JP4024706B2 - Hydrophilic polyolefin resin foam - Google Patents

Hydrophilic polyolefin resin foam Download PDF

Info

Publication number
JP4024706B2
JP4024706B2 JP2003082002A JP2003082002A JP4024706B2 JP 4024706 B2 JP4024706 B2 JP 4024706B2 JP 2003082002 A JP2003082002 A JP 2003082002A JP 2003082002 A JP2003082002 A JP 2003082002A JP 4024706 B2 JP4024706 B2 JP 4024706B2
Authority
JP
Japan
Prior art keywords
water
resin
foam
hydrophilic
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003082002A
Other languages
Japanese (ja)
Other versions
JP2004285289A (en
Inventor
賢二 脇川
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2003082002A priority Critical patent/JP4024706B2/en
Publication of JP2004285289A publication Critical patent/JP2004285289A/en
Application granted granted Critical
Publication of JP4024706B2 publication Critical patent/JP4024706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
この発明は、親水性ポリオレフィン系樹脂発泡体に関し、更には浄化槽等に用いられる水処理用微生物担体に好適な親水性ポリオレフィン系樹脂発泡体に関する。
【0002】
【従来の技術】
従来、浄化槽などにおける水処理には、好気性バクテリア等の微生物による働きで溶存有機物を酸化分解させる方法が利用されている。前記微生物による水処理においては、樹脂発泡体を微生物担体として使用することが行われている。
【0003】
しかし、多くの樹脂は発水性であり、発泡体内に水が入り込もうとするのを阻害する傾向が強い。そのため、発泡体は内部に空気を蓄えた状態になり、浮力が大きくなる。特に、微生物を担持した担体が槽の中を水流と共に流動することで水処理の効果が上がる担体流動方式を採用する水処理の場合には、前記発泡体からなる担体が、発泡体内部に蓄えられた空気によって生じる大きな浮力の作用で水面に浮いた状態になり易い。その結果、発泡体からなる担体が水流と共に流動しにくくなって水処理効率が悪い問題がある。
【0004】
前記発泡体の発水性により生じる問題を解決するため、連続気泡性ポリオレフィン系樹脂発泡体の製造時に特定の界面活性剤を添加することによって親水性を付与し、浄化槽へ投入した際の水没性を向上させることが提案されている(特許文献1、特許文献2参照。)
【0005】
【特許文献1】
特開2002−199879号公報
【特許文献2】
特開2001−342277号公報
【0006】
【発明が解決しようとする課題】
界面活性剤による発泡体の親水性付与は、界面活性剤が発泡体の樹脂の表面に染みだして親水基を樹脂の表面に出すことによる。そのため、界面活性剤は発泡体の樹脂内にとどまることができず、樹脂の表面へ移動し易い。しかも、界面活性剤は水との馴染みが良好なため、水と接触すると水内へ流出し易く、親水性が短期間で低下する問題がある。したがって、界面活性剤を添加した発泡体からなる微生物担体では、良好な水処理を長期に渡って維持し難い問題がある。
【0007】
この発明は前記の点に鑑みなされたものであって、親水性を長く維持することができ、また水処理用の微生物担体に好適な親水性ポリオレフィン系樹脂発泡体の提供を目的とする。
【0008】
【課題を解決するための手段】
この発明による親水性ポリオレフィン系樹脂発泡体は、ポリオレフィン系樹脂、熱可塑性吸水性樹脂、架橋剤及び発泡剤を少なくとも含む混練物を発泡したものからなり、水処理用微生物担体として用いられるものである。
【0009】
前記混練物には界面活性剤を含むのが好ましい。また、前記親水性ポリオレフィン系樹脂発泡体は、水処理用微生物担体として用いることにより、良好な水処理を従来よりも長期に渡って行うことが可能になる。また、前記親水性ポリオレフィン系樹脂発泡体は、除膜処理されたものが好ましい。
【0010】
【発明の実施の形態】
本発明の親水性ポリオレフィン系樹脂発泡体は、ポリオレフィン系樹脂、熱可塑性吸水性樹脂、架橋剤及び発泡剤を少なくとも含み、さらに好ましくは界面活性剤を含む混練物を発泡したものからなり、微生物担体として好適なものである。
【0011】
ポリオレフィン系樹脂は、耐水性及び非汚染性の点で微生物担体用の発泡体に好ましい樹脂である。この発明において使用されるポリオレフィン系樹脂としては、エチレン酢酸ビニル共重合体(EVA)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレンとメチル、エチル、プロピル若しくはブチルの各アクリル酸エステルとの共重合体、又はこれらの塩素化物、あるいはそれらの混合物、さらにはそれらとアイソタクチックポリプロピレン若しくはアタクチックポリプロピレンの混合物等を挙げることができる。
【0012】
さらに前記ポリオレフィン系樹脂の中でも、エチレン酢酸ビニル共重合体が好ましい。エチレン酢酸ビニル共重合体の発泡体は、低密度ポリエチレン(LDPE)等からなる発泡体と比べて反発弾性率(JIS K 6400準拠)が高いため、微生物担体として流動礁で長期に使用した場合にも摩耗による寸法減少が少なく、微生物の担持表面積の減少を生じにくいので、長期に渡って微生物による処理を効率良く行わせることができる。
【0013】
さらにまた、前記ポリオレフィン系樹脂は、ポリオレフィン系樹脂の全量100重量%中、酢酸ビニル含量が12〜30重量%のものが好ましい。前記酢酸ビニル含量が12重量%未満の場合、前記微生物担体10は反発弾性率が低くなり、前記流動礁としての長期使用の際に摩耗程度が大きくなる。それに対し、30重量%を超えると、ゴム成分たるビニル成分が多量に含まれることになって、所望の発泡倍率の発泡体が得られず、前記微生物担体10のコストが増大する。
【0014】
熱可塑性吸水性樹脂は、吸水性を有する熱可塑性樹脂であって、公知のもの、例えば登録商標アクアコーク(住友精化株式会社製)を使用することができる。前記熱可塑性吸水性樹脂の量は、前記ポリオレフィン系樹脂100重量部に対して5〜30、好ましくは10〜20重量である。10重量部より少ないと、この発明の親水性ポリオレフィン系樹脂における親水性の持続効果が十分ではなく、それに対して20重量部より多いと、発泡に支障を生じやすくなって親水性ポリオレフィン系樹脂発泡体を良好に得るのが難しくなる。
【0015】
架橋剤としては、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス−ターシャリーブチルパーオキシヘキサン、1,3−ビス−ターシャリーパーオキシ−イソプロピルベンゼンなどの有機過酸化物等を挙げることができる。前記架橋剤の配合量は、通常、ポリオレフィン系樹脂100重量部に対し0.50〜1.3重量部である。
【0016】
発泡剤としては、加熱により分解してガスを発生するものが用いられ、特に制限されるものではない。例えばアゾジカルボンアミド、2,2’−アゾビスイソブチロニトリル、ジアゾアミノベンゼン、ベンゼンスルホニルヒドラジド、ベンゼン−1,3−スルホニルヒドラジド、ジフェニルオキシド−4,4’−ジスルフォニルヒドラジド、4,4’−オキシビスベンゼンスルフォニルヒドラジド、パラトルエンスルフォニルヒドラジド、N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジニトロソ−N,N’−ジメチルフタルアミド、テレフタルアジド、p−t−ブチルベンズアジド、重炭酸ナトリウム、重炭酸アンモニウム等の一種又は二種以上が用いられる。特にアゾジカルボンアミド、4,4’−オキシビスベンゼンスルホニルヒドラジドが好適である。添加量としては、通常、ポリオレフィン系樹脂100重量部に対して2〜30重量部とされる。
【0017】
界面活性剤としては、特に限定されるものではなく、また、HLBについても限定されるものではなく、イオン系(陰イオン系、陽イオン系、両性イオン系)、非イオン系のいずれでもよい。陰イオン系(アニオン系)の界面活性剤としては、脂肪酸系、アルキルベンゼン系、アルコール系、アルファオレフィン系等があり、陽イオン系(カチオン系)の界面活性剤としては、アミノ塩系、アンモニウム塩系等があり、両性イオン系の界面活性剤としては、カルボン酸系、硫酸エステル系、スルフォン酸系、リン酸エステル系等があり、非イオン系(ノニオン系)の界面活性剤としては、脂肪酸系、高級アルコール系、含窒素系等がある。前記活性剤の添加量としては、ポリオール樹脂100重量部に対して1〜7重量部、好ましくは3〜5重量部である。3重量部よりも少ないと、得られる親水性効果が少なくなり、それに対して5重量部よりも多いと、界面活性剤特有の滑剤効果が強くなって、混練物を調製する際の混練時にポリオレフィン系樹脂や熱可塑性吸水性樹脂等が互いに滑って混練が不十分になり易い。
【0018】
その他適宜添加される助剤として、発泡助剤、造核剤等がある。前記発泡助剤には、酸化亜鉛、酸化鉛等の金属酸化物、低級又は高級脂肪酸あるいはそれらの金属塩、尿素及びその誘導体等が挙げられる。また、造核剤としては、炭酸カルシウム等を挙げることができる。
【0019】
前記親水性ポリオレフィン系樹脂発泡体の製造は、前記成分をニーダーやロールで混練して得た前記混練物を用い、公知のポリオレフィン系樹脂の二段発泡方法にしたがい行われる。前記二段発泡方法は、前記混練物を密閉式の一次金型に充填し、加圧下加熱後に除圧することにより一次発泡させて一次発泡体を形成し、次に前記一次発泡体を、常圧で加熱して二次発泡させることにより得られる。
【0020】
さらに、この発明における前記親水性ポリオレフィン系樹脂発泡体は、除膜処理されたものが好ましい。前記除膜処理された親水性ポリオレフィン系樹脂発泡体は、気泡膜(セル膜とも称される)が除去された三次元網目骨格で構成され、水処理用の微生物担体として使用されると、発泡体の中央部まで微生物を効率よく保持することができるため、微生物の担持面積が増大し、しかも微生物と水との接触効率も増大するため、水処理能力を向上させることができる。前記除膜処理は、前記二次発泡により得られた発泡体を圧縮することにより、簡単に行うことができる。
【0021】
【実施例】
表1〜2の配合を1Lニーダーで重量約800g混練し、次に10インチミキシングロールで混練して混練物を得た。表1〜2におけるポリオレフィン系樹脂は、酢酸ビニル含量15重量%のエチレン酢酸ビニル共重合体、品番:エバテートH2020、住友化学工業株式会社製、熱可塑性吸水性樹脂は登録商標アクアコーク、住友精化株式会社製、発泡剤はアゾジカルボンアミド、品番:AC#3、永和化成工業株式会社製、造核剤は炭酸カルシウム、発泡助剤は活性亜鉛華、架橋剤はジクミルパーオキサイド、界面活性剤は品番:アセチレノールE40、川研ファインケミカル株式会社製である。なお、比較のために用いた水膨潤性樹脂は品番:ゲル201K−F1、クラレイソプレンケミカル株式会社製である。
【0022】
【表1】

Figure 0004024706
【0023】
【表2】
Figure 0004024706
【0024】
前記混練物を、150℃にされた30mm×155mm×155mmの一次金型内に充填して密封し、加圧した状態で40分加熱し、その後除圧することにより一次発泡させて一次発泡体を得た。次に、前記一次発泡体を160℃で120分加熱することにより二次発泡させて実施例1〜8の親水性ポリオレフィン系樹脂発泡体を得た。実施例1〜4は、熱可塑性吸水性樹脂の添加量を5〜30重量部まで変化させた場合、実施例5〜8は界面活性剤の添加量を0〜7重量部まで変化させた場合である。さらに、実施例1〜8は除膜処理の無い場合である。また、実施例2と同じ配合に対し、前記二次発泡後の発泡体を、等速二本ロールに通して元厚の1/5に圧縮しながら5往復させることにより除膜処理を行い、実施例9の親水性ポリオレフィン系樹脂発泡体を得た。なお、比較のため、熱可塑性吸水性樹脂及び水膨潤性樹脂を添加せず、界面活性剤を添加した比較例1、熱可塑性吸水性樹脂に代えて水膨潤性樹脂を添加し、界面活性剤を未添加とした比較例2、熱可塑性吸水性樹脂に代えて水膨潤性樹脂を添加し、界面活性剤を添加した比較例3のポリオレフィン系樹脂発泡体を、それぞれ前記一次発泡及び二次発泡(除膜処理せず)によって製造した。
【0025】
このようにして得られた実施例及び比較例の発泡体を、それぞれ一辺10cmの立方体に切り出し、100ccのビーカーに収容された70ccの水に、前記切り出し品をそれぞれ10個投入し、攪拌後から10個全てが水中に沈むまでの時間を1回目の沈降時間として計測した。次に前記10個全ての切り出し品が水中に沈んでからそのまま24時間水中に維持した後、前記切り出し品を水中から取り出し、60℃で24時間乾燥させた後、再度前記ビーカーの水に投入し、各10個の全てが水中に沈むまでの時間を2回目の沈降時間とした。さらに前記2回目の場合と同様にして3回目の沈降時間を計測した。結果は表1及び表2における沈降試験欄に示す。
【0026】
表1及び表2から明らかなように、熱可塑性吸水性樹脂と界面活性剤の両方を添加した実施例1〜4及び実施例6〜9は、沈降試験における1回目〜3回目の全てにおいて、比較例1〜3と比べ沈降時間が短く、親水性が優れるものであった。また、沈降試験における3回目において、最も沈降時間の長い実施例5,6においても168時間であり、比較例1〜3の168時間時間以上と比べて短いものであり、親水性の持続性が長いことがわかる。また界面活性剤の添加量を3〜7重量部にして熱可塑性吸水性樹脂と共に添加した実施例1〜4及び7〜9においては、沈降試験における3回目についても、最長で72時間と短く、親水性の持続性が高いことがわかる。さらに、界面活性剤を熱可塑性吸水性樹脂と共に添加することによって、1回目及び2回目の沈降時間が短いものとなり、親水性の持続向上のみならず水への発泡体の投入初期から親水性が高くなることがかる。それらに加え、除膜処理された実施例9においては、水が発泡体内に流入し易くなって水内に発泡体が沈み易くなるため、より良好な親水性を発揮することがわかる。
【0027】
なお、前記熱可塑性吸水性樹脂と界面活性剤の併用による親水性の早期の発現及び持続効果は、次の理由によるものと推測される。すなわち、熱可塑性吸水性樹脂は、一般の水膨潤性樹脂とは異なり、ベースレジンとなる樹脂と混練する際に分子間の運動が自由になるため、ベースレジンと分子レベルで絡み合うことができる。そのため、吸水してもベースレジンから脱離することがない。また、一般に熱可塑性吸水性樹脂の吸水速度は遅く、親水性を発現するまでに時間を要する。それに対し、界面活性剤は、親水性が高いものの、前記のように水に流出し易いが、前記熱可塑性吸水性樹脂の存在下では、水と一緒に樹脂中に吸収されて流出を抑えることができる。これらによって、親水性が早期に発現すると共に親水性の持続性が向上する。
【0028】
それに対し、一般の水膨潤性樹脂を添加した比較例2及び3においても、水膨潤性樹脂を添加しない比較例1と同様に親水性の持続性が劣る理由は、次のように推測される。すなわち、水膨潤性樹脂を用いた場合、ベースレジン中に水膨潤性樹脂が点在した状態になり、水膨潤性樹脂とベースレジンが分子レベルで混ざり有っているわけではないため、水膨潤性樹脂の部分が吸水して膨潤すると、水膨潤性樹脂の部分と周囲の部分との体積差を生じ、それによって水膨潤性樹脂が脱落することになる。したがって、水膨潤性樹脂が一度水を吸水すると、親水性が失われることになる。
【発明の効果】
以上説明したように、この発明の親水性ポリオレフィン系樹脂発泡体は、親水性の持続性が向上する効果があり、水処理における微生物担体に好適なものである。さらに、熱可塑性吸水性樹脂と界面活性剤の両方を添加した場合には、親水性が一層向上し、しかも親水性の発現も迅速で微生物担体として好適なものになる。また、除膜処理されたものとすれば、一層親水性が向上する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrophilic polyolefin resin foam, and more particularly to a hydrophilic polyolefin resin foam suitable for a microbial carrier for water treatment used in a septic tank or the like.
[0002]
[Prior art]
Conventionally, water treatment in a septic tank or the like has utilized a method in which dissolved organic matter is oxidized and decomposed by the action of microorganisms such as aerobic bacteria. In the water treatment with microorganisms, a resin foam is used as a microorganism carrier.
[0003]
However, many resins are water-repellent and tend to inhibit water from entering the foam. Therefore, the foam is in a state where air is stored therein, and the buoyancy is increased. In particular, in the case of water treatment adopting a carrier flow method in which a carrier carrying method in which a carrier carrying microorganisms flows in a tank together with a water flow increases the effect of water treatment, the carrier made of the foam is stored inside the foam. It tends to float on the water surface due to the large buoyancy caused by the air generated. As a result, there is a problem that the support made of the foam is difficult to flow with the water flow and the water treatment efficiency is poor.
[0004]
In order to solve the problem caused by the water generation of the foam, hydrophilicity is imparted by adding a specific surfactant during the production of the open-cell polyolefin resin foam, and the submergence when put into the septic tank is improved. Improvement has been proposed (see Patent Document 1 and Patent Document 2).
[0005]
[Patent Document 1]
JP 2002-199879 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-342277
[Problems to be solved by the invention]
The imparting of hydrophilicity to the foam by the surfactant is due to the surfactant oozing out on the surface of the resin of the foam and giving a hydrophilic group to the surface of the resin. Therefore, the surfactant cannot stay in the resin of the foam and easily moves to the surface of the resin. Moreover, since the surfactant is well-familiar with water, there is a problem that when it comes into contact with water, it easily flows out into the water and the hydrophilicity is lowered in a short period of time. Therefore, there is a problem that it is difficult to maintain a good water treatment for a long time in a microbial carrier comprising a foam to which a surfactant is added.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to provide a hydrophilic polyolefin-based resin foam that can maintain hydrophilicity for a long time and is suitable for a microbial carrier for water treatment.
[0008]
[Means for Solving the Problems]
The hydrophilic polyolefin resin foam according to the present invention comprises a foamed kneaded material containing at least a polyolefin resin, a thermoplastic water absorbent resin, a crosslinking agent and a foaming agent, and is used as a microbial carrier for water treatment. .
[0009]
The kneaded product preferably contains a surfactant. Further, by using the hydrophilic polyolefin resin foam as a microbial carrier for water treatment, it becomes possible to perform good water treatment for a longer period than before. The hydrophilic polyolefin resin foam is preferably subjected to film removal treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The hydrophilic polyolefin-based resin foam of the present invention comprises a foamed kneaded material containing at least a polyolefin-based resin, a thermoplastic water-absorbing resin, a cross-linking agent, and a foaming agent, and more preferably a surfactant. Is suitable.
[0011]
Polyolefin resins are preferred resins for foams for microbial carriers in terms of water resistance and non-staining properties. Examples of polyolefin resins used in the present invention include ethylene vinyl acetate copolymer (EVA), low density polyethylene (LDPE), high density polyethylene (HDPE), ethylene-propylene copolymer, ethylene-butene copolymer, Mention may be made of copolymers of ethylene and methyl, ethyl, propyl or butyl acrylates, or chlorinated products thereof, or mixtures thereof, and mixtures of these with isotactic polypropylene or atactic polypropylene. it can.
[0012]
Further, among the polyolefin resins, an ethylene vinyl acetate copolymer is preferable. The foam of ethylene vinyl acetate copolymer has a higher resilience (based on JIS K 6400) than foams made of low density polyethylene (LDPE), etc. However, since the dimensional reduction due to wear is small and the surface area of the microorganism is hardly reduced, the treatment with the microorganism can be efficiently performed for a long time.
[0013]
Furthermore, the polyolefin resin preferably has a vinyl acetate content of 12 to 30% by weight in 100% by weight of the total amount of the polyolefin resin. When the vinyl acetate content is less than 12% by weight, the microbial carrier 10 has a low rebound resilience, and the degree of wear increases during long-term use as the flowing reef. On the other hand, when it exceeds 30% by weight, a vinyl component as a rubber component is contained in a large amount, a foam having a desired foaming ratio cannot be obtained, and the cost of the microorganism carrier 10 increases.
[0014]
The thermoplastic water-absorbing resin is a thermoplastic resin having water-absorbing property, and a known one such as a registered trademark Aqua Coke (manufactured by Sumitomo Seika Co., Ltd.) can be used. The amount of the thermoplastic water-absorbing resin is 5 to 30, preferably 10 to 20 weights with respect to 100 parts by weight of the polyolefin resin. If the amount is less than 10 parts by weight, the hydrophilic lasting effect in the hydrophilic polyolefin resin of the present invention is not sufficient. On the other hand, if the amount is more than 20 parts by weight, foaming tends to hinder foaming and the hydrophilic polyolefin resin foams. It becomes difficult to get a good body.
[0015]
Examples of the crosslinking agent include organic peroxides such as dicumyl peroxide, 2,5-dimethyl-2,5-bis-tertiary butyl peroxyhexane, 1,3-bis-tertiary peroxy-isopropylbenzene, and the like. be able to. The amount of the crosslinking agent is usually 0.50 to 1.3 parts by weight with respect to 100 parts by weight of the polyolefin resin.
[0016]
As a foaming agent, what decomposes | disassembles by heating and generate | occur | produces gas is used, and it does not restrict | limit in particular. For example, azodicarbonamide, 2,2'-azobisisobutyronitrile, diazoaminobenzene, benzenesulfonyl hydrazide, benzene-1,3-sulfonyl hydrazide, diphenyl oxide-4,4'-disulfonyl hydrazide, 4,4 ' -Oxybisbenzenesulfonyl hydrazide, paratoluenesulfonyl hydrazide, N, N'-dinitrosopentamethylenetetramine, N, N'-dinitroso-N, N'-dimethylphthalamide, terephthalazide, pt-butylbenzazide, One or more of sodium bicarbonate, ammonium bicarbonate and the like are used. Particularly preferred are azodicarbonamide and 4,4′-oxybisbenzenesulfonyl hydrazide. As addition amount, it is 2-30 weight part normally with respect to 100 weight part of polyolefin resin.
[0017]
The surfactant is not particularly limited, and the HLB is not limited, either ionic (anionic, cationic, zwitterionic) or nonionic. Examples of anionic (anionic) surfactants include fatty acid-based, alkylbenzene-based, alcohol-based, and alpha-olefin-based surfactants. Cationic (cationic) surfactants include amino salts and ammonium salts. Zwitterionic surfactants include carboxylic acid-based, sulfate-based, sulfonic acid-based and phosphate-based surfactants, and nonionic (nonionic) surfactants include fatty acids. Type, higher alcohol type, nitrogen-containing type and the like. The addition amount of the activator is 1 to 7 parts by weight, preferably 3 to 5 parts by weight with respect to 100 parts by weight of the polyol resin. When the amount is less than 3 parts by weight, the resulting hydrophilic effect is reduced. On the other hand, when the amount is more than 5 parts by weight, the surfactant-specific lubricant effect becomes strong, and the polyolefin during kneading when preparing the kneaded product System resins, thermoplastic water-absorbing resins, and the like are likely to slide together and become insufficiently kneaded.
[0018]
Other auxiliary agents added as appropriate include foaming auxiliary agents and nucleating agents. Examples of the foaming aid include metal oxides such as zinc oxide and lead oxide, lower or higher fatty acids or metal salts thereof, urea and derivatives thereof. Moreover, calcium carbonate etc. can be mentioned as a nucleating agent.
[0019]
Manufacture of the said hydrophilic polyolefin resin foam is performed according to the well-known two-stage foaming method of polyolefin resin using the said kneaded material obtained by kneading | mixing the said component with a kneader or a roll. In the two-stage foaming method, the kneaded product is filled into a closed primary mold, heated under pressure and decompressed to form a primary foam, and then the primary foam is subjected to normal pressure. It is obtained by heating with a secondary foam.
[0020]
Furthermore, it is preferable that the hydrophilic polyolefin resin foam in the present invention has been subjected to film removal treatment. The membrane-removed hydrophilic polyolefin-based resin foam is composed of a three-dimensional network skeleton from which a cell membrane (also referred to as a cell membrane) has been removed, and is used as a microbial carrier for water treatment. Since microorganisms can be efficiently held up to the center of the body, the area for supporting microorganisms increases and the contact efficiency between microorganisms and water also increases, so that the water treatment capacity can be improved. The film removal treatment can be easily performed by compressing the foam obtained by the secondary foaming.
[0021]
【Example】
The blends shown in Tables 1 and 2 were kneaded with a 1 L kneader and then kneaded with a 10-inch mixing roll to obtain a kneaded product. The polyolefin resins in Tables 1 and 2 are ethylene vinyl acetate copolymers having a vinyl acetate content of 15% by weight, product number: Evatot H2020, manufactured by Sumitomo Chemical Co., Ltd., thermoplastic water-absorbing resin is a registered trademark Aqua Coke, Sumitomo Seika Manufactured by Co., Ltd., foaming agent is azodicarbonamide, product number: AC # 3, manufactured by Eiwa Kasei Kogyo Co., Ltd., nucleating agent is calcium carbonate, foaming aid is activated zinc white, crosslinking agent is dicumyl peroxide, surfactant Is product number: acetylenol E40, manufactured by Kawaken Fine Chemical Co., Ltd. The water-swellable resin used for comparison is product number: Gel 201K-F1, manufactured by Kuraray Isoprene Chemical Co., Ltd.
[0022]
[Table 1]
Figure 0004024706
[0023]
[Table 2]
Figure 0004024706
[0024]
The kneaded product is filled in a primary mold of 30 mm × 155 mm × 155 mm set at 150 ° C. and sealed, heated in a pressurized state for 40 minutes, and then decompressed to perform primary foaming to obtain a primary foam. Obtained. Next, the primary foam was subjected to secondary foaming by heating at 160 ° C. for 120 minutes to obtain hydrophilic polyolefin resin foams of Examples 1 to 8. In Examples 1 to 4, when the addition amount of the thermoplastic water-absorbing resin is changed to 5 to 30 parts by weight, and in Examples 5 to 8, the addition amount of the surfactant is changed to 0 to 7 parts by weight. It is. Further, Examples 1 to 8 are cases where there is no film removal treatment. Also, for the same formulation as in Example 2, the film after the secondary foaming is subjected to film removal by reciprocating 5 times while being compressed to 1/5 of the original thickness through a constant speed two roll, The hydrophilic polyolefin resin foam of Example 9 was obtained. For comparison, the thermoplastic water-absorbing resin and the water-swellable resin were not added, and Comparative Example 1 in which a surfactant was added, a water-swellable resin was added instead of the thermoplastic water-absorbing resin, and the surfactant was added. Comparative Example 2 with no addition of water, a polyolefin resin foam of Comparative Example 3 in which a water-swellable resin was added instead of the thermoplastic water-absorbing resin and a surfactant was added, respectively, for the primary foaming and secondary foaming, respectively. (Without film removal treatment).
[0025]
The foams of Examples and Comparative Examples thus obtained were cut into cubes each having a side of 10 cm, and 10 pieces of the cut products were put into 70 cc of water contained in a 100 cc beaker, and after stirring. The time until all 10 pieces were submerged in water was measured as the first sedimentation time. Next, after all 10 cutouts have been submerged in water, they are maintained in water for 24 hours, and then the cutouts are taken out of water, dried at 60 ° C. for 24 hours, and then poured into the water of the beaker again. The time until all 10 pieces were submerged in water was defined as the second settling time. Further, the third sedimentation time was measured in the same manner as in the second case. The results are shown in the sedimentation test column in Tables 1 and 2.
[0026]
As is clear from Tables 1 and 2, Examples 1-4 and Examples 6-9, to which both the thermoplastic water-absorbing resin and the surfactant were added, were used in all of the first to third times in the sedimentation test. Compared with Comparative Examples 1 to 3, the sedimentation time was short and the hydrophilicity was excellent. In the third sedimentation test, Examples 5 and 6 with the longest sedimentation time are 168 hours, which is shorter than the 168 hour hours or more in Comparative Examples 1 to 3, and the hydrophilicity is sustained. I understand that it is long. In Examples 1 to 4 and 7 to 9 added with the thermoplastic water-absorbent resin with the addition amount of the surfactant being 3 to 7 parts by weight, the third time in the sedimentation test was as short as 72 hours at the maximum, It can be seen that the hydrophilicity is high. Further, by adding the surfactant together with the thermoplastic water-absorbing resin, the first and second settling times are shortened, and the hydrophilicity is improved not only from the initial improvement of the hydrophilicity but also from the initial stage of the foam injection into water. It can be expensive. In addition to the above, in Example 9 where the film removal treatment was performed, it was found that water easily flows into the foam and the foam easily sinks into the water, so that better hydrophilicity is exhibited.
[0027]
In addition, it is estimated that the early expression and sustaining effect of hydrophilicity by the combined use of the thermoplastic water-absorbing resin and the surfactant are due to the following reasons. That is, unlike a general water-swellable resin, a thermoplastic water-absorbing resin can be entangled with a base resin at a molecular level because movement between molecules becomes free when kneaded with a resin that becomes a base resin. Therefore, even if it absorbs water, it does not detach from the base resin. In general, the water absorption rate of the thermoplastic water-absorbent resin is slow, and it takes time to develop hydrophilicity. On the other hand, although the surfactant is highly hydrophilic, it easily flows out into water as described above, but in the presence of the thermoplastic water-absorbing resin, it is absorbed into the resin together with water to suppress outflow. Can do. By these, hydrophilicity is expressed early and hydrophilic sustainability is improved.
[0028]
On the other hand, in Comparative Examples 2 and 3 to which a general water-swellable resin is added, the reason why the hydrophilic durability is inferior similarly to Comparative Example 1 in which no water-swellable resin is added is presumed as follows. . That is, when a water-swellable resin is used, the water-swellable resin is scattered in the base resin, and the water-swellable resin and the base resin are not mixed at the molecular level. When the portion of the water-soluble resin absorbs water and swells, a volume difference is generated between the water-swellable resin portion and the surrounding portion, thereby causing the water-swellable resin to fall off. Therefore, once the water-swellable resin absorbs water, the hydrophilicity is lost.
【The invention's effect】
As described above, the hydrophilic polyolefin resin foam of the present invention has an effect of improving the hydrophilic sustainability, and is suitable for a microbial carrier in water treatment. Further, when both the thermoplastic water-absorbing resin and the surfactant are added, the hydrophilicity is further improved, and the hydrophilicity is rapidly expressed and becomes suitable as a microorganism carrier. Further, if the film is removed, the hydrophilicity is further improved.

Claims (3)

ポリオレフィン系樹脂、熱可塑性吸水性樹脂、架橋剤及び発泡剤を少なくとも含む混練物を発泡してなる親水性ポリオレフィン系樹脂発泡体からなり、水処理用微生物担体として用いられることを特徴とする親水性ポリオレフィン系樹脂発泡体。 A hydrophilic property, comprising a hydrophilic polyolefin-based resin foam obtained by foaming a kneaded material containing at least a polyolefin-based resin, a thermoplastic water-absorbing resin, a crosslinking agent and a foaming agent, and used as a microbial carrier for water treatment Polyolefin resin foam. 前記混練物には界面活性剤を含むことを特徴とする請求項1に記載の親水性ポリオレフィン系樹脂発泡体。  The hydrophilic polyolefin resin foam according to claim 1, wherein the kneaded product contains a surfactant. 前記親水性ポリオレフィン系樹脂発泡体が除膜処理されたものであることを特徴とする請求項1または2に記載の親水性ポリオレフィン系樹脂発泡体。 The hydrophilic polyolefin resin foam according to claim 1 or 2, wherein the hydrophilic polyolefin resin foam has been subjected to film removal treatment .
JP2003082002A 2003-03-25 2003-03-25 Hydrophilic polyolefin resin foam Expired - Fee Related JP4024706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082002A JP4024706B2 (en) 2003-03-25 2003-03-25 Hydrophilic polyolefin resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082002A JP4024706B2 (en) 2003-03-25 2003-03-25 Hydrophilic polyolefin resin foam

Publications (2)

Publication Number Publication Date
JP2004285289A JP2004285289A (en) 2004-10-14
JP4024706B2 true JP4024706B2 (en) 2007-12-19

Family

ID=33295398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082002A Expired - Fee Related JP4024706B2 (en) 2003-03-25 2003-03-25 Hydrophilic polyolefin resin foam

Country Status (1)

Country Link
JP (1) JP4024706B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005173B2 (en) * 2005-02-08 2012-08-22 ダイセルノバフォーム株式会社 Resin composition for foam and foam using the same
JP4869636B2 (en) * 2005-06-07 2012-02-08 株式会社イノアックコーポレーション Manufacturing method and manufacturing apparatus for resin foam
JP4965147B2 (en) * 2006-03-30 2012-07-04 株式会社イノアックコーポレーション Method for producing microbial carrier comprising soft synthetic resin foam
JP4777809B2 (en) * 2006-03-30 2011-09-21 株式会社イノアックコーポレーション Microbial carrier manufacturing method, microbial carrier compression mold and microbial carrier manufacturing apparatus
JP4828370B2 (en) * 2006-10-20 2011-11-30 株式会社イノアックコーポレーション Method for producing microbial carrier for water treatment
JP5650373B2 (en) * 2007-08-23 2015-01-07 日清紡ホールディングス株式会社 Method for manufacturing fluid processing carrier
JP5269368B2 (en) * 2007-08-30 2013-08-21 株式会社イノアックコーポレーション Hydrophilic microcell open cell foam and method for producing the same
JP5284057B2 (en) * 2008-11-21 2013-09-11 株式会社イノアックコーポレーション Method for producing microbial carrier for water treatment

Also Published As

Publication number Publication date
JP2004285289A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4024706B2 (en) Hydrophilic polyolefin resin foam
CA2470650A1 (en) Multimodal polymeric foam containing an absorbent clay
KR101466388B1 (en) Cleaning foam for concrete pump
JP2003504439A (en) Crosslinked foam of ethylene vinyl acetate copolymer and acid copolymer
JP2002194128A (en) Fine pore flexible polymer foam having open cell
JP2006263489A (en) Microorganism carrier for water treatment
JP5005173B2 (en) Resin composition for foam and foam using the same
CN104004259A (en) Foamed polyolefin composition, polyolefin foamed material, preparation method thereof and product prepared from composition
JP4194012B2 (en) RESIN COMPOSITION FOR FOAM MOLDED BODY, FOAM MOLDED BODY, AND METHOD FOR PRODUCING THE SAME
JP4293404B2 (en) Foam molded body and method for producing the same
JP2004105099A (en) Microorganism carrier
JP4514874B2 (en) Water treatment carrier, method for producing water treatment carrier and water treatment device
KR20120101322A (en) Gas-generating agent
TW200842155A (en) Cellular products and process for production thereof
JP2007083477A (en) Method for producing foamed crosslinked polyolefin resin
CN103189428B (en) Resin composition, cross-linked foam, member for footwear, and footwear
US6541529B1 (en) Polymer composition for powder foam molding, powder thereof, foam obtained therefrom, process for producing the same, and molded article comprising the foam
JP5022701B2 (en) Polyolefin resin foam and method for producing the same
JP4079256B2 (en) Microbial carrier
JP3445253B2 (en) Water treatment carrier and water treatment equipment
JP2005139281A (en) Rubber foam, composition for forming the same and manufacturing method of the same
JP5269368B2 (en) Hydrophilic microcell open cell foam and method for producing the same
JP2005068233A (en) Hygroscopic sheet
JP2005154732A (en) Foam molding resin composition, foamed product, and method for producing the foamed product
KR102301273B1 (en) Polymer composition, foam and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees