EP3128639B1 (en) * 2014-06-10 2018-10-24 Kagra Inc. Electricity storage element charging method and electricity storage device
JP6090304B2 (en) * 2014-12-25 2017-03-08 トヨタ自動車株式会社 Charging method and charging device
KR101997844B1 (en) * 2017-11-08 2019-07-08 충북대학교 산학협력단 Step-wise split capacitor charging with high energy efficiency
US20240079886A1 (en) * 2021-01-27 2024-03-07 Panasonic Intellectual Property Management Co., Ltd. Electrical storage device control system and backup power supply system

Also Published As

Publication number Publication date
JP2000324710A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP4079403B2 (en) Series-parallel switching capacitor power storage device
JP3487780B2 (en) Connection switching control capacitor power supply
US10230298B2 (en) Resistorless precharging
US7830036B2 (en) Power electronic module pre-charge system and method
US9397580B1 (en) Dual link power converter
US11108338B2 (en) Dual submodule for a modular multilevel converter and modular multilevel converter including the same
JP6203289B2 (en) Power converter
KR101948983B1 (en) Battery system
JP6342063B2 (en) Power converter
JPS58112476A (en) Multilevel inverter
EP1643626A2 (en) Direct current power supply apparatus and control method for the same, and a compressor drive apparatus
JP2012075263A (en) Power conversion device
US6137703A (en) Clamped bidirectional power switches
JP3594288B2 (en) Capacitor power supply with switchable number of series connection stages
JP4046262B2 (en) Power system stabilization system
JPH11215695A (en) Series-parallel switching type power supply unit
CN115694187A (en) Boost power conversion circuit and device
JP3311670B2 (en) Series / parallel switching power supply
JP7008495B2 (en) Power converter
JP2011109790A (en) Power conversion device
CN117913879B (en) Modular multilevel converter submodule equipment and application method thereof
JPH11299119A (en) Series-parallel switching power supply device
JP3680563B2 (en) Half-bridge converter backup circuit
JP2021129468A (en) Snubber circuit and power conversion device
JP2005341747A (en) Power supply

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees