JP2683669B2 - Method for producing polyolefin foam - Google Patents

Method for producing polyolefin foam

Info

Publication number
JP2683669B2
JP2683669B2 JP4083371A JP8337192A JP2683669B2 JP 2683669 B2 JP2683669 B2 JP 2683669B2 JP 4083371 A JP4083371 A JP 4083371A JP 8337192 A JP8337192 A JP 8337192A JP 2683669 B2 JP2683669 B2 JP 2683669B2
Authority
JP
Japan
Prior art keywords
foam
primary
decomposition
foaming agent
decomposition rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4083371A
Other languages
Japanese (ja)
Other versions
JPH05245949A (en
Inventor
達雄 松原
洋 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP4083371A priority Critical patent/JP2683669B2/en
Publication of JPH05245949A publication Critical patent/JPH05245949A/en
Application granted granted Critical
Publication of JP2683669B2 publication Critical patent/JP2683669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はポリオレフィン発泡体の
製造方法に関し、更に詳しく言えば、気泡径が250〜
450μm程度と比較的大きく且つ圧縮応力に富んだ、
10倍以上に発泡させたポリオレフィン発泡体を効率よ
く製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyolefin foam, and more specifically, it has a cell diameter of 250 to 250.
It is relatively large with about 450 μm and rich in compressive stress,
The present invention relates to a method for efficiently producing a polyolefin foam that is foamed 10 times or more.

【0002】[0002]

【従来の技術】ポリオレフィンのブロック発泡体の製造
方法としては、一般的に、ポリオレフィン樹脂、架橋剤
及び発泡剤の混和物を金型に充填し加圧、加熱状態でそ
の架橋剤、発泡剤を完全に分解し、その後除圧すること
により該混和物を一度に所望の密度に膨張させる方法
(以下、1段発泡と称す。)、及び特公昭52−834
8号公報、特公平2−42649号公報等に開示されて
いるように混和物を一次金型に充填し加圧下加熱して一
次膨張させ、その後その発泡体を常圧で加熱し2次膨張
させて、所望の密度の発泡体を得る方法(以下、2段発
泡と称す。)とが知られている。
2. Description of the Related Art As a method for producing a polyolefin block foam, generally, a mixture of a polyolefin resin, a cross-linking agent and a foaming agent is filled in a mold and the cross-linking agent and the foaming agent are heated and pressurized. A method in which the mixture is completely decomposed and then depressurized to expand the mixture at one time to a desired density (hereinafter referred to as one-stage foaming), and JP-B-52-834.
No. 8, Japanese Patent Publication No. 2-42649, etc., the mixture is filled in a primary mold and heated under pressure to cause primary expansion, and then the foam is heated at normal pressure for secondary expansion. A method of obtaining a foam having a desired density (hereinafter referred to as two-stage foaming) is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記一段発泡
において、10倍以上の発泡体を得る場合は、一度に所
望密度の最終発泡体に膨張させる為、得られる最終発泡
体に変形が生じたり、また金型から取り出す際その発泡
体に割れが生じたりして、その製品化率が極めて低くな
るという問題がある。一方、2段発泡においては、二次
発泡の時、その発泡体の架橋がかなり進行している為気
泡径が小さくなりその結果として圧縮応力の高い発泡体
が得られないという欠点がある。
However, in the above-mentioned one-step foaming, when a foam having a volume of 10 times or more is obtained, since the final foam having a desired density is expanded at a time, the final foam obtained may be deformed. In addition, there is a problem in that when the product is taken out of the mold, the foam is cracked, resulting in a very low commercialization rate. On the other hand, in the two-stage foaming, the cross-linking of the foam progresses considerably during the secondary foaming, so that the cell diameter becomes small, and as a result, a foam having high compressive stress cannot be obtained.

【0004】本発明は、上記欠点を克服するものであ
り、10倍以上に発泡させた最終発泡体、特に気泡径が
比較的(適度に)大きく且つ圧縮応力の高いものを効率
よく且つ品質のバラツキなく製造する方法を提供するこ
とを目的とする。
The present invention overcomes the above-mentioned drawbacks, and efficiently and quality-improves a final foam that has been foamed 10 times or more, especially one having a relatively (reasonably) large cell diameter and high compressive stress. It is an object of the present invention to provide a method for manufacturing without variation.

【0005】[0005]

【課題を解決するための手段】本発明者らは、特定の発
泡剤、即ち、その分解温度における初期分解速度が主分
解速度に対し1/20〜1/41の範囲の低速分解とな
る分解パターンを有し、且つ上記初期分解速度は4〜9
ml/g・分、上記主分解速度は100〜180ml/
g・分である発泡剤を用いることにより、製品化効率が
よく且つ気泡径が比較的大きく、圧縮応力の高い発泡体
を得る方法を見出して、本発明を完成したものである。
即ち、本発明は、ポリオレフィン、架橋剤及び発泡剤か
らなる混和物を用いて10倍以上に発泡させた最終発泡
体を製造する方法であって、上記最終発泡体の平均気泡
径は250〜450μmであり、上記最終発泡体の25
%圧縮応力は0.5〜0.8kg/cm であり、上記
発泡剤は、その分解温度における初期分解速度が主分解
速度に対し1/20〜1/41の範囲の低速分解となる
分解パターンを有し、且つ上記初期分解速度は4〜9m
l/g・分、上記主分解速度は100〜180ml/g
・分であり、上記混和物を一次金型内に充填し、該一次
金型を50kg/cm以上の加圧状態で加熱すること
により、上記発泡剤の5〜30%を分解させてその後除
圧して一次膨張させ、一次発泡倍率が10倍以下の体積
膨張率を有する一次発泡体を製造し、次いで、該一次発
泡体を2次金型内に入れ常圧で加熱して上記発泡剤の残
部を完全に分解し、該一次発泡体に対し10倍以下の体
積膨張率で2次膨張させて上記最終発泡体を製造するこ
とを特徴とする。
DISCLOSURE OF THE INVENTION The present inventors have found that a specific foaming agent, that is, a decomposition in which the initial decomposition rate at the decomposition temperature is a slow decomposition in the range of 1/20 to 1/41 with respect to the main decomposition rate. Pattern and the initial decomposition rate is 4-9
ml / g-min, the main decomposition rate is 100-180 ml /
The present invention has been completed by finding a method for obtaining a foam having a high commercialization efficiency, a relatively large cell diameter, and a high compressive stress by using a foaming agent having g · min.
That is, the present invention is a method for producing a final foam that is foamed 10 times or more using a mixture of a polyolefin, a cross-linking agent and a foaming agent, and the average foam diameter of the final foam is 250 to 450 μm. And 25 of the final foam
The% compressive stress is 0.5 to 0.8 kg / cm 2 , and the foaming agent is decomposed such that the initial decomposition rate at the decomposition temperature is low decomposition in the range of 1/20 to 1/41 with respect to the main decomposition rate. It has a pattern, and the initial decomposition rate is 4 to 9 m.
1 / g · min, the main decomposition rate is 100-180 ml / g
And 5 minutes to 30% of the foaming agent is decomposed by filling the mixture into a primary mold and heating the primary mold under a pressure of 50 kg / cm 2 or more. The primary expansion is produced by decompressing and primary expansion to produce a primary foam having a volume expansion coefficient of 10 times or less, and then the primary foam is placed in a secondary mold and heated at normal pressure to produce the foaming agent. Is completely decomposed and secondarily expanded at a volume expansion coefficient of 10 times or less with respect to the primary foam to produce the final foam.

【0006】本発明にいう「発泡剤」とは、上記ポリオ
レフィンの流動開始温度以上の分解温度を有するもの
で、例えば、アゾジカルボンアミド、ジニトロソペンタ
メチレンテトラミン、4、4′−オキシビスベンゼンス
ルホニルヒドラジド等を用いることができる。更にこれ
らの中で、その分解温度における初期分解速度が主分解
速度に対し1/20〜1/41の範囲の低速分解となる
分解パターンを有且つ上記初期分解速度が4〜9m
l/g・分、上記主分解速度が100〜180ml/g
・分である発泡剤を選定しなければならない。尚、ここ
でいう「分解温度」とは、発泡剤の加熱昇温時にその発
泡剤の分解により生じるガス発生量により示される分解
曲線において、50%以上の分解が急激に起こる温度
で、通常、発泡剤メーカーより発泡剤の分解温度として
指定された温度である。また、「分解速度」とは、1g
当たりの発泡剤が1分間当たりに分解発生するガス量で
示したものである。更に、「初期分解速度」とは、上記
分解温度において、発泡剤の分解速度が徐々に増加し、
略定速状態となるまでの平均速度をいい、通常、分解開
始から発泡剤の10〜30%が分解する間のガス発生量
をその間の時間で除した値で示したものである。また、
「主分解速度」とは、分解速度が略定速状態となった時
の速度をいう。
The "foaming agent" referred to in the present invention has a decomposition temperature which is equal to or higher than the flow initiation temperature of the above-mentioned polyolefin, and is, for example, azodicarbonamide, dinitrosopentamethylenetetramine, 4,4'-oxybisbenzenesulfonyl. Hydrazide or the like can be used. Further among these, have a decomposition pattern initial degradation rate at the decomposition temperature of the slow degradation in the range of 1/20 to 1/41 to the main degradation rate, and the rate of initial degradation is 4~9m
1 / g · min, the main decomposition rate is 100 to 180 ml / g
-You have to select the foaming agent that is the minute . The "decomposition temperature" referred to here is a temperature at which 50% or more of the decomposition rapidly occurs in the decomposition curve indicated by the amount of gas generated by the decomposition of the foaming agent when the temperature of the foaming agent is increased by heating. This is the temperature specified by the blowing agent manufacturer as the decomposition temperature of the blowing agent. Also, "decomposition rate" means 1 g
The amount of the foaming agent per unit is shown by the amount of gas decomposed and generated per minute. Further, the "initial decomposition rate" means that at the decomposition temperature, the decomposition rate of the foaming agent gradually increases,
It means the average speed until it reaches a substantially constant speed state, and it is usually shown by a value obtained by dividing the gas generation amount from the start of decomposition to the time when 10 to 30% of the foaming agent is decomposed by the time period therebetween. Also,
The "main decomposition rate" means the speed when the decomposition rate becomes substantially constant.

【0007】本発明において使用する発泡剤は、初期分
解速度/主分解速度の比が1/20〜1/41の範囲の
低速分解となり、且つ初期分解速度が4〜9ml/g・
分、主分解速度が100〜180ml/g・分となるも
のである。これは、上記の比が1/20を超えるか或い
は初期分解速度が9ml/g・分を超えると、最終発泡
体の平均気泡径が小さくなり過ぎ且つ気泡の均一性が悪
くなるためである。一方、初期分解速度が4ml/g・
分未満である場合には、一次発泡において気泡核の形成
数が不十分となるため平均気泡径が大さくなり過ぎると
ともに、その気泡径も不均一となるため好ましくない。
このような分解パターンを有する発泡剤としては、例え
ば、「ビニホールAC#3」(永和化成製、分解温度:
200℃、初期分解速度;9ml/g・分、主分解速
度;180ml/g・分、両速度比=1/20)「ビニ
ホールAC#R」(同社製、分解温度;200℃、初期
分解速度;5ml/g・分、主分解速度;140ml/
g・分、両速度比=1/28)、「セルラーD」(永和
化成社製、分解温度;205℃、初期分解速度;4ml
/g・分、主分解速度;165ml/g・分、両速度比
=1/41)、「ネオセルボンN#1000S」(永和
化成社製、分解温度;159℃、初期分解速度;4ml
/g・分、主分解速度;100ml/g・分、両速度比
=1/25)等がある。
The blowing agent used in the present invention has an initial decomposition rate / main decomposition rate in the range of 1/20 to 1/41.
Slow decomposition and initial decomposition rate of 4-9 ml / g
Minutes, the main decomposition rate is 100-180 ml / g.min.
It is. This is because the above ratio exceeds 1/20
The reason is that when the initial decomposition rate exceeds 9 ml / g · minute, the average cell diameter of the final foam becomes too small and the cell uniformity becomes poor. On the other hand, the initial decomposition rate is 4 ml / g
If less than a minute, the formation of cell nuclei in primary foaming
If the average bubble size becomes too large, the number will be insufficient.
In addition, the bubble diameters are also nonuniform, which is not preferable.
As a foaming agent having such a decomposition pattern, for example, "Vinihol AC # 3" (manufactured by Eiwa Kasei, decomposition temperature:
200 ° C, initial decomposition rate: 9 ml / g-min, main decomposition rate: 180 ml / g-min, both speed ratio = 1/20) "Vinihol AC # R" (manufactured by the same company, decomposition temperature: 200 ° C, initial decomposition rate) 5 ml / g-min, main decomposition rate; 140 ml /
g · min, both speed ratio = 1/28), “Cellular D” (manufactured by Eiwa Kasei Co., decomposition temperature: 205 ° C., initial decomposition rate: 4 ml)
/ G · min, main decomposition rate: 165 ml / g · min, both speed ratio = 1/41), “Neocerbon N # 1000S” (manufactured by Eiwa Kasei Co., decomposition temperature: 159 ° C., initial decomposition rate: 4 ml)
/ G · min, main decomposition rate; 100 ml / g · min, both speed ratio = 1/25).

【0008】本発明において、一次金型内における発泡
剤の分解は5〜30%である。これが5%未満の場合
は、気泡核の形成数が極端に少なくなり平均気泡径が大
きくなり過ぎるとともに、その気泡径も不均一となるた
め、望ましい発泡体が得られない。逆にこれが30%を
越えると、平均気泡径が小さくなり過ぎるとともに、圧
縮応力が低下するためである。この5〜30%分解させ
る手段としては、特に限定されないが、一次発泡の加熱
温度を120〜150℃、好ましくは130〜145℃
程度の比較的低い温度に設定した状態で、所定の加熱時
間により一次発泡の膨張率を調整し、それにより発泡剤
の分解量を制御するのが最も容易且つ確実な方法であ
る。その時間は目的とする一次の膨張倍率、即ち発泡剤
の分解量等により任意に選定できる。
In the present invention, the decomposition of the foaming agent in the primary mold is 5 to 30%. If it is less than 5%, the number of cell nuclei formed is extremely small, the average cell diameter becomes too large, and the cell diameter becomes non-uniform, so that a desired foam cannot be obtained. On the contrary, if this exceeds 30%, the average bubble diameter becomes too small and the compressive stress decreases. The means for decomposing 5 to 30% is not particularly limited, but the heating temperature of primary foaming is 120 to 150 ° C, preferably 130 to 145 ° C.
The easiest and most reliable method is to adjust the expansion coefficient of the primary foaming by controlling a predetermined heating time with the temperature set to a relatively low temperature, thereby controlling the decomposition amount of the foaming agent. The time can be arbitrarily selected depending on the intended primary expansion ratio, that is, the amount of decomposition of the foaming agent.

【0009】また、二次発泡において「発泡剤の残部を
完全に分解する」とは、略完全に分解する、即ち実質上
完全に分解するような場合をも含む意味である。この加
熱温度、加熱時間も特に限定されないが、発泡剤を完全
に分解し発泡させることが重要であり、且つポリオレフ
ィン樹脂に悪影響を及ぼさない範囲で設定するのが好ま
しく、通常、160〜190℃程度であり、その加熱時
間は、通常、20〜60分間程度である。
In the secondary foaming, "completely decompose the rest of the foaming agent" is meant to include a case where the foaming agent is almost completely decomposed, that is, substantially completely decomposed. The heating temperature and the heating time are not particularly limited either, but it is important to completely decompose and foam the foaming agent, and it is preferable to set it within a range that does not adversely affect the polyolefin resin, and usually about 160 to 190 ° C. The heating time is usually about 20 to 60 minutes.

【0010】本発明において一次膨張工程での圧力は、
50kg/cm以上である。この圧力未満では、膨張
倍率にもよるが、10倍付近まで膨張させる条件とした
場合、金型より発泡体の洩れが生じ一次膨張品の変形の
原因となり、そのため製品化率の低下を招来するからで
ある。また、二次膨張は常圧下で行われ、通常、20k
g/cm以下の圧力下で加工されることとなる。ま
た、本発明においては、一次発泡倍率及び二次発泡倍率
ともに、体積膨張率が10倍以下である。この一次発泡
倍率が10倍を越えると、一次発泡体の変形、割れを生
じる。また、二次発泡倍率が10倍を越えると平均気泡
径が大きくなり過ぎるとともに、二次発泡体の変形、割
れを生じるためである。
In the present invention, the pressure in the primary expansion step is
It is 50 kg / cm 2 or more. If the pressure is less than this, depending on the expansion ratio, under the condition of expanding to about 10 times, the foam leaks from the mold and causes the deformation of the primary expanded product, resulting in a decrease in the commercialization rate. Because. Also, the secondary expansion is performed under normal pressure, usually 20 k
It will be processed under a pressure of g / cm 2 or less. Further, in the present invention, both the primary expansion ratio and the secondary expansion ratio have a volume expansion coefficient of 10 times or less. If the primary expansion ratio exceeds 10 times, the primary foam will be deformed or cracked. Also, if the secondary expansion ratio exceeds 10 times, the average cell diameter becomes too large and the secondary foam is deformed or cracked.

【0011】本発明において「ポリオレフィン」とは、
例えば、通常市販されている高圧法、中圧法又は低圧法
により製造されたポリエチレン、エチレン−プロピレン
共重合体、エチレン−ブテン共重合体、エチレン−酢酸
ビニル共重合体、エチレンとメチル、エチル、プロピル
若しくはブチルの各アクリル酸エステル(このエステル
の含有量;45モル%以内)との共重合体、又はこれら
のそれぞれ塩素含有率60重量%まで塩素化したもの、
更に、これら二種以上の混合物、又はこれらとアイソタ
クチックポリプロピレン若しくはアタクチックポリプロ
ピレンとの混合物等である。
In the present invention, "polyolefin" means
For example, polyethylene, an ethylene-propylene copolymer, an ethylene-butene copolymer, an ethylene-vinyl acetate copolymer, ethylene and methyl, ethyl, propyl which are usually produced by a high pressure method, a medium pressure method or a low pressure method which are commercially available Or a copolymer of butyl with each acrylate (the content of this ester; within 45 mol%), or those chlorinated to a chlorine content of 60% by weight,
Further, a mixture of two or more of these, or a mixture of these with isotactic polypropylene or atactic polypropylene, and the like.

【0012】本発明にいう「架橋剤」とは、上記ポリオ
レフィン中において少なくともポリオレフィンの流動開
始温度以上の分解温度を有するものであって、加熱によ
り分解され、遊離ラジカルを発生してその分子間に架橋
結合を生じせしめるラジカル発生剤である有機過酸化物
等である。例えばジクミルパーオキサイド,2、5−ジ
メチル−2、5−ビス−ターシャリーブチルパーオキシ
ヘキサン,1、3−ビス−ターシャリーパーオキシ−イ
ソプロピルベンゼン等である。
The "crosslinking agent" referred to in the present invention has a decomposition temperature of at least the flow initiation temperature of the polyolefin in the above-mentioned polyolefin, and is decomposed by heating to generate free radicals to cause intermolecular formation. Examples thereof include organic peroxides, which are radical generators that cause cross-linking. For example, dicumyl peroxide, 2,5-dimethyl-2,5-bis-tert-butylperoxyhexane, 1,3-bis-tert-peroxy-isopropylbenzene, and the like.

【0013】また、本発明において、発泡状態をコント
ロールする為に、尿素を主成分とする化合物、酸化亜
鉛、酸化鉛等の金属酸化物、低級若しくは高級脂肪酸又
は低級若しくは高級脂肪酸の金属塩等の発泡助剤等を添
加することができる。更に、物性改善の為にカーボンブ
ラック、亜鉛華、酸化チタン、その他常用の配合剤を添
加することもできる。
In the present invention, in order to control the foaming state, a compound containing urea as a main component, a metal oxide such as zinc oxide or lead oxide, a lower or higher fatty acid or a metal salt of a lower or higher fatty acid, etc. A foaming aid and the like can be added. Further, carbon black, zinc white, titanium oxide, and other commonly used compounding agents can be added to improve physical properties.

【0014】[0014]

【作用】本発明においては、初期分解速度が低分解速度
となっている発泡剤を、一次金型内において30%以下
分解させるので、一次金型内の発泡体内における発泡剤
の分解は、主に低分解速度領域のみが喚起され、それに
より形成される気泡核の個数を抑制することができる。
更に、その結果として2次金型内での発泡剤の分解は、
主に主分解速度、換言すれば高分解速度領域が引き起こ
され、これにより発生したガスは、既に1次発泡におい
て形成されている気泡核内へ短時間で流入する。従っ
て、この流入により気泡を成長させ、250〜450
μmという比較的大きな均一気泡を有し、且つその25
%圧縮応力0.5〜0.8kg/cmと比較的高
最終発泡体を得ることができる
In the present invention, since the foaming agent having an initial decomposition rate of low decomposition rate is decomposed by 30% or less in the primary mold, the decomposition of the foaming agent in the foam in the primary mold is mainly Only the low decomposition rate region is stimulated, and the number of bubble nuclei formed thereby can be suppressed.
Furthermore, as a result, the decomposition of the foaming agent in the secondary mold is
A main decomposition rate, in other words, a high decomposition rate region is mainly caused, and the gas generated thereby flows into the bubble nuclei already formed in the primary foaming in a short time. Therefore, by growing a bubble by the inflow, 250-450
have a relatively large uniform bubbles of [mu] m, and the 25
% Compressive stress is not relatively high and 0.5~0.8kg / cm 2
A final foam can be obtained .

【0015】このように高圧下での発泡剤の分解が主に
気泡核形成に寄与し、更に形成される気泡核の個数が発
泡剤の分解速度に依存する理由については、詳細は不明
であるが、以下のものと推定される。即ち、高圧状態下
においては、発泡剤の分解により発生したガスは高圧状
態であるが故気泡の形成には寄与しがたく、その樹脂内
に高度に溶解し、その溶解が飽和状態に達した時点で核
気泡として一部気化し、樹脂内に残存するものと考えら
れる。従って、発泡剤の分解速度が速いと、該樹脂内の
発泡剤微粒子近傍のガス濃度がガス拡散する前に飽和溶
解度に達し、容易に気泡核を形成する。逆に発泡剤の分
解速度が遅いと、飽和溶解度に達する前にガスが拡散
し、気泡核を形成しにくくなるものと推定される。この
ような理由により、一次金型内において発泡剤の分解を
低分解速度領域主体とすることで形成される気泡核の個
数が、著しく抑制され、適度な個数になるものと考えら
れる。
The reason why the decomposition of the foaming agent under high pressure mainly contributes to the formation of cell nuclei and the number of the cell nuclei formed depends on the decomposition rate of the foaming agent is unknown. Is estimated to be: That is, under high pressure, the gas generated by the decomposition of the foaming agent is in a high pressure state, so it is difficult to contribute to the formation of bubbles and is highly dissolved in the resin, and the dissolution reaches a saturated state. At this point, it is considered that some of the nuclei bubbles are vaporized and remain in the resin. Therefore, when the decomposition rate of the foaming agent is high, the gas concentration in the vicinity of the foaming agent fine particles in the resin reaches the saturation solubility before gas diffusion and easily forms a cell nucleus. On the contrary, if the decomposition rate of the foaming agent is slow, it is presumed that the gas diffuses before the saturated solubility is reached and it becomes difficult to form a bubble nucleus. For these reasons, it is considered that the number of bubble nuclei formed by mainly decomposing the foaming agent in the low-decomposition rate region in the primary mold is remarkably suppressed and becomes an appropriate number.

【0016】一方、2次における常圧下においては、低
圧状態である為、一次発泡体は微細構造的にルーズな状
態となっており、2次において分解発生した発泡剤のガ
スは既に形成されている気泡核内に容易に流入し、気泡
の成長を促すものと推定される。尚、この時、分解速度
が遅いと1次発泡体の微細構造がルーズであるため、発
生したガスはよりルーズな状態の部分へ流入しやすく、
その結果としてセル斑を引き起こす可能性がある。従っ
て、2次における発泡剤の分解は、できるだけ高分解速
度で一時期に多量のガスを発生させることが、セルの均
一成長ひいてはセルサイズの均一化の面より好ましい。
On the other hand, since the secondary foam is in a low pressure state under normal pressure, the primary foam is in a microstructurally loose state, and the foaming agent gas decomposed and generated in the secondary foam is already formed. It is presumed that it easily flows into the existing bubble nucleus and promotes bubble growth. At this time, if the decomposition rate is slow, the fine structure of the primary foam is loose, so the generated gas easily flows into the looser part,
As a result, cell spots may be caused. Therefore, in the decomposition of the foaming agent in the second order, it is preferable to generate a large amount of gas at a time at a decomposition rate as high as possible from the viewpoint of uniform cell growth and uniform cell size.

【0017】また、一次発泡倍率及び2次発泡倍率とも
に10倍以下とするので、最終発泡体の平均気泡径を大
き過ぎず小さ過ぎない程度の大きさのものとすることが
できるとともに、一次及び二次発泡体の変形、割れも防
止できる。更に、一次膨張工程での圧力が50kg/c
2 以上であるので、金型より発泡体の洩れが生じ一次
膨張品の変形の原因となることもなく、そのため製品化
率に優れる。以上より、本発明においては、所定の発泡
剤を用いて、一次での高圧状態における発泡をある程度
以下に抑え、且つ二次における常圧状態において、でき
るだけ発泡させることにより、最終発泡体において適度
の大きさの所望気泡径を確保し、且つ優れた圧縮応力を
確保するするとともに、変形、割れ等を防止することが
できる。
Further, since both the primary expansion ratio and the secondary expansion ratio are 10 times or less, the average foam diameter of the final foam can be made not too large and not too small. Deformation and cracking of the secondary foam can also be prevented. Furthermore, the pressure in the primary expansion step is 50 kg / c
Since it is m 2 or more, leakage of the foam from the mold does not occur and it does not cause deformation of the primary expansion product, and therefore the productization rate is excellent. From the above, in the present invention, by using a predetermined foaming agent, the foaming in the high pressure state in the primary is suppressed to a certain level or less, and in the normal pressure state in the secondary, by foaming as much as possible, it is possible to obtain a proper foam in the final foam. It is possible to secure a desired bubble diameter of a large size, secure an excellent compressive stress, and prevent deformation and cracks.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。メルトインデックス1.0のポリエチレン100重
量部(以下、部という。)に、ジクミルパーオキサイド
2部(純度40%)、酸化亜鉛0.5部及びステアリン
酸1.0部からなる組成物に、下記に示す2種類の発泡
剤を10部加えた混合物(本発明に係る「組成物A」及
び比較例に係る「組成物B」の2種類)を調製する。こ
こで、「組成物A」における発泡剤としては、アゾジカ
ルボンアミド「ビニホールAC#3」(永和化成製、分
解温度;200℃、初期分解速度;5ml/g・分、主
分解速度;140ml/g・分、両速度比=1/28)
を用いた。「組成物B」における発泡剤としては、アゾ
ジカルボンアミド「ビニホールSW#5」(永和化成
製、分解温度;200℃、初期分解速度;27ml/g
・分、主分解速度;27ml/g・分、両速度比=1/
1)を用いた。
The present invention will be described below in detail with reference to examples. A composition comprising 100 parts by weight of polyethylene having a melt index of 1.0 (hereinafter referred to as "parts"), 2 parts of dicumyl peroxide (purity 40%) , 0.5 part of zinc oxide and 1.0 part of stearic acid, A mixture (two kinds of "composition A" according to the present invention and "composition B" according to a comparative example) in which 10 parts of the following two kinds of foaming agents are added is prepared. Here, as the foaming agent in "composition A", azodicarbonamide "Vinihol AC # 3" (manufactured by Eiwa Chemical Co., Ltd., decomposition temperature: 200 ° C, initial decomposition rate: 5 ml / g · min, main decomposition rate: 140 ml / g · min, both speed ratio = 1/28)
Was used. As the foaming agent in "Composition B", azodicarbonamide "Vinihol SW # 5" (manufactured by Eiwa Kasei, decomposition temperature: 200 ° C, initial decomposition rate: 27 ml / g)
・ Min, main decomposition rate; 27 ml / g ・ min, both speed ratio = 1 /
1) was used.

【0019】上記混合物をそれぞれ表面温度100℃の
ロール上で混練して、各混和物を得た。その後、この各
混和物を表1に示す各種の条件下で加工し、30倍の最
終発泡体を製造した。更に、発泡剤の上記配合量の10
部を5部に変更すること以外は、上記と同様の混合物を
調製し、これを表2に示す各種条件下で加工して、15
倍の最終発泡体を同様に製造した。尚、実施例1〜4、
比較例1〜4及び6、7は組成物Aを用い、それ以外
(比較例5、8、9)は組成物Bを用いた。この組成物
Bを用いた場合は、表中、この比較例の数字の後に*印
を付した。尚、同表中、*印の付した数字は、本発明範
囲から外れるものである。
The above mixture was kneaded on rolls each having a surface temperature of 100 ° C. to obtain each mixture. Then, each of the blends was processed under various conditions shown in Table 1 to produce 30 times the final foam. Further, the above-mentioned blending amount of the foaming agent is 10
A mixture similar to the above was prepared, except that the parts were changed to 5 parts, and this was processed under the various conditions shown in Table 2 to give 15
Double final foam was similarly prepared. Incidentally, Examples 1 to 4,
Composition A was used in Comparative Examples 1 to 4 and 6, 7 and Composition B was used in the other cases (Comparative Examples 5, 8, and 9). When this composition B was used, in the table, the mark * was added after the number of this comparative example. Incidentally, in the table, the numbers marked with * are out of the scope of the present invention.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】上記各最終発泡体の性能を評価するため
に、表1及び表2に示す項目について測定し、その結果
を同表に示す。尚、同表中、「一次金型での発泡体洩
れ」欄及び「一次、二次発泡体の変形、割れ」欄の数字
の単位は数である。「一次金型での発泡剤分解量」は%
を示す。「平均気泡径」の測定は、各発泡体につき10
0個の気泡の直径を測定し、その平均値で示したもので
ある。「25%圧縮応力」の測定は、JIS K676
7の方法により行った。「気泡均一性」の評価方法は、
目視判定により行い、その評価は以下により判断した。
○;均一良好、△;やや不均一、×;不均一。
In order to evaluate the performance of each of the above final foams, the items shown in Tables 1 and 2 were measured, and the results are shown in the same table. In the same table, the units of the numbers in the "leakage of foam in the primary mold" column and the "deformation and cracking of primary and secondary foams" are numbers. "Amount of foaming agent decomposed in the primary mold" is%
Is shown. The "average cell size" is 10 for each foam.
The diameter of 0 bubbles is measured, and the average value is shown. "25% compressive stress" is measured according to JIS K676
The method of 7 was used. The evaluation method of "bubble uniformity" is
The evaluation was made by visual judgment, and the evaluation was made as follows.
◯: Good uniformity, Δ: Slightly non-uniform, ×: Non-uniform.

【0023】これらの結果によれば、一次圧力が40k
g/cm2 と低い場合(比較例4)は、一次金型での発
泡体の洩れが生じるとともに、一次及び二次発泡体の変
形、割れも生じた。また、一次発泡倍率が11倍と大き
い場合(比較例1)も、一次及び二次発泡体の変形、割
れが生じた。更に、一次発泡倍率が11倍と大きい場合
(比較例1)及び発泡剤分解量が約36%と大きい場合
(比較例6)は、いずれも平均気泡径が105〜115
μmと小さく、且つ圧縮応力も0.30、0.47kg
/cm2 と小さい。また、二次発泡倍率が11、15倍
とそれぞれ大きい場合(比較例3、2)は、平均気泡径
が635、750μmと極めて大きいとともに、二次発
泡体の変形、割れも生じた。更に、分解量が3.4、
3.6%と少ない場合(比較例2、7)は平均気泡径が
750、580μmと極めて大きいとともに、気泡が不
均一であった。更に、初期/主分解速度比が1/1と大
きい場合(比較例5、8、9)は、いずれも、平均気泡
径が105〜125μmと小さく且つ圧縮応力(0.3
2〜0.49kg/cm2 )に優れなかった。
According to these results, the primary pressure is 40 k
When it was as low as g / cm 2 (Comparative Example 4), the foam leaked in the primary mold, and the primary and secondary foams were deformed and cracked. Also, when the primary expansion ratio was as large as 11 times (Comparative Example 1), the primary and secondary foams were deformed and cracked. Further, when the primary expansion ratio is as large as 11 times (Comparative Example 1) and the decomposition amount of the foaming agent is as large as about 36% (Comparative Example 6), the average cell diameter is 105 to 115.
As small as μm, and compressive stress is 0.30, 0.47 kg
As small as / cm 2 . Further, when the secondary expansion ratios were as large as 11 and 15 times (Comparative Examples 3 and 2), the average cell diameter was 635 and 750 μm, which were extremely large, and the secondary foam was deformed and cracked. Furthermore, the amount of decomposition is 3.4,
When it was as small as 3.6% (Comparative Examples 2 and 7), the average bubble diameter was 750 and 580 μm, which were extremely large, and the bubbles were non-uniform. Further, when the initial / main decomposition rate ratio was as large as 1/1 (Comparative Examples 5, 8, and 9), the average bubble diameter was as small as 105 to 125 μm and the compressive stress (0.3
2 to 0.49 kg / cm 2 ) was not excellent.

【0024】一方、実施例1〜6においては、15倍及
び30倍発泡体のいずれにおいても、上記のような不具
合は全てなく、所望の平均気泡径(265〜450μ
m)を有し、且つ気泡の均一性にも優れ、また圧縮応力
(0.57〜0.79kg/cm2 )にも優れる最終発
泡体を製造でき、更に金型からの発泡体の洩れもないの
で製品化率も大変よい。尚、本発明においては、前記具
体的実施例に示すものに限られず、目的、用途に応じて
本発明の範囲内で種々変更した実施例とすることができ
る。
On the other hand, in Examples 1 to 6, in both the 15-fold and 30-fold foams, there were none of the above problems, and the desired average cell diameter (265-450 μm) was obtained.
m), excellent uniformity of cells, and excellent compressive stress (0.57 to 0.79 kg / cm 2 ) can be produced, and the foam leaks from the mold. Since it does not exist, the productization rate is also very good. It should be noted that the present invention is not limited to the specific embodiments described above, but can be variously modified within the scope of the present invention according to the purpose and application.

【0025】[0025]

【発明の効果】本発明の製造方法によれば、10倍以上
に発泡させた最終発泡体、特に気泡径が適度に大きく
(即ち大き過ぎず且つ小さ過ぎず)且つ圧縮応力の高い
ものを、効率よく且つ品質のバラツキなく製造すること
ができる。
According to the production method of the present invention, a final foam that is foamed 10 times or more, particularly a foam having a reasonably large cell size (that is, not too large and not too small) and a high compressive stress, It can be manufactured efficiently and without variation in quality.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリオレフィン、架橋剤及び発泡剤から
なる混和物を用いて10倍以上に発泡させた最終発泡体
を製造する方法であって、 上記最終発泡体の平均気泡径は250〜450μmであ
り、上記最終発泡体の25%圧縮応力は0.5〜0.8kg
/cm であり、 上記発泡剤は、その分解温度における初期分解速度が主
分解速度に対し1/20〜1/41の範囲の低速分解と
なる分解パターンを有し、且つ上記初期分解速度は4〜
9ml/g・分、上記主分解速度は100〜180ml
/g・分であり、 上記混和物を一次金型内に充填し、該一次金型を50k
g/cm以上の加圧状態で加熱することにより、上記
発泡剤の5〜30%を分解させてその後除圧して一次膨
張させ、一次発泡倍率が10倍以下の体積膨張率を有す
る一次発泡体を製造し、 次いで、該一次発泡体を2次金型内に入れ常圧で加熱し
て上記発泡剤の残部を完全に分解し、該一次発泡体に対
し10倍以下の体積膨張率で2次膨張させて上記最終発
泡体を製造することを特徴とするポリオレフィン発泡体
の製造方法。
1. A method for producing a final foam which is foamed 10 times or more using a mixture of a polyolefin, a crosslinking agent and a foaming agent, wherein the final foam has an average cell diameter of 250 to 450 μm. Yes, the 25% compressive stress of the final foam is 0.5-0.8 kg
/ Cm 2 , the foaming agent has a decomposition pattern in which the initial decomposition rate at the decomposition temperature is a slow decomposition in the range of 1/20 to 1/41 with respect to the main decomposition rate, and the initial decomposition rate is 4-
9 ml / g-min, the main decomposition rate is 100-180 ml
/G.min., The above mixture is filled in a primary mold, and the primary mold is heated to 50 k
By heating in a pressurized state of g / cm 2 or more, 5 to 30% of the foaming agent is decomposed and then depressurized to be primary expanded, and the primary expansion has a volume expansion coefficient of 10 times or less. Then, the primary foam is put into a secondary mold and heated at normal pressure to completely decompose the rest of the foaming agent, and at a volume expansion coefficient of 10 times or less with respect to the primary foam. A method for producing a polyolefin foam, which comprises secondary expansion to produce the final foam.
JP4083371A 1992-03-05 1992-03-05 Method for producing polyolefin foam Expired - Lifetime JP2683669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4083371A JP2683669B2 (en) 1992-03-05 1992-03-05 Method for producing polyolefin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4083371A JP2683669B2 (en) 1992-03-05 1992-03-05 Method for producing polyolefin foam

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31308696A Division JP3170209B2 (en) 1996-11-07 1996-11-07 Method for producing polyolefin foam

Publications (2)

Publication Number Publication Date
JPH05245949A JPH05245949A (en) 1993-09-24
JP2683669B2 true JP2683669B2 (en) 1997-12-03

Family

ID=13800567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4083371A Expired - Lifetime JP2683669B2 (en) 1992-03-05 1992-03-05 Method for producing polyolefin foam

Country Status (1)

Country Link
JP (1) JP2683669B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677334B2 (en) * 1988-08-02 1994-09-28 シャープ株式会社 Optical information reader

Also Published As

Publication number Publication date
JPH05245949A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JPH0570579B2 (en)
JPH082989B2 (en) Pre-expansion method of polyolefin resin particles
JP2683669B2 (en) Method for producing polyolefin foam
JPH0318817B2 (en)
JPS6219294B2 (en)
JPS61283633A (en) Production of polyolefin foam
JPH0242649B2 (en)
JP3170209B2 (en) Method for producing polyolefin foam
JP3308294B2 (en) Method for producing polyolefin foam
JP2540407B2 (en) Method for producing polyolefin foam
JP2002275301A (en) Manufacturing method of crosslinked polyethylene-open cell foam
JP4079256B2 (en) Microbial carrier
JPS5830898B2 (en) Method for producing polyolefin foam
JP2779876B2 (en) Method for producing polyolefin foam
JP3615848B2 (en) Cutting material that can be cut and its manufacturing method
JP2872505B2 (en) Method for producing polyolefin foam
JPH09249760A (en) Manufacturing method of polyolefin foam
JP2663598B2 (en) Method for producing polyolefin resin foam
JP2000318051A (en) Manufacture of crosslinked polyethylene open cell foam
JPS61266441A (en) Production of polyolefin foam
JPH06155492A (en) Manufacture of polyolefin foam
JPH10251430A (en) Production of plastic foam
JP2003096225A (en) Production method of open-cell crosslinked polyolefin foam
JPH091578A (en) Production of polyolefin foam
JPS6153015A (en) Manufacture of polyolefin cellular body