JP4079256B2 - Microbial carrier - Google Patents

Microbial carrier Download PDF

Info

Publication number
JP4079256B2
JP4079256B2 JP2002285219A JP2002285219A JP4079256B2 JP 4079256 B2 JP4079256 B2 JP 4079256B2 JP 2002285219 A JP2002285219 A JP 2002285219A JP 2002285219 A JP2002285219 A JP 2002285219A JP 4079256 B2 JP4079256 B2 JP 4079256B2
Authority
JP
Japan
Prior art keywords
polyolefin resin
vinyl acetate
acetate copolymer
foam
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002285219A
Other languages
Japanese (ja)
Other versions
JP2004113220A (en
Inventor
弘行 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2002285219A priority Critical patent/JP4079256B2/en
Publication of JP2004113220A publication Critical patent/JP2004113220A/en
Application granted granted Critical
Publication of JP4079256B2 publication Critical patent/JP4079256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、流動礁に好適な微生物担体に関する。
【0002】
【従来の技術】
従来、生活排水などの処理方法として、浄化槽に微生物担体を収納し、前記微生物担体に住まわせた微生物を排水と接触させて微生物の作用で排水の処理を行う方法が知られている(例えば、特許文献1、特許文献2、特許文献3参照)。
【0003】
前記微生物担体として、安価で表面積が大きく、しかも空隙率が高いということから、種々の連続気泡発泡プラスチックが用いられている。それらの中でも、ポリウレタン発泡体とポリオレフィン系樹脂発泡体が広く使用されている(例えば、特許文献4参照)。
【0004】
【特許文献1】
特開平2−211292号公報
【特許文献2】
特開平8−173984号公報
【特許文献3】
特開平9−85285号公報
【特許文献4】
特開2001−96289号公報
【0005】
【発明が解決しようとする課題】
しかし、前記発泡プラスチック製の微生物担体は、長期間使用すると、初期の寸法よりも小さくなって、微生物の担持表面積及び排水との接触面積が減少し、排水処理効果が低下するという問題がある。例えば、ポリウレタン発泡体製の微生物担体は、素材自体が加水分解により脆くなるため、長期に渡って浄化槽の壁や担体同士で繰り返しぶつかると、徐々に表面が削れて初期寸法よりも小さくなっていく。また、ポリオレフィン系樹脂発泡体製の微生物担体にあっては、素材自体が水に対して安定で分解され難いため、前記ポリウレタン発泡体のような劣化や変質部分の摩耗による寸法減少ではなく、長期に渡って浄化槽の壁や担体同士がぶつかることでポリオレフィン系樹脂発泡体の骨格部分が歪んだり、へたったりして寸法減少を生じると考えられる。なお、この歪みやへたりによる寸法減少は、ポリオレフィン系樹脂発泡体製の微生物担体が、使用初期と長期使用後とでほとんど重量変化を生じていないことからも裏付けられる。
【0006】
なお、前記ポリオレフィン系樹脂発泡体の歪みやへたりを生じ難くして、前記寸法減少を抑えるには、ポリオレフィン系樹脂発泡体の発泡倍率を下げて発泡体の骨格部分を強化することが、簡単で有効な手段である。しかし、発泡倍率を下げることは、微生物担体のコストアップにつながり、市場に受け入れられない解決手段である。
【0007】
この発明は、前記の点に鑑みなされたものであって、流動礁としての長期使用による歪みやへたりを抑えることができ、しかも安価な微生物担体を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明は、エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体からなる微生物担体に係る。
【0009】
前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、ポリオレフィン系樹脂の全量100重量%中、酢酸ビニル含量が12〜30重量%であると共にポリオレフィン系樹脂の全量100重量%中、エチレン酢酸ビニル共重合体が75重量%以上のものである。
【0010】
また、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、発泡倍率が10〜40倍であるのが好ましい。さらに、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、二段階発泡品が好ましい。
【0011】
さらにまた、前記微生物担体は、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体の反発弾性率が14%以上であって、流動礁に使用されることが好ましい。
【0012】
【発明の実施の形態】
以下この発明を詳細に説明する。この発明に係る微生物担体は、浄化槽や排水処理槽等における流動礁に好適なものであり、エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体からなる。
【0013】
この発明におけるエチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、ポリオレフィン系樹脂としてエチレン酢酸ビニル共重合体を含むことによって反発弾性率(JIS K 6400準拠)が高くなり、長期に渡って繰り返し浄化槽の壁にぶつかったり、担体同士でぶつかったりしても、発泡体の骨格部分が歪んだり、へたったりし難く、前記歪みやへたりによる寸法減少を抑えることができる。これは、ポリオレフィン系樹脂架橋連続気泡発泡体として一般的に使用されている低密度ポリエチレン(LDPE)をベースレジンとするものと比べ、エチレン酢酸ビニル共重合体をベースレジンとするものの方が、架橋点と架橋点間の距離が長くなって弾性に富むことによる。すなわち、低密度ポリエチレンの場合は(C−C)間が架橋点間距離となるのに対し、エチレン酢酸ビニル共重合体の場合は(C−CO−O−CH−C)間が架橋点間距離となる。
【0014】
さらに、前記架橋点間距離の長い架橋を多くして前記反発弾性率を高めるには、ポリオレフィン系樹脂(ポリマー)の全量100重量%中、酢酸ビニル含量が12〜30重量%含まれる発泡性組成物から形成されたものが、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体として好ましい。前記酢酸ビニル含量が12重量%未満の場合、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、流動礁用微生物担体としての弾性に欠け、長期使用に対する耐性が充分ではなくなる。また、30重量%を超えると、ゴム成分たるビニル成分が多量に含まれるため所望の発泡倍率を備える発泡体が得られず、微生物担体のコストが増大する。
【0015】
前記エチレン酢酸ビニル共重合体の含量は、ポリオレフィン系樹脂の全量100重量%中、75重量%以上(最大100重量%)が好ましい。75重量%未満の場合、前記長い架橋点間距離の架橋が不足して前記反発弾性率が低くなり、得られる微生物担体が流動礁として長期使用に耐えられなくなる。
【0016】
前記ポリオレフィン系樹脂には、前記ポリオレフィン系樹脂全量100重量%中、25%未満の範囲で他のポリオレフィン系樹脂を含んでもよい。他のポリオレフィン系樹脂としては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレンとメチル、エチル、プロピル若しくはブチルの各アクリル酸エステルとの共重合体、又はこれらの塩素化物、あるいはそれらの混合物、さらにはそれらとアイソタクチックポリプロピレン若しくはアタクチックポリプロピレンの混合物等を挙げることができる。
【0017】
さらに、この発明の微生物担体を長期に渡って流動礁として使用した場合における前記骨格部分の歪みやへたりによる寸法減少を効果的に抑えるには、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体の反発弾性率(JIS K 6400準拠)を14%以上(好ましくは15%以上)とするのが好ましい。なお、前記反発弾性率の上限は、特に制限されるものではなく、前記ポリオレフィン系樹脂架橋連続気泡発泡体の製造可能な範囲とされ、一般的には70%が上限とされる。
【0018】
また、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、発泡倍率が10〜40倍の高発泡倍率のものが好ましい。この範囲の発泡倍率とすれば、原料の使用量が少なくて済み、しかも反発弾性率の高い安価な微生物担体が得られる。前記10〜40倍の高発泡倍率を得るには、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体を、二段階発泡品とするのが好ましい。二段階発泡は、ポリオレフィン系樹脂架橋発泡体の製造において多用されている発泡方法であり、まず発泡性組成物を一次金型に充填し、加圧下加熱し、その後除圧して中間発泡体を得る一次発泡工程と、前記中間発泡体を常圧下加熱する二次発泡工程とにより行われる。
【0019】
次に、この発明の微生物担体の製造について説明する。まず、前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋発泡体を、所要の発泡性組成物から二段階発泡法により製造する。前記発泡性組成物には、ポリオレフィン系樹脂の他に架橋剤、発泡剤、その他適宜の助剤が含まれる。また、前記ポリオレフィン系樹脂には、樹脂100重量%中に前記エチレン酢酸ビニル共重合体が75重量%以上含まれる。
【0020】
前記架橋剤としては、従来よりポリオレフィン系樹脂架橋発泡体の二段階発泡に使用されている公知のものが用いられる。例えば、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス−ターシャリーブチルパーオキシヘキサン、1,3−ビス−ターシャリーパーオキシ−イソプロピルベンゼンなどの有機過酸化物等を挙げることができる。前記架橋剤の配合量は、通常、ポリオレフィン系樹脂100重量部に対し0.50〜1.3重量部である。
【0021】
前記発泡剤としては、加熱により分解してガスを発生するものが用いられ、特に制限されるものではない。例えばアゾジカルボンアミド、2,2’−アゾビスイソブチロニトリル、ジアゾアミノベンゼン、ベンゼンスルホニルヒドラジド、ベンゼン−1,3−スルホニルヒドラジド、ジフェニルオキシド−4,4’−ジスルフォニルヒドラジド、4,4’−オキシビスベンゼンスルフォニルヒドラジド、パラトルエンスルフォニルヒドラジド、N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジニトロソ−N,N’−ジメチルフタルアミド、テレフタルアジド、p−t−ブチルベンズアジド、重炭酸ナトリウム、重炭酸アンモニウム等の一種又は二種以上が用いられる。特にアゾジカルボンアミド、4,4’−オキシビスベンゼンスルホニルヒドラジドが好適である。添加量としては、通常、ポリオレフィン系樹脂100重量部に対して、2〜30重量部とされる。
【0022】
また、適宜の助剤としては、発泡助剤、充填剤等がある。前記発泡助剤には、酸化亜鉛、酸化鉛等の金属酸化物、低級又は高級脂肪酸あるいはそれらの金属塩、尿素及びその誘導体等が挙げられる。
【0023】
前記二段階発泡により得られたエチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋発泡体を、ロール等で圧縮して前記発泡体の気泡を破壊し、連続気泡構造とする。このようにして得られたエチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体を、必要に応じて裁断等により所要のサイズにし、所望の微生物担体を得る。
【0024】
【実施例】
表1に示す配合からなる発泡性組成物60kgを、75Lニーダーで混練後、22インチのミキシングロールで更に混練し、その9kgを40×350×650mmの金枠内に投入し、予備成形機(プレス機)で1分間型押しして形状を整えた後、130℃の一次金型内(30×400×750mm)に配置して密閉し、40分間加熱し、その後に除圧して中間発泡体を得た。次いで、前記中間発泡体を、160℃の二次金型内(110×1100×2200mm)に配置し、常圧下で100分間加熱し、その後冷却して取り出し、ポリオレフィン系樹脂架橋発泡体を得た。この得られた発泡体を一晩室温に放置した後、等速2軸ロールを用いて元厚の1/5に圧縮し、気泡を破壊して、実施例1〜4及び比較例1のポリオレフィン系樹脂架橋連続発泡体を得た。
【0025】
【表1】

Figure 0004079256
【0026】
前記実施例1〜4及び比較例1のポリオレフィン系樹脂架橋連続発泡体に対して、JIS K 6400に準拠して反発弾性率を測定した。その測定結果は、表1の下欄に示すとおりである。
【0027】
また、前記実施例1〜4及び比較例1のポリオレフィン系樹脂架橋連続発泡体に対し、流動礁用の微生物担体として長期間使用した場合の寸法減少に関する評価を次のようにして行った。まず、前記実施例1〜4及び比較例1のポリオレフィン系樹脂架橋連続発泡体を、それぞれ裁断によって10×10×10mmの微生物担体に加工した。次に、水を上まで張った径30cmのドラムに、前記各実施例及び比較例毎に微生物担体を50個入れ、前記ドラムを20回転/分で30日間回転させることにより前記ドラム内の水を攪拌し、30日後に前記微生物担体を取り出して体積を測定した。そして、前記測定値について、前記回転前の体積(10×10×10=1000mm)に対する%を計算して体積保持率とし、その体積保持率が大であるほど寸法減少の少ない良好な微生物担体であるとした。その結果を表1の下欄に示す。
【0028】
表1から理解されるように、この発明の実施例品は、比較例品と比べて反発弾性率及び体積保持率の何れも高く、流動礁用微生物担体として好適なものである。
【0029】
また、表2の配合からなる発泡性組成物800gを1Lニーダーで混練後、8インチのミキシングロールで更に混練し、130℃の一次金型内に配置して密閉し、40分間加熱した後に除圧して中間発泡体を得た。一次金型の寸法は、発泡倍率10倍:40×240×240mm、20倍:30×195×195mm、30倍:25×175×175mm、40倍:22.5×160×160mm、50倍:20×150×150mmである。次いで、前記中間発泡体を160℃の二次金型(75×550×550mm)に配置し、常圧下で100分間加熱し、その後冷却して取り出し、ポリオレフィン系樹脂架橋発泡体を得た。この発泡体を一晩放置した後、等速2軸ロールを用いて元厚の1/5に圧縮して気泡を破壊することによって、実施例5〜8及び比較例2のポリオレフィン系樹脂架橋連続発泡体を得た。
【0030】
【表2】
Figure 0004079256
【0031】
前記実施例5〜8及び比較例2の発泡体に対して、前記と同様の測定を行い、発泡倍率の影響を調べた。その結果は表2の下部に示す通りであり、発泡倍率10〜40倍の実施例5〜8は、発泡倍率50倍の比較例2よりも反発弾性率及び体積保持率の何れも高く、流動礁用微生物担体として好適であった。
【0032】
【発明の効果】
以上説明したように、この発明の微生物担体によれば、流動礁として長期使用した場合の歪みやへたりを抑えることができ、微生物による良好な浄化処理を長期に渡って安定して得ることができる。しかも、この発明の微生物担体は、ポリオレフィン系樹脂架橋連続気泡発泡体の発泡倍率を下げることなく、長期使用による歪みやへたりを抑えることができるので、コスト的に有利である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microorganism carrier suitable for a flowing reef.
[0002]
[Prior art]
Conventionally, as a treatment method such as domestic wastewater, a method is known in which a microbial carrier is stored in a septic tank, and the microorganisms living in the microbial carrier are brought into contact with wastewater to treat the wastewater by the action of the microorganisms (for example, (See Patent Literature 1, Patent Literature 2, and Patent Literature 3).
[0003]
As the microbial carrier, various open-cell foamed plastics are used because they are inexpensive, have a large surface area, and have a high porosity. Among them, polyurethane foam and polyolefin resin foam are widely used (for example, see Patent Document 4).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-211292 [Patent Document 2]
JP-A-8-173984 [Patent Document 3]
JP-A-9-85285 [Patent Document 4]
Japanese Patent Laid-Open No. 2001-96289
[Problems to be solved by the invention]
However, when the foamed plastic microbial carrier is used for a long period of time, it becomes smaller than the initial size, and there is a problem that the microbial support surface area and the contact area with the wastewater are reduced, and the wastewater treatment effect is lowered. For example, the microbial carrier made of polyurethane foam becomes brittle due to hydrolysis, so when repeatedly hitting the walls of the septic tank and the carrier over a long period of time, the surface is gradually scraped and becomes smaller than the initial dimension. . In addition, in the microbial carrier made of polyolefin resin foam, since the material itself is stable against water and difficult to be decomposed, it is not a decrease in size due to deterioration such as the polyurethane foam or wear of the deteriorated part, but a long-term The wall of the septic tank and the carriers collide with each other, and the skeleton portion of the polyolefin resin foam is distorted or collapsed, resulting in a reduction in size. The dimensional reduction due to distortion and sag is supported by the fact that the microbial carrier made of polyolefin resin foam hardly changes in weight between the initial use and after the long-term use.
[0006]
In order to suppress distortion and sag of the polyolefin resin foam and to suppress the reduction in dimensions, it is easy to strengthen the skeleton part of the foam by lowering the expansion ratio of the polyolefin resin foam. It is an effective means. However, lowering the expansion ratio leads to an increase in the cost of the microbial carrier and is a solution that is not accepted by the market.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to provide an inexpensive microorganism carrier that can suppress distortion and sag due to long-term use as a fluid reef.
[0008]
[Means for Solving the Problems]
The present invention relates to a microbial carrier comprising a polyolefin resin-crosslinked open-cell foam containing an ethylene vinyl acetate copolymer.
[0009]
The polyolefin resin-crosslinked open-cell foam containing the ethylene vinyl acetate copolymer has a vinyl acetate content of 12 to 30% by weight and a total amount of polyolefin resin of 100% by weight in 100% by weight of the polyolefin resin. The ethylene vinyl acetate copolymer is 75% by weight or more.
[0010]
The polyolefin resin-crosslinked open-cell foam containing the ethylene vinyl acetate copolymer preferably has an expansion ratio of 10 to 40 times. Furthermore, the polyolefin resin-crosslinked open-cell foam containing the ethylene vinyl acetate copolymer is preferably a two-stage foamed product.
[0011]
Furthermore, it is preferable that the microbial carrier has a rebound resilience of 14% or more of the polyolefin resin-crosslinked open cell foam containing the ethylene vinyl acetate copolymer, and is used for a flowing reef.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. Microorganism carrier according to the invention is suitable for a flow reefs in septic tanks or waste water treatment tank or the like, a polyolefin-based resin crosslinked open-celled foam containing ethylene vinyl acetate copolymer.
[0013]
The polyolefin resin-crosslinked open-cell foam containing the ethylene vinyl acetate copolymer in this invention has a high impact resilience (conforming to JIS K 6400) due to the inclusion of the ethylene vinyl acetate copolymer as the polyolefin resin. Even if it repeatedly hits the wall of the septic tank or hits the carriers, the skeletal portion of the foam is difficult to be distorted or sag, and the size reduction due to the distortion or sag can be suppressed. This is because cross-linking of ethylene vinyl acetate copolymer as the base resin is lower than low-density polyethylene (LDPE) as a base resin, which is generally used as a polyolefin resin cross-linked open-cell foam. This is because the distance between the point and the cross-linking point becomes long and rich in elasticity. That is, in the case of low-density polyethylene, the distance between the cross-linking points is between (C-C), whereas in the case of ethylene vinyl acetate copolymer, the cross-linking point is between (C-CO-O-CH 2 -C). It becomes a distance.
[0014]
Furthermore, in order to increase the rebound resilience by increasing the number of crosslinks having a long distance between crosslink points, a foamable composition containing 12 to 30% by weight of vinyl acetate in 100% by weight of the total amount of polyolefin resin (polymer). What was formed from the thing is preferable as a polyolefin-type resin crosslinked open-cell foam containing the said ethylene vinyl acetate copolymer. When the vinyl acetate content is less than 12% by weight, the polyolefin resin-crosslinked open-cell foam containing the ethylene vinyl acetate copolymer lacks elasticity as a microbial carrier for fluid reefs and does not have sufficient resistance to long-term use. . On the other hand, if it exceeds 30% by weight, since a vinyl component as a rubber component is contained in a large amount, a foam having a desired expansion ratio cannot be obtained, and the cost of the microorganism carrier increases.
[0015]
The content of the ethylene vinyl acetate copolymer is preferably 75% by weight or more (up to 100% by weight) in 100% by weight of the total amount of the polyolefin resin. When the amount is less than 75% by weight, the long cross-linking distance is insufficient and the rebound resilience is low, and the resulting microbial carrier cannot withstand long-term use as a fluid reef.
[0016]
The polyolefin resin may contain other polyolefin resin in a range of less than 25% in 100% by weight of the total amount of the polyolefin resin. Other polyolefin resins include low density polyethylene (LDPE), high density polyethylene (HDPE), ethylene-propylene copolymer, ethylene-butene copolymer, ethylene and methyl, ethyl, propyl or butyl acrylate esters Or a chlorinated product thereof, or a mixture thereof, and a mixture of them with isotactic polypropylene or atactic polypropylene.
[0017]
Furthermore, in order to effectively suppress dimensional reduction due to distortion and sag of the skeleton when the microbial carrier of the present invention is used as a flowing reef for a long period of time, a polyolefin resin containing the ethylene vinyl acetate copolymer is used. The rebound resilience (based on JIS K 6400) of the crosslinked open-cell foam is preferably 14% or more (preferably 15% or more). The upper limit of the rebound resilience is not particularly limited, and is within a range in which the polyolefin resin-crosslinked open-cell foam can be produced, and generally 70% is the upper limit.
[0018]
The polyolefin resin-crosslinked open-cell foam containing the ethylene-vinyl acetate copolymer preferably has a high expansion ratio of 10 to 40 times. If the expansion ratio is within this range, the amount of the raw material used can be reduced, and an inexpensive microbial carrier having a high impact resilience can be obtained. In order to obtain the high expansion ratio of 10 to 40 times, it is preferable that the polyolefin resin-crosslinked open-cell foam containing the ethylene-vinyl acetate copolymer is a two-stage foamed product. Two-stage foaming is a foaming method frequently used in the production of polyolefin resin cross-linked foams. First, a foamable composition is filled in a primary mold, heated under pressure, and then decompressed to obtain an intermediate foam. It is performed by a primary foaming process and a secondary foaming process in which the intermediate foam is heated under normal pressure.
[0019]
Next, production of the microbial carrier of the present invention will be described. First, a polyolefin resin cross-linked foam containing the ethylene vinyl acetate copolymer is produced from a required foamable composition by a two-stage foaming method. The foamable composition contains a crosslinking agent, a foaming agent, and other appropriate auxiliary agents in addition to the polyolefin resin. The polyolefin resin contains 75% by weight or more of the ethylene vinyl acetate copolymer in 100% by weight of the resin.
[0020]
As said crosslinking agent, the well-known thing conventionally used for the two-stage foaming of polyolefin resin crosslinked foam is used. Examples thereof include organic peroxides such as dicumyl peroxide, 2,5-dimethyl-2,5-bis-tertiary butyl peroxyhexane, 1,3-bis-tertiary peroxy-isopropylbenzene, and the like. . The amount of the crosslinking agent is usually 0.50 to 1.3 parts by weight with respect to 100 parts by weight of the polyolefin resin.
[0021]
As the foaming agent, one that decomposes by heating to generate gas is used, and is not particularly limited. For example, azodicarbonamide, 2,2'-azobisisobutyronitrile, diazoaminobenzene, benzenesulfonyl hydrazide, benzene-1,3-sulfonyl hydrazide, diphenyl oxide-4,4'-disulfonyl hydrazide, 4,4 ' -Oxybisbenzenesulfonyl hydrazide, paratoluenesulfonyl hydrazide, N, N'-dinitrosopentamethylenetetramine, N, N'-dinitroso-N, N'-dimethylphthalamide, terephthalazide, pt-butylbenzazide, One or more of sodium bicarbonate, ammonium bicarbonate and the like are used. Particularly preferred are azodicarbonamide and 4,4′-oxybisbenzenesulfonyl hydrazide. The addition amount is usually 2 to 30 parts by weight with respect to 100 parts by weight of the polyolefin resin.
[0022]
Suitable auxiliary agents include foaming assistants and fillers. Examples of the foaming aid include metal oxides such as zinc oxide and lead oxide, lower or higher fatty acids or metal salts thereof, urea and derivatives thereof.
[0023]
A polyolefin resin cross-linked foam containing an ethylene-vinyl acetate copolymer obtained by the two-stage foaming is compressed with a roll or the like to break the bubbles of the foam to obtain an open-cell structure. The polyolefin resin-crosslinked open-cell foam containing the ethylene-vinyl acetate copolymer thus obtained is made into a required size by cutting or the like as necessary to obtain a desired microbial carrier.
[0024]
【Example】
60 kg of the foamable composition having the composition shown in Table 1 was kneaded with a 75 L kneader, further kneaded with a 22-inch mixing roll, and 9 kg of the mixture was put into a 40 × 350 × 650 mm metal frame, After pressing for 1 minute with a press machine, the shape is adjusted, then placed in a primary mold (30 × 400 × 750 mm) at 130 ° C., sealed, heated for 40 minutes, and then depressurized to remove the intermediate foam Got. Next, the intermediate foam was placed in a secondary mold (110 × 1100 × 2200 mm) at 160 ° C., heated under normal pressure for 100 minutes, then cooled and taken out to obtain a polyolefin-based resin crosslinked foam. . After leaving this obtained foam at room temperature overnight, the foam was compressed to 1/5 of the original thickness using a constant speed biaxial roll to break the bubbles, and the polyolefins of Examples 1 to 4 and Comparative Example 1 A resin-based cross-linked continuous foam was obtained.
[0025]
[Table 1]
Figure 0004079256
[0026]
The rebound resilience of the polyolefin-based resin-crosslinked continuous foams of Examples 1 to 4 and Comparative Example 1 was measured according to JIS K 6400. The measurement results are as shown in the lower column of Table 1.
[0027]
In addition, the polyolefin resin cross-linked continuous foams of Examples 1 to 4 and Comparative Example 1 were evaluated for dimensional reduction when used as a microbial carrier for a flowing reef for a long period of time as follows. First, the polyolefin resin cross-linked continuous foams of Examples 1 to 4 and Comparative Example 1 were each processed into a 10 × 10 × 10 mm microbial carrier by cutting. Next, 50 microbial carriers are placed in a drum of 30 cm in diameter with water up to the top for each of the examples and comparative examples, and the drum is rotated at 20 revolutions / minute for 30 days. The microorganism carrier was taken out after 30 days and the volume was measured. And about the said measured value,% with respect to the volume (10 * 10 * 10 = 1000mm < 3 >) before the rotation is calculated, and it is set as a volume retention rate, and it is a favorable microbial support | carrier with less dimension reduction, so that the volume retention rate is large It was said that. The results are shown in the lower column of Table 1.
[0028]
As can be seen from Table 1, the examples of the present invention have higher rebound resilience and volume retention than the comparative examples, and are suitable as microbial carriers for fluid reefs.
[0029]
Also, 800 g of the foamable composition having the composition shown in Table 2 was kneaded with a 1 L kneader, further kneaded with an 8-inch mixing roll, placed in a primary mold at 130 ° C., sealed, heated for 40 minutes, and then removed. To obtain an intermediate foam. The dimensions of the primary mold are: expansion ratio 10 times: 40 × 240 × 240 mm, 20 times: 30 × 195 × 195 mm, 30 times: 25 × 175 × 175 mm, 40 times: 22.5 × 160 × 160 mm, 50 times: 20 × 150 × 150 mm. Next, the intermediate foam was placed in a secondary mold (75 × 550 × 550 mm) at 160 ° C., heated under normal pressure for 100 minutes, then cooled and taken out to obtain a polyolefin resin crosslinked foam. This foam was allowed to stand overnight, and then compressed to 1/5 of the original thickness using a constant-speed biaxial roll to break the bubbles, so that the polyolefin-based resin cross-linked continuous of Examples 5 to 8 and Comparative Example 2 A foam was obtained.
[0030]
[Table 2]
Figure 0004079256
[0031]
The foams of Examples 5 to 8 and Comparative Example 2 were measured in the same manner as described above, and the influence of the expansion ratio was examined. The results are as shown in the lower part of Table 2. Examples 5 to 8 having an expansion ratio of 10 to 40 times have higher rebound elastic modulus and volume retention than Comparative Example 2 having an expansion ratio of 50 times. It was suitable as a microbial carrier for reefs.
[0032]
【The invention's effect】
As described above, according to the microorganism carrier of the present invention, distortion and sag when used for a long time as a fluid reef can be suppressed, and a good purification treatment with microorganisms can be stably obtained over a long period of time. it can. Moreover, the microorganism carrier of the present invention is advantageous in terms of cost because it can suppress distortion and sag due to long-term use without lowering the expansion ratio of the polyolefin-based resin-crosslinked open-cell foam.

Claims (2)

エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体からなる微生物担体であって、
前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、ポリオレフィン系樹脂の全量100重量%中、酢酸ビニル含量が12〜30重量%であると共にポリオレフィン系樹脂の全量100重量%中、エチレン酢酸ビニル共重合体が75重量%以上であり、
前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体の発泡倍率が10〜40倍、反発弾性率が14%以上であって、前記微生物担体が流動礁に使用されることを特徴とする微生物担体。
A microorganism carrier comprising a polyolefin-based resin-crosslinked open-cell foam containing an ethylene vinyl acetate copolymer ,
The polyolefin resin-crosslinked open-cell foam containing the ethylene-vinyl acetate copolymer has a vinyl acetate content of 12 to 30% by weight and a total amount of polyolefin resin of 100% by weight in 100% by weight of the polyolefin resin. , Ethylene vinyl acetate copolymer is 75 wt% or more,
The polyolefin resin-crosslinked open-cell foam containing the ethylene-vinyl acetate copolymer has a foaming ratio of 10 to 40 times and a rebound resilience of 14% or more, and the microbial carrier is used for a flowing reef. A microbial carrier.
前記エチレン酢酸ビニル共重合体を含むポリオレフィン系樹脂架橋連続気泡発泡体は、二段階発泡品からなることを特徴とする請求項1に記載の微生物担体。The microbial carrier according to claim 1, wherein the polyolefin resin-crosslinked open-cell foam containing the ethylene-vinyl acetate copolymer comprises a two-stage foamed product .
JP2002285219A 2002-09-30 2002-09-30 Microbial carrier Expired - Lifetime JP4079256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285219A JP4079256B2 (en) 2002-09-30 2002-09-30 Microbial carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285219A JP4079256B2 (en) 2002-09-30 2002-09-30 Microbial carrier

Publications (2)

Publication Number Publication Date
JP2004113220A JP2004113220A (en) 2004-04-15
JP4079256B2 true JP4079256B2 (en) 2008-04-23

Family

ID=32278580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285219A Expired - Lifetime JP4079256B2 (en) 2002-09-30 2002-09-30 Microbial carrier

Country Status (1)

Country Link
JP (1) JP4079256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777809B2 (en) * 2006-03-30 2011-09-21 株式会社イノアックコーポレーション Microbial carrier manufacturing method, microbial carrier compression mold and microbial carrier manufacturing apparatus
JP5284057B2 (en) * 2008-11-21 2013-09-11 株式会社イノアックコーポレーション Method for producing microbial carrier for water treatment

Also Published As

Publication number Publication date
JP2004113220A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
CA2368492C (en) Thermoplastic elastomer composition, foam made from the same, and process for producing foam
JPH0238100B2 (en)
JP4722518B2 (en) Microbial carrier for water treatment and production method thereof
JPH0570579B2 (en)
JP5005173B2 (en) Resin composition for foam and foam using the same
JP4079256B2 (en) Microbial carrier
JP4514874B2 (en) Water treatment carrier, method for producing water treatment carrier and water treatment device
JP4024706B2 (en) Hydrophilic polyolefin resin foam
JP2007083477A (en) Method for producing foamed crosslinked polyolefin resin
JP2000103896A (en) Soft crosslinked polyolefin foam article
JP2004105099A (en) Microorganism carrier
JP2000026640A (en) Polyolefin foam
JP2005171064A (en) Open-cell foam and method for producing the same
JP3308294B2 (en) Method for producing polyolefin foam
JP4782306B2 (en) Open-cell cross-linked polyolefin foam and method for producing the same
JP3565815B2 (en) Conductive cross-linked polyethylene foam and method for producing the same
JPH10279724A (en) Production of polyolefin resin open cell foam
JP2001098101A (en) Polyethylene-based crosslinked foam
JP3245803U (en) Microbial carrier for food waste treatment
JP3758116B2 (en) Open cell foam and method for producing the same
JP4325020B2 (en) Polyolefin resin composition for cross-linked foam, cross-linked polyolefin resin foam and method for producing the same
JP2002275301A (en) Manufacturing method of crosslinked polyethylene-open cell foam
JP3615848B2 (en) Cutting material that can be cut and its manufacturing method
JP2683669B2 (en) Method for producing polyolefin foam
JP2000044713A (en) Polyolefinic resin bridged foaming substance and its preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4079256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term