JPH091578A - Production of polyolefin foam - Google Patents

Production of polyolefin foam

Info

Publication number
JPH091578A
JPH091578A JP7180896A JP18089695A JPH091578A JP H091578 A JPH091578 A JP H091578A JP 7180896 A JP7180896 A JP 7180896A JP 18089695 A JP18089695 A JP 18089695A JP H091578 A JPH091578 A JP H091578A
Authority
JP
Japan
Prior art keywords
foam
mold
foaming
final
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7180896A
Other languages
Japanese (ja)
Inventor
Tatsuo Matsubara
達雄 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP7180896A priority Critical patent/JPH091578A/en
Publication of JPH091578A publication Critical patent/JPH091578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE: To enable formation of a foam having a small compressive permanent strain by forming an intermediate foam at specified values of the average particle diameter of a foaming agent, the decomposition ratio of the agent, the pressure and temperature for a primary mold, and then carrying out the secondary expansion of the article. CONSTITUTION: This method of producing a polyolefin foam comprises the first step of forming an intermediate foam, by filling a primary mold with an expandable composition containing polyolefin, a cross linking agent and a foaming agent having an average particle diameter of 1-9μm, pressurizing the mold at 50-100kg/cm<2> and heating it to a temperature lower by 30-40 deg.C than the one-minute half-life temperature of the cross linking agent to decompose a portion of the foaming agent so that the decomposition rate may become (9 to 12)×(100/final expansion ratio) thereby inducing foaming, and depressurizing the primary mold when the temperature is high, to allow the primary expansion followed by taking an expanded article out of the mold, thus obtaining an intermediate foam. In the second step, the intermediate foam is placed in a secondary mold having dimensions and a shape corresponding to those of a final foam, and the mold is heated under normal pressure to decompose the remaining cross linking and foaming agents and allow the secondary expansion, thus producing a final foam having an expansion ratio of 15 or greater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリオレフィン発泡体の
製造方法に関し、更に詳しく言えば、気泡径が350〜
550μm程度と大きく、圧縮応力に富み、且つ圧縮永
久歪が小さいポリオレフィン発泡体を効率良く製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyolefin foam, and more specifically, it has a cell diameter of from 350 to 350.
The present invention relates to a method for efficiently producing a polyolefin foam having a large size of about 550 μm, a high compression stress, and a small compression set.

【0002】[0002]

【従来の技術】ポリオレフィンのブロック発泡体の製造
方法としては、一般的に、ポリオレフィン樹脂、架橋剤
及び発泡剤の混和物を金型に充填し、加圧、加熱状態で
その架橋剤、発泡剤を完全に分解し、その後除圧するこ
とにより該混和物を一度に所望の密度に膨張させる方法
(以下、1段発泡法という。)、及び特公昭52−83
48号公報、特公平2−42649号公報等に開示され
ているように混和物を一次金型に充填し、加圧下に加熱
して一次膨張させた後、得られる中間発泡体を常圧で加
熱して二次膨張させ、所望の密度の最終発泡体を得る方
法(以下、2段発泡法という。)が知られている。
2. Description of the Related Art Generally, a method for producing a polyolefin block foam is to fill a mold with a mixture of a polyolefin resin, a cross-linking agent and a foaming agent, and pressurize and heat the cross-linking agent and the foaming agent. Is completely decomposed and then decompressed to expand the mixture at one time to a desired density (hereinafter, referred to as one-stage foaming method), and JP-B-52-83.
No. 48, Japanese Patent Publication No. 2-42649, etc., the mixture is filled in a primary mold and heated under pressure for primary expansion, and then the resulting intermediate foam is subjected to normal pressure. A method (hereinafter referred to as a two-stage foaming method) in which a final foam having a desired density is obtained by heating and secondary expansion is known.

【0003】しかし、上記1段発泡法によって高発泡体
を得る場合は、一度に所望密度の最終発泡体に膨張させ
るため、得られる最終発泡体に変形が生じたり、また、
金型から取り出す際、その発泡体に割れが生じたりし
て、製品化率が極めて低くなるという問題があった。そ
のため、1段発泡法によるこの製品歩留りの低下を防止
すべく2段発泡法が開発され、この方法では、所定の発
泡倍率の製品を一度に発泡、膨張させず、2段階に分け
て発泡、膨張させることで、変形、割れ等の製品歩留り
を低下させる要因を除いている。
However, when a high foam is obtained by the one-stage foaming method, since the final foam having a desired density is expanded at a time, the obtained final foam may be deformed, or
There was a problem that when the product was taken out of the mold, the foam was cracked, resulting in a very low commercialization rate. Therefore, a two-stage foaming method has been developed to prevent the reduction in product yield due to the one-stage foaming method. In this method, a product having a predetermined expansion ratio is not expanded or expanded at a time, and foaming is performed in two steps. The factors that reduce the product yield such as deformation and cracking by expanding are removed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記2
段発泡法は、「第1工程において、高圧下に一部発泡剤
の加熱分解により形成する無数の核気泡を、除圧膨張時
に70〜90μmの微細セルに成長させ、第2工程の常
圧発泡において、この微細セルを更に100〜150μ
mの平均気泡径へと均一に成長させる。」という気泡形
成メカニズムにより行われるため、得られる最終発泡体
は均一且つ微細な独立気泡体となり、このような発泡体
は一般的に圧縮硬さが乏しく、また、圧縮永久歪が比較
的大きいという欠点を有している。
However, the above-mentioned 2)
The step-foaming method is as follows: "In the first step, countless nuclear bubbles formed by thermal decomposition of a part of the foaming agent under high pressure are grown into fine cells of 70 to 90 µm at the time of decompression expansion, and are subjected to normal pressure in the second step. In foaming, the fine cells are further added to 100 to 150 μm.
Grow uniformly to an average bubble size of m. The resulting foam has a uniform and fine closed cell structure, and such foam generally has poor compression hardness and relatively high compression set. It has drawbacks.

【0005】本発明は、上記問題点を解決するものであ
り、上記製品化歩留りの高い2段発泡法における発泡体
の物性を改善するものであり、2段発泡法において発泡
剤の粒径、第1工程における加圧圧力、架橋反応の進行
状態と発泡剤の分解状態のバランス及び発泡剤分解量等
の適正化を行うことにより、圧縮応力に富み、且つ圧縮
永久歪の小さい発泡体を製造する方法を提供することを
目的とする。
The present invention solves the above problems and improves the physical properties of a foam in the two-stage foaming method, which has a high production yield, and the particle size of the foaming agent in the two-stage foaming method. By optimizing the pressurization pressure in the first step, the balance between the progress state of the crosslinking reaction and the decomposition state of the foaming agent, and the amount of decomposition of the foaming agent, a foam having a high compression stress and a small compression set is produced. The purpose is to provide a method of doing.

【0006】[0006]

【課題を解決するための手段】本発明のポリオレフィン
発泡体の製造方法は、ポリオレフィン、架橋剤及び平均
粒径が1〜9μmの発泡剤を含む発泡性組成物を一次金
型に充填し、該一次金型を50〜100kg/cm2
加圧し、加圧下に上記架橋剤の1分間半減期温度より3
0〜40℃低い温度に加熱して、上記発泡剤の一部を下
式を満足する分解率となる如く分解させて発泡を誘起
し、高温熱時に除圧して一次膨張させ上記一次金型から
取り出して中間発泡体を製造する第1工程と、その後、
上記第1工程で得られた中間発泡体を、最終発泡体の形
状及び寸法に対応する二次型内に入れ、常圧下に該二次
型を加熱して、上記架橋剤及び上記発泡剤の残部を分解
させるとともに、上記中間発泡体を二次膨張させて発泡
倍率15倍以上の最終発泡体を製造する第2工程と、か
らなることを特徴とする。 第1工程の発泡剤分解率(%)=(9〜12)×(10
0/最終発泡倍率)
The method for producing a polyolefin foam according to the present invention comprises the steps of filling a primary mold with a foaming composition containing a polyolefin, a cross-linking agent and a foaming agent having an average particle size of 1 to 9 μm. The primary mold is pressurized to 50 to 100 kg / cm 2 , and the pressure is increased to 3 from the 1-minute half-life temperature of the cross-linking agent under pressure.
By heating to a low temperature of 0 to 40 ° C., a part of the foaming agent is decomposed so as to have a decomposition rate satisfying the following formula to induce foaming, and decompressed at the time of high temperature heat to perform primary expansion to cause the primary expansion. The first step of taking out and manufacturing the intermediate foam, and thereafter,
The intermediate foam obtained in the first step is placed in a secondary mold corresponding to the shape and size of the final foam, and the secondary mold is heated under normal pressure to remove the crosslinking agent and the foaming agent. The second step of decomposing the rest and secondary expanding the intermediate foam to produce a final foam having an expansion ratio of 15 times or more. Foaming agent decomposition rate (%) in the first step = (9 to 12) × (10
0 / final expansion ratio)

【0007】本発明において、上記「ポリオレフィン」
とは、例えば、通常市販されている高圧法、中圧法又は
低圧法により製造されたポリエチレン、エチレン−プロ
ピレン共重合体、エチレン−ブテン共重合体、エチレン
−酢酸ビニル共重合体、エチレンとメチル、エチル、プ
ロピル若しくはブチルの各アクリル酸アルキルエステル
(このエステルの含有量;45モル%以内)との共重合
体、又はこれらのそれぞれ塩素含有率60重量%まで塩
素化物、更に、これらの2種以上の混合物、又はこれら
とアイソタクチックポリプロピレン若しくはアタクチッ
クポリプロピレンとの混合物等をいう。
In the present invention, the above-mentioned "polyolefin"
The term, for example, commercially available high-pressure method, polyethylene produced by a medium-pressure method or low-pressure method, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene and methyl, Copolymers of ethyl, propyl or butyl with each acrylic acid alkyl ester (content of this ester; 45 mol% or less), or chlorinated compounds thereof each having a chlorine content of up to 60% by weight, and two or more of these Or a mixture of these with isotactic polypropylene or atactic polypropylene.

【0008】本発明にいう「架橋剤」とは、上記ポリオ
レフィン中において少なくともポリオレフィンの流動開
始温度以上の分解温度を有するものであって、加熱によ
り分解され、遊離ラジカルを発生してポリオレフィンの
分子間に架橋結合を生ぜしめるラジカル発生剤である有
機過酸化物等をいう。具体例としてはジクミルパーオキ
サイド、2,5−ジメチル−2,5−ビス−ターシャリ
ーブチルパーオキシヘキサン、1,3−ビス−ターシャ
リーパーオキシ−イソプロピルベンゼン等が挙げられ
る。また、上記「発泡剤」としては、上記ポリオレフィ
ンの流動開始温度以上の分解温度を有するものを使用で
き、例えば、アゾジカルボンアミド、ジニトロソペンタ
メチレンテトラミン等が挙げられる。
The "crosslinking agent" in the present invention has a decomposition temperature of at least the flow initiation temperature of the polyolefin in the above-mentioned polyolefin, and is decomposed by heating to generate free radicals to cause intermolecular formation of the polyolefin. It refers to an organic peroxide or the like which is a radical generator that causes cross-linking. Specific examples thereof include dicumyl peroxide, 2,5-dimethyl-2,5-bis-tert-butylperoxyhexane and 1,3-bis-tert-peroxy-isopropylbenzene. As the "foaming agent", one having a decomposition temperature equal to or higher than the flow initiation temperature of the polyolefin can be used, and examples thereof include azodicarbonamide and dinitrosopentamethylenetetramine.

【0009】また、本発明においては、発泡状態をコン
トロールするために、尿素を主成分とする化合物、酸化
亜鉛、酸化鉛等の金属酸化物、低級若しくは高級脂肪酸
又は低級若しくは高級脂肪酸の金属塩等の発泡助剤など
を添加することができる。更に、物性改善のためにカー
ボンブラック、酸化チタン等の他、この種の発泡性組成
物に常用される各種の配合剤を適宜添加することもでき
る。
Further, in the present invention, in order to control the foaming state, a compound containing urea as a main component, a metal oxide such as zinc oxide and lead oxide, a lower or higher fatty acid or a metal salt of a lower or higher fatty acid, etc. The foaming auxiliary agent and the like can be added. Further, in order to improve the physical properties, carbon black, titanium oxide, and the like, as well as various compounding agents commonly used in this type of foamable composition, can be appropriately added.

【0010】本発明において使用する発泡剤は、その
「平均粒径が1〜9μm」である必要があり、1〜7μ
m、特に1〜5μmの範囲が好ましい。この平均粒径が
9μmを越える場合は、発泡剤分解時に形成される核気
泡の数密度が低くなり、その結果として核気泡間の間
隔、即ち気泡壁が厚くなる。そのため、第1工程におけ
る一次膨張時の気泡成長過程における気泡集合現象が誘
起され難く、本発明の目的とする巨大セルが形成され難
くなり、物性も低下する。
The foaming agent used in the present invention must have an "average particle size of 1 to 9 μm", and 1 to 7 μm.
m, particularly preferably in the range of 1 to 5 μm. If the average particle size exceeds 9 μm, the number density of the nuclear bubbles formed during decomposition of the foaming agent becomes low, and as a result, the gap between the nuclear bubbles, that is, the bubble wall becomes thick. Therefore, the bubble aggregation phenomenon in the bubble growth process at the time of the primary expansion in the first step is hard to be induced, the giant cell which is the object of the present invention is hard to be formed, and the physical properties are deteriorated.

【0011】また、この粒径が1μm未満の発泡剤は、
発泡性組成物中に均一に分散させることが難しく、凝集
したりして良好な外観、性状の発泡体を得ることができ
ない。この発泡剤の平均粒径が1〜5μmであれば、よ
り圧縮永久歪に優れた発泡体を得ることができる。尚、
ここで言う発泡剤の平均粒径とは、粉体比表面積測定器
(株式会社島津製作所製、SS−100型)を用い、発
泡剤粒子の比表面積を測定し、その比表面積値から下記
の式に従って算出したものである。 発泡剤の平均粒径(μm)=(6/ρ・Sw)×104 尚、上記式においてρは粉体密度(g/cm3 )、Sw
は比表面積(cm2 /g)である。
Further, the foaming agent having a particle size of less than 1 μm is
It is difficult to disperse it uniformly in the foamable composition, and it is difficult to obtain a foam having good appearance and properties due to aggregation. When the foaming agent has an average particle size of 1 to 5 μm, a foam having a better compression set can be obtained. still,
The average particle size of the foaming agent as used herein means a specific surface area of the foaming agent particles measured using a powder specific surface area measuring instrument (manufactured by Shimadzu Corporation, SS-100 type), and the specific surface area value is as follows. It is calculated according to the formula. Average particle diameter (μm) of foaming agent = (6 / ρ · Sw) × 10 4 In the above formula, ρ is powder density (g / cm 3 ), Sw
Is the specific surface area (cm 2 / g).

【0012】第1工程での「圧力」は、「50〜100
kg/cm2 」とする必要があり、特に50〜80kg
/cm2 の範囲が好ましい。この一次金型内の圧力が5
0kg/cm2 未満では、第1工程の所定の発泡剤分解
率とした場合に、発泡体を10倍付近まで膨張させる条
件となる。それにより膨張時に1次金型より発泡性組成
物の洩れが生じ、中間発泡体の変形原因になり、更にこ
れが製品化率の低下を招くことになる。
The "pressure" in the first step is "50-100".
kg / cm 2 ", especially 50-80 kg
The range of / cm 2 is preferable. The pressure in this primary mold is 5
When it is less than 0 kg / cm 2, it is a condition for expanding the foam up to about 10 times when the decomposition ratio of the foaming agent in the first step is a predetermined value. As a result, the expandable composition leaks from the primary mold during expansion, which causes deformation of the intermediate foam, which further lowers the commercialization rate.

【0013】一方、圧力が100kg/cm2 を越える
場合は、発泡剤の分解により発生するガスの分散速度が
遅く、そのため形成される核気泡の数密度が低く抑えら
れて、気泡壁が厚くなり、発泡剤粒径が上限以上である
場合と同じ理由で巨大セルが形成され難くなる。この圧
力が50〜80kg/cm2 であれば、変形等を生ぜ
ず、且つ巨大セルが容易に形成される。尚、ここで言う
圧力とは閉止された一次金型の内表面全面に負荷される
圧力のことである。
On the other hand, when the pressure exceeds 100 kg / cm 2 , the dispersion speed of the gas generated by the decomposition of the foaming agent is slow, so that the number density of the nuclear bubbles formed is suppressed to be low and the bubble wall becomes thick. For the same reason as when the foaming agent particle size is not less than the upper limit, it becomes difficult to form a giant cell. If the pressure is 50 to 80 kg / cm 2 , no deformation or the like will occur and a giant cell can be easily formed. The pressure referred to here is the pressure applied to the entire inner surface of the closed primary mold.

【0014】更に、第1工程での「加熱」は、「使用す
る架橋剤の1分間半減期温度より30〜40℃低い温
度」である必要があり、特に32〜37℃低い温度範囲
が好ましい。この温度が1分間半減期温度より40℃を
越えて低い場合は、発泡体内部の架橋が不充分となり、
セル荒れ、ボイド発生等の品質トラブルを招来する。一
方、この加熱温度が、架橋剤の1分間半減期温度を30
℃未満しか下回らない場合は、発泡剤の分解に対し架橋
反応が先行し、架橋密度の上昇に伴って分解ガスの分散
速度が低下する。そのため核気泡の数密度が低下し、気
泡壁が厚くなって気泡集合性が低下し、その結果、巨大
セルが形成され難くなるとともに、物性も低下する。
Furthermore, the "heating" in the first step must be "a temperature 30 to 40 ° C. lower than the one-minute half-life temperature of the crosslinking agent used", and a temperature range of 32 to 37 ° C. is particularly preferable. . If this temperature is lower than 1 minute half-life temperature by more than 40 ° C, the crosslinking inside the foam becomes insufficient,
This causes quality problems such as cell roughness and void generation. On the other hand, this heating temperature causes the 1-minute half-life temperature of the crosslinking agent to be 30
When the temperature is lower than 0 ° C, the decomposition reaction of the foaming agent is preceded by the crosslinking reaction, and the dispersion rate of the decomposition gas decreases as the crosslinking density increases. As a result, the number density of the nuclear bubbles decreases, the bubble walls become thicker, and the bubble aggregation property deteriorates. As a result, it becomes difficult to form huge cells and the physical properties also decrease.

【0015】また、第1工程における発泡剤の「分解
率」は、「(9〜12)×(100/最終発泡倍率)
%」とする必要があり、特に(10〜11)×(100
/最終発泡倍率)の範囲が好ましい。即ち、第1工程で
は高圧下で発泡を行った後、除圧して爆発的に膨張させ
るため、発泡工程で形成された核気泡が、その成長過程
において隣接する気泡と合一化(集合)し、換言すれば
巨大セルを形成し易く、特に発泡剤の分解率が9×(1
00/最終発泡倍率)%以上の時その傾向が顕在化し、
最終発泡倍率15倍以上の発泡体を容易に製造すること
ができる。
The "decomposition rate" of the foaming agent in the first step is "(9-12) x (100 / final foaming ratio)"
% ", Especially (10-11) x (100
/ Final expansion ratio) is preferable. That is, in the first step, after defoaming under high pressure and expanding explosively, the nuclear bubbles formed in the foaming step coalesce (assemble) with adjacent bubbles in the growth process. In other words, it is easy to form huge cells, and the decomposition rate of the foaming agent is 9 × (1
When 00 / final foaming ratio)% or more, the tendency becomes apparent,
A foam having a final expansion ratio of 15 times or more can be easily manufactured.

【0016】一方、この分解率が12×(100/最終
発泡倍率)%を越える場合は、中間発泡体の膨張率が過
大となり、変形、ワレ等の不良を招来して2段発泡本来
の目的が損なわれる。このような理由により製品不良を
誘発することなく巨大セルを形成させるためには、発泡
剤の分解率を上記の範囲内とする必要がある。
On the other hand, when the decomposition rate exceeds 12 × (100 / final foaming ratio)%, the expansion rate of the intermediate foam becomes excessive, resulting in defects such as deformation and cracks, and the original purpose of the two-stage foaming. Is damaged. For these reasons, in order to form huge cells without inducing product defects, the decomposition rate of the foaming agent must be within the above range.

【0017】尚、発泡剤の分解率を調整する手段として
は、本発明においては加熱温度の範囲が特定されている
ため、その温度範囲内において金属酸化物、尿素系助剤
等の発泡助剤の添加量を調整すること等により実施する
必要がある。
As a means for adjusting the decomposition rate of the foaming agent, since the heating temperature range is specified in the present invention, a foaming auxiliary agent such as a metal oxide or a urea type auxiliary agent within the temperature range is specified. It is necessary to carry out by adjusting the addition amount of

【0018】更に、発泡剤の分解量の調整は、上記手段
の他、より簡便且つ確実な方法として、第1工程の加熱
温度を、架橋剤の1分間半減期温度を考慮しつつ、13
0〜140℃程度の比較的低温に設定しておき、その加
熱時間によって行うこともできる。また、第2工程での
加熱温度は、発泡剤を完全に分解し発泡させることが重
要であって、且つポリオレフィンに悪影響を及ぼさない
範囲で設定する必要があり、通常、160〜190℃程
度とすることができ、その加熱時間は、20〜60分間
程度とすればよい。
In addition to the above-mentioned means, the decomposition amount of the foaming agent can be adjusted by a simpler and more reliable method, considering the heating temperature in the first step and the one-minute half-life temperature of the crosslinking agent.
It is also possible to set the temperature to a relatively low temperature of about 0 to 140 ° C. and perform the heating time. Further, the heating temperature in the second step is important to completely decompose and foam the foaming agent, and it is necessary to set it within a range that does not adversely affect the polyolefin, and is usually about 160 to 190 ° C. The heating time may be about 20 to 60 minutes.

【0019】また、本発明において使用する「二次型」
は、第1工程で使用する密閉型であって加圧して使用す
るものとは異なり、非密閉の内部空間を有するものであ
る。そして、この内部空間内において中間発泡体が二次
膨張する際、内部空間内に残存する空気を発泡体の膨張
圧により外部へ排除しうる構造を有し、通常、二次型の
適宜な型面に上記内部空間と外部雰囲気とを連通させる
小孔が、各面に1〜2個設けられている。
The "secondary type" used in the present invention
Is different from the closed type used in the first step and used under pressure, and has a non-closed internal space. Then, when the intermediate foam expands secondarily in this internal space, it has a structure capable of removing the air remaining in the internal space to the outside by the expansion pressure of the foam, and is usually a suitable secondary mold. Each surface is provided with one or two small holes for communicating the internal space with the external atmosphere.

【0020】尚、上記二次型の内部空間の形状、寸法
は、最終発泡体のそれに対応するものである。この「対
応する」とは、略相似形とする意味であり、これにより
発泡体の3次元的な膨張をより均一に生ぜしめることが
できる。このように方向性のない均一な膨張をさせるこ
とにより、経時収縮による最終発泡体表面の収縮斑によ
る凹凸、寸法誤差等の発生を防ぐことができる。
The shape and dimensions of the internal space of the secondary mold correspond to those of the final foam. The term "corresponding" means that the shapes are substantially similar to each other, so that the three-dimensional expansion of the foam can be caused more uniformly. Such uniform expansion without directivity can prevent the occurrence of unevenness, dimensional error, etc. due to shrinkage unevenness on the surface of the final foam due to aging shrinkage.

【0021】更に、第3発明のように、上記二次型の内
部空間を構成する縦、横及び高さの各寸法のいずれも
が、上記中間発泡体を二次膨張させた発泡体の発泡直後
の夫々の寸法に対し、1〜10%小さくした寸法である
のが好ましい。このような寸法とすることによって、発
泡、膨張した最終発泡体が、その自己膨張力でこの内部
空間の壁面に余すところなく均一に接触し、押しつけら
れることで、該内部空間の形状通りに成形可能となると
ともに、最終発泡体の形状のバラツキが小さくなる。加
えて、二次型での加熱工程或いは必要に応じて行われる
冷却工程での熱移動効率も向上する。尚、この場合の
「縦、横及び高さ」とは、明確にこれが概念されないよ
うな立体形状の場合は、三次元的にみて略相似形状とい
う意味に用いる。
Further, as in the third aspect of the invention, foaming of a foam obtained by subjecting the intermediate foam to a secondary expansion in all of the longitudinal, lateral and height dimensions that form the internal space of the secondary mold. It is preferable that the size is reduced by 1 to 10% with respect to each size immediately after. With such a size, the foamed and expanded final foam body is uniformly contacted and pressed against the wall surface of this internal space by its self-expanding force, and is pressed into the shape of the internal space. In addition to being possible, variations in the shape of the final foam are reduced. In addition, the heat transfer efficiency in the heating process in the secondary mold or the cooling process performed as needed is also improved. In this case, the term “vertical, horizontal and height” is used to mean a substantially similar shape when viewed three-dimensionally in the case of a three-dimensional shape that is not clearly defined.

【0022】尚、内部空間寸法が1%未満しか小さくな
い場合は、発泡体の自己膨張力による該内部空間内壁面
への該発泡体の押圧力が不充分となり、発泡体表面が凹
凸になったり角部が形成されなかったりして、二次型通
りに成形され難くなるとともに加熱効率も低下する。一
方、10%を越えて小さくした場合には、その後の冷却
により発泡体が収縮しても、なお発泡体外寸が該空間内
寸より相当大きく、冷却された二次型からの最終発泡体
の取出しが困難になったり、二次型の開放時に発泡体の
中央部が浮き上がったりして、変形、割れ等を生ずるこ
ともある。
When the size of the internal space is less than 1%, the pressing force of the foam on the inner wall surface of the internal space due to the self-expansion force of the foam becomes insufficient and the surface of the foam becomes uneven. Or, since the corners are not formed, it becomes difficult to mold the secondary mold and the heating efficiency also decreases. On the other hand, when it is made smaller than 10%, even if the foam shrinks due to the subsequent cooling, the outer size of the foam is still considerably larger than the inner size of the space, and the final foam from the cooled secondary mold is It may be difficult to take it out, or the center of the foam may be lifted when the secondary mold is opened, resulting in deformation, cracking or the like.

【0023】[0023]

【作用】本発明では、第1工程での発泡剤の平均粒径、
加圧圧力、加熱温度、架橋反応と発泡剤分解のバラン
ス、及び発泡剤の分解率を適正化することにより、第1
工程で発泡剤分解時に形成される核気泡の数密度を高く
し、核気泡間の間隔、即ち気泡壁を薄くするとともに除
圧時の爆発的な膨張を助長することができる。このよう
に形成される気泡壁と、除圧時に惹起される爆発的膨張
とが相まって、その爆発的膨張時の微細セル成長過程に
おいては、一部気泡壁の破壊を発生誘起させることがで
きる。その結果、微細セルが集合し、350〜550μ
mとセルサイズが大きくなるとともに、破壊された気泡
壁のストランドが残存した気泡壁へ融着し、その気泡壁
を補強するため圧縮応力に富み、且つ圧縮永久歪の小さ
い発泡体を提供することが可能となる。
In the present invention, the average particle size of the foaming agent in the first step,
By optimizing the pressurizing pressure, heating temperature, the balance between the crosslinking reaction and the decomposition of the foaming agent, and the decomposition rate of the foaming agent,
It is possible to increase the number density of the nuclear bubbles formed when the foaming agent is decomposed in the process, thin the gap between the nuclear bubbles, that is, the bubble wall, and promote explosive expansion during depressurization. The bubble wall thus formed and the explosive expansion caused during depressurization are combined with each other, and in the process of growing the fine cells at the time of the explosive expansion, it is possible to partially induce the destruction of the bubble wall. As a result, the fine cells gather, and 350 to 550μ
(EN) Provided is a foam which has a large m and a cell size, and a strand of a destroyed cell wall is fused to the remaining cell wall to reinforce the cell wall, which is rich in compressive stress and has a small compression set. Is possible.

【0024】[0024]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 実施例1〜3及び比較例1〜7 メルトインデックス1.0のポリエチレン100重量部
(以下、部という。)に対し、種々の平均粒径を有する
アゾジカルボンアミド5部、1分間半減期温度170℃
のジクミルパーオキサイド(40%濃度)2部、更に発
泡剤の分解率を調整すべく酸化亜鉛/尿素系助剤を適宜
配合した発泡性組成物を各種調製し、これらの組成物
を、表面温度100℃のロール上で混練して各種組成の
発泡性混和物を得た。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. Examples 1 to 3 and Comparative Examples 1 to 7 100 parts by weight of polyethylene having a melt index of 1.0 (hereinafter referred to as "parts") 5 parts of azodicarbonamide having various average particle sizes, 1-minute half-life temperature of 170 ℃
2 parts of dicumyl peroxide (40% concentration), and various zinc oxide / urea type auxiliaries to adjust the decomposition rate of the foaming agent were prepared. The mixture was kneaded on a roll at a temperature of 100 ° C. to obtain a foamable mixture having various compositions.

【0025】上記混和物6kgを一次金型(内寸法;4
10mm×410mm×40mm)内に充填し、表1に
示す第1工程の条件(加熱は熱媒流路にスチームを導通
させることにより行った。)下で加工し、その後、高温
熱時に除圧して所定の大きさに発泡、膨張させ金型内か
ら取り出して中間発泡体を得た。次いで、これを所定の
二次型(内部空間寸法:1000mm×1000mm×
100mm)に入れ、170℃で30分間加熱(上記と
同様にして加熱した。)し、その後、型内の熱媒流路に
通水して60分間で室温にまで降温し、発泡倍率15倍
の最終発泡体を製造した。
6 kg of the above mixture was put into a primary mold (internal dimension: 4
10 mm × 410 mm × 40 mm) and processed under the conditions of the first step shown in Table 1 (heating was carried out by passing steam through the heat medium passage), and then depressurized at high temperature. Then, it was foamed and expanded to a predetermined size and taken out from the mold to obtain an intermediate foam. Then, this is put into a predetermined secondary mold (internal space dimension: 1000 mm × 1000 mm ×
100 mm), heated at 170 ° C. for 30 minutes (heated in the same manner as above), then passed through a heat medium passage in the mold and cooled to room temperature in 60 minutes, and the expansion ratio was 15 times. A final foam of

【0026】[0026]

【表1】 [Table 1]

【0027】上記の各条件によってそれぞれ100個の
発泡体を得、その時の最終発泡体の変形、割れ、内層部
の状態(セル荒れ、ボイドの発生)並びに平均気泡径、
25%圧縮応力、及び25%圧縮永久歪について評価、
測定し、その結果を表1に併記した。
Under the above-mentioned conditions, 100 foams were obtained, and the final foams were deformed, cracked, the inner layer state (cell roughness, voids), and the average cell diameter,
Evaluation for 25% compressive stress and 25% compression set,
The measurement was performed, and the results are also shown in Table 1.

【0028】尚、表1中、*印を付した数字は、本発明
範囲から外れるものである。また、同表中、第1工程に
おける発泡剤分解率(%)は、一次膨張前の発泡性混和
物の発泡剤分解率を「0」、二次膨張終了後の発泡体の
発泡剤分解率を「100」とし、下記の式によって算出
した。 発泡剤分解率(%)={(V2 −V1 )/(V3
1 )}×100 V1 :発泡性混和物の体積(cm3 )、V2 :一次膨張
完了直後の中間発泡体の体積(cm3 )、V3 :二次膨
張完了直後の最終発泡体の体積(cm3 ) 更に、最終発泡体の変形、割れ(個)は外観目視検査に
より、また、セル荒れ、ボイド(個)は、破壊内層目視
検査によって評価した。
In Table 1, the numbers marked with * are outside the scope of the present invention. Further, in the same table, the foaming agent decomposition rate (%) in the first step is "0" for the foaming agent decomposition rate of the foaming mixture before the primary expansion, and the foaming agent decomposition rate of the foam after the secondary expansion is completed. Was set to “100” and calculated by the following formula. Blowing agent decomposition rate (%) = {(V 2 -V 1) / (V 3 -
V 1 )} × 100 V 1 : Volume of foamable mixture (cm 3 ), V 2 : Volume of intermediate foam immediately after completion of primary expansion (cm 3 ), V 3 : Final foam immediately after completion of secondary expansion volume (cm 3) in addition, the deformation of the final foam, crack (number) by appearance inspection, also rough cell, void (pieces) were evaluated by breaking the inner visual inspection.

【0029】また、平均気泡径(μm)の測定は、各発
泡体につき100個の気泡の直径を光学顕微鏡で観察、
測定し、その平均値で示したものである。25%圧縮応
力の測定は、JIS K6767の方法により行った。
この測定によって得られた値が大きいと、圧縮応力が大
きくなり、圧縮応力に富むことになる。更に、25%圧
縮永久歪の測定も、JIS K6767により行った。
The average cell diameter (μm) was measured by observing the diameter of 100 cells in each foam with an optical microscope.
It is measured and shown as the average value. The measurement of the 25% compressive stress was performed according to the method of JIS K6767.
If the value obtained by this measurement is large, the compressive stress will be large and the compressive stress will be rich. Furthermore, the 25% compression set was also measured according to JIS K6767.

【0030】表1に示す通り、本発明の実施例ではいず
れも変形、ボイド等は皆無であり、また、平均気泡径が
350〜550μmと大きく、圧縮応力の大きい、圧縮
永久歪の小さい発泡体が効率よく得られている。一方、
本発明の範囲より外れる場合、製品不良が多発したり
(比較例2、4、7)或いは気泡径が小さく(比較例
1、3、5、6)、物性的にも優れた発泡体を得ること
ができない。更に、表1に示す物性以外に実施例1〜3
で得られた最終発泡体は密度が0.065g/cm3
縦、横が995〜1000mm(最大値と最小値の差が
5mm)、厚さが98〜101mm(最大値と最小値の
差が3mm)と略均一で、二次型の内部空間の形状とほ
とんど同じで、その外周表面は平滑性に優れ極めて美麗
であった。
As shown in Table 1, in the examples of the present invention, there was no deformation, voids, etc., and the average cell diameter was as large as 350 to 550 μm, the compression stress was large, and the compression set was small. Is efficiently obtained. on the other hand,
When it is out of the range of the present invention, product defects frequently occur (Comparative Examples 2, 4, 7) or the cell diameter is small (Comparative Examples 1, 3, 5, 6), and a foam having excellent physical properties is obtained. I can't. Furthermore, in addition to the physical properties shown in Table 1, Examples 1-3
The final foam obtained in 1. has a density of 0.065 g / cm 3 ,
The height and width are 995 to 1000 mm (the difference between the maximum and minimum values is 5 mm) and the thickness is 98 to 101 mm (the difference between the maximum and minimum values is 3 mm), which are substantially uniform, and the shape of the internal space of the secondary mold. Almost the same, the outer peripheral surface was excellent in smoothness and was extremely beautiful.

【0031】実施例4、5及び比較例8、9 実施例1において使用した一次金型の寸法を種々変更
し、それに伴い混和物の仕込量を、実施例4、5及び比
較例8、9においてそれぞれ5.5、6.7、5.2及
び7.1kgに変更した以外は実施例1と全く同様の方
法で発泡倍率15倍の最終発泡体を製造した。その結果
を表2に示す。
Examples 4 and 5 and Comparative Examples 8 and 9 The dimensions of the primary mold used in Example 1 were variously changed, and accordingly, the amount of the admixture charged was changed to Examples 4 and 5 and Comparative Examples 8 and 9. A final foam having a foaming ratio of 15 times was produced in the same manner as in Example 1 except that the amounts were changed to 5.5, 6.7, 5.2 and 7.1 kg, respectively. Table 2 shows the results.

【0032】[0032]

【表2】 [Table 2]

【0033】表2において、二次膨張完了直後の発泡体
寸法〔C〕は、二次膨張による最終発泡直後の発泡体
を、冷却することなしに強制的に金型より取り出し、
縦、横、高さのそれぞれについて各3ヶ所の寸法を測定
し、その平均値で表したものである。また、最終発泡体
寸法のバラツキは、二次型内で冷却完了後の最終発泡体
の縦、横、高さについてそれぞれ最大部分と最小部分を
測定し、その差で表したものである。表2中の*印を付
した数値は、第3発明の範囲から外れるものである。
In Table 2, the foam dimension [C] immediately after the completion of secondary expansion is the foam immediately after the final expansion due to secondary expansion, which is forcibly taken out from the mold without cooling.
The dimensions are measured at three points in each of length, width, and height, and are expressed as an average value. The variation in the final foam size is expressed by the difference between the maximum and minimum portions of the vertical foam, the horizontal width, and the height of the final foam after the completion of cooling in the secondary mold. Numerical values marked with * in Table 2 are out of the range of the third invention.

【0034】表2の結果によれば、二次型縮小率(最終
発泡完了直後の発泡体寸法から二次型内寸を減じた値
を、最終発泡完了直後の発泡体寸法で除し、100倍し
た値)が第3発明の範囲を外れている比較例8及び9で
は、最終発泡体の寸法のバラツキが大きい。また、比較
例9では、最終発泡体の型からの取り出しが困難であ
り、相当無理に取り出したため、発泡体上面に長さ20
0mm、深さ10mmの割れが発生してしまった。一
方、第3発明の範囲内である実施例4及び5では、上記
のような不具合はなく(バラツキはあるものの、大変少
ない。)、割れの発生もなく良好であった。
According to the results shown in Table 2, the reduction ratio of the secondary mold (the value obtained by subtracting the inner dimension of the secondary mold from the size of the foam immediately after the completion of the final foaming is divided by the size of the foam immediately after the completion of the final foaming, is 100). In Comparative Examples 8 and 9 in which the (doubled value) is out of the range of the third invention, the dimensional variation of the final foam is large. Further, in Comparative Example 9, it was difficult to take out the final foam from the mold, and the foam was forcibly taken out.
A crack having a depth of 0 mm and a depth of 10 mm occurred. On the other hand, in Examples 4 and 5 which were within the scope of the third invention, the above-mentioned inconvenience was not present (there was some variation, but it was very small), and no cracks were generated, which was good.

【0035】[0035]

【発明の効果】第1発明のポリオレフィン発泡体の製造
方法によれば、第2発明のように比較的気泡径が大き
く、また、圧縮応力に富み、且つ圧縮永久歪の小さい最
終発泡体を容易に得ることができる。更に、第3発明の
ように、二次型縮小率を適切な範囲とすることにより、
最終発泡体の寸法バラツキを非常に小さくすることがで
きるとともに、二次型からの最終発泡体の取り出しも容
易となり、最終発泡体に割れを生ずることもない。
According to the method for producing a polyolefin foam of the first invention, the final foam having a relatively large cell diameter, abundant compressive stress and a small compression set can be easily obtained as in the second invention. Can be obtained. Further, as in the third invention, by setting the secondary type reduction ratio in an appropriate range,
The dimensional variation of the final foam can be made very small, the final foam can be easily taken out from the secondary mold, and the final foam does not crack.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 23:02 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area C08L 23:02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン、架橋剤及び平均粒径が
1〜9μmの発泡剤を含む発泡性組成物を一次金型に充
填し、該一次金型を50〜100kg/cm2 に加圧
し、加圧下に上記架橋剤の1分間半減期温度より30〜
40℃低い温度に加熱して、上記発泡剤の一部を下式を
満足する分解率となる如く分解させて発泡を誘起し、高
温熱時に除圧して一次膨張させ上記一次金型から取り出
して中間発泡体を製造する第1工程と、 その後、上記第1工程で得られた中間発泡体を、最終発
泡体の形状及び寸法に対応する二次型内に入れ、常圧下
に該二次型を加熱して、上記架橋剤及び上記発泡剤の残
部を分解させるとともに、上記中間発泡体を二次膨張さ
せて発泡倍率15倍以上の最終発泡体を製造する第2工
程と、からなることを特徴とするポリオレフィン発泡体
の製造方法。 第1工程の発泡剤分解率(%)=(9〜12)×(10
0/最終発泡倍率)
1. A primary mold is filled with a foamable composition containing a polyolefin, a cross-linking agent, and a foaming agent having an average particle size of 1 to 9 μm, and the primary mold is pressurized to 50 to 100 kg / cm 2 and then applied. From the 1-minute half-life temperature of the above-mentioned cross-linking agent under pressure to 30 ~
By heating to a low temperature of 40 ° C., a part of the foaming agent is decomposed so as to have a decomposition rate satisfying the following formula to induce foaming, depressurized at high temperature heat to perform primary expansion, and taken out from the primary mold. The first step of producing an intermediate foam, and then the intermediate foam obtained in the first step is placed in a secondary mold corresponding to the shape and dimensions of the final foam, and the secondary mold is placed under normal pressure. Is heated to decompose the balance of the cross-linking agent and the foaming agent, and secondarily expands the intermediate foam to produce a final foam having a foaming ratio of 15 times or more. A method for producing a characteristic polyolefin foam. Foaming agent decomposition rate (%) in the first step = (9 to 12) × (10
0 / final expansion ratio)
【請求項2】 上記最終発泡体の平均気泡径は350〜
550μmである請求項1記載のポリオレフィン発泡体
の製造方法。
2. The average cell diameter of the final foam is 350 to
It is 550 micrometers, The manufacturing method of the polyolefin foam of Claim 1.
【請求項3】 上記二次型の内部空間を構成する縦、横
及び高さの各寸法のいずれもが、上記中間発泡体を二次
膨張させた発泡体の発泡直後の夫々の寸法に対し、1〜
10%小さくした寸法である請求項1又は2記載のポリ
オレフィン発泡体の製造方法。
3. Each of the vertical, horizontal and height dimensions forming the internal space of the secondary mold is different from the respective dimensions immediately after foaming of the foam obtained by secondary expansion of the intermediate foam. , 1
The method for producing a polyolefin foam according to claim 1, which has a size reduced by 10%.
JP7180896A 1995-06-23 1995-06-23 Production of polyolefin foam Pending JPH091578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7180896A JPH091578A (en) 1995-06-23 1995-06-23 Production of polyolefin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7180896A JPH091578A (en) 1995-06-23 1995-06-23 Production of polyolefin foam

Publications (1)

Publication Number Publication Date
JPH091578A true JPH091578A (en) 1997-01-07

Family

ID=16091221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7180896A Pending JPH091578A (en) 1995-06-23 1995-06-23 Production of polyolefin foam

Country Status (1)

Country Link
JP (1) JPH091578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214626A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Cross-linked polyolefin-based resin foamed sheet and adhesive tape using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214626A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Cross-linked polyolefin-based resin foamed sheet and adhesive tape using the same

Similar Documents

Publication Publication Date Title
US4435346A (en) Method of producing open-cell foamed articles of cross-linked polyolefins
US4483809A (en) Process for preparing polyolefin foam
US4671910A (en) Process for the production of closed-cell foam molded articles of crosslinked polyolefin
EP0036561B1 (en) Foamable olefin polymer compositions stabilized with certain naphthyl amine compounds, foaming process using them and foam article produced
FI82477C (en) FOER FARING FOR FRAMSTAELLNING AV TVAERBUNDNA POLYOLEFINSKUMPRODUKTER.
CA1170416A (en) Method of producing open-cell foamed articles of cross-linked polyolefins
JPH091578A (en) Production of polyolefin foam
JP2003266468A (en) Method for manufacturing polypropylene-based resin foamed particle molded body
JPS61283633A (en) Production of polyolefin foam
JP2872505B2 (en) Method for producing polyolefin foam
JP2794450B2 (en) Conductive polyethylene foam particles
JPH09249760A (en) Manufacturing method of polyolefin foam
JP3308294B2 (en) Method for producing polyolefin foam
JP3272779B2 (en) Method for producing polyolefin plate-like foam
JP2779876B2 (en) Method for producing polyolefin foam
JPH0275636A (en) Electrically conductive foamed polyethylene particle and preparation thereof
JP2003201361A (en) Method for manufacturing in-mold molded foam polypropylene particle
JP3170209B2 (en) Method for producing polyolefin foam
JPH06155492A (en) Manufacture of polyolefin foam
KR820001092B1 (en) Expanded particulate material of palyolefion resin
JP2004027196A (en) Shock absorption material
JPH05200891A (en) Manufacture of polyolefin foamed body
JP2869475B2 (en) Method for producing polyolefin foam
JP2683669B2 (en) Method for producing polyolefin foam
EP0700954A1 (en) Pre-expanded articles of a polyolefin resin