JP4828370B2 - Method for producing microbial carrier for water treatment - Google Patents

Method for producing microbial carrier for water treatment Download PDF

Info

Publication number
JP4828370B2
JP4828370B2 JP2006285828A JP2006285828A JP4828370B2 JP 4828370 B2 JP4828370 B2 JP 4828370B2 JP 2006285828 A JP2006285828 A JP 2006285828A JP 2006285828 A JP2006285828 A JP 2006285828A JP 4828370 B2 JP4828370 B2 JP 4828370B2
Authority
JP
Japan
Prior art keywords
polyurethane foam
water treatment
microbial carrier
foam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006285828A
Other languages
Japanese (ja)
Other versions
JP2008100185A (en
Inventor
卓弘 笹尾
英郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2006285828A priority Critical patent/JP4828370B2/en
Publication of JP2008100185A publication Critical patent/JP2008100185A/en
Application granted granted Critical
Publication of JP4828370B2 publication Critical patent/JP4828370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、曝気槽等に投入される水処理用微生物担体の製造方法に関する。 The present invention relates to a method for producing a microbial carrier for water treatment to be put into an aeration tank or the like.

従来、水処理には、微生物による働きで溶存有機物を分解させる方法が多用されている。前記微生物を用いる水処理においては、樹脂発泡体からなる水処理用微生物担体を、浄化槽等に設けられた曝気槽(エアレーションタンク)等へ投入し、水処理用微生物担体に保持された微生物による働きで排水中の溶存有機物を分解させている。   Conventionally, a method of decomposing dissolved organic matter by the action of microorganisms is frequently used for water treatment. In the water treatment using the microorganism, a water treatment microorganism carrier made of a resin foam is introduced into an aeration tank (aeration tank) or the like provided in a septic tank or the like, and works by microorganisms held in the water treatment microorganism carrier. Is used to decompose dissolved organic matter in the wastewater.

しかし、水処理用微生物担体に用いられている樹脂発泡体は、通常、撥水性を示すことから、担体を曝気槽等に投入しても、担体表面が水に濡れ難く、水面上に浮上したままとなり易い。そのため、曝気槽等に投入された担体は、エアレーションによる排水の流動に応じて曝気槽等内の排水内を旋回せず、担体に保持された微生物と排水との接触効率が悪い問題がある。   However, since the resin foam used for the microbial carrier for water treatment usually exhibits water repellency, even if the carrier is put into an aeration tank or the like, the carrier surface is difficult to get wet with water and floats on the water surface. It is easy to remain. Therefore, there is a problem that the carrier put into the aeration tank or the like does not rotate in the waste water in the aeration tank or the like according to the flow of the waste water by aeration, and the contact efficiency between the microorganisms retained on the carrier and the waste water is poor.

特に、水処理用微生物担体をポリウレタン発泡体で構成する場合、ポリウレタン発泡体には良好な発泡を行うために整泡剤が添加されることが多く、この整泡剤によって発泡体が疎水性(撥水性)となる。そのため、ポリウレタン発泡体からなる水処理用微生物担体は、曝気槽等に投入されても、直ちに水中に沈まず、水面上に山のように盛り上がって投入作業が困難となるだけでなく、排水中を旋回するまでに時間がかかって本来の排水処理能力を充分に発揮できない問題がある。   In particular, when the microbial carrier for water treatment is composed of a polyurethane foam, a foam stabilizer is often added to the polyurethane foam in order to achieve good foaming, and the foam is made hydrophobic by this foam stabilizer ( Water repellency). Therefore, even if the microbial carrier for water treatment made of polyurethane foam is thrown into an aeration tank or the like, it does not immediately sink into the water and rises like a mountain on the surface of the water, making it difficult to perform the throwing operation. There is a problem that it takes a long time to turn and the original wastewater treatment capacity cannot be fully exhibited.

そこで、ポリウレタン発泡体からなる水処理用微生物担体においては、ポリウレタン発泡体に親水性を付与するため、界面活性剤等を発泡体の原料中に予め添加してポリウレタン発泡体を成形することが提案されている。しかし、前記のように、水処理用微生物担体として用いられるポリウレタン発泡体には、疎水性を発揮する整泡剤が含まれているため、親水性を付与する界面活性剤等を添加する場合、少量の界面活性剤等では親水性を付与することができず、界面活性剤等を大量に添加する必要がある。ところが、親水性を付与するために界面活性剤等を大量に添加すると、ポリウレタン発泡体の製造時に発泡体を形成する気泡構造が形成されなくなって発泡体が得られない問題が発生する。また、ポリウレタン発泡体が得られた場合でも、得られたポリウレタン発泡体を微生物用担体として曝気槽の排水に投入した場合、界面活性剤等の影響で泡が発生し、しかも発生した泡がポリウレタン発泡体中に保持されて泡の浮力により水中への水処理用微生物担体の沈降が阻害されやすくなる。   Therefore, in a microbial carrier for water treatment comprising a polyurethane foam, it is proposed to form a polyurethane foam by adding a surfactant or the like in advance to the foam raw material in order to impart hydrophilicity to the polyurethane foam. Has been. However, as described above, the polyurethane foam used as a microbial carrier for water treatment contains a foam stabilizer that exhibits hydrophobicity, so when adding a surfactant or the like that imparts hydrophilicity, A small amount of a surfactant or the like cannot impart hydrophilicity, and it is necessary to add a large amount of a surfactant or the like. However, when a large amount of a surfactant or the like is added to impart hydrophilicity, a problem arises in that the foam structure cannot be obtained because the cell structure forming the foam is not formed during the production of the polyurethane foam. Further, even when a polyurethane foam is obtained, when the obtained polyurethane foam is introduced into the drainage of an aeration tank as a microbial carrier, bubbles are generated due to the influence of a surfactant and the like, and the generated foam is polyurethane. The buoyancy of the bubbles held in the foam tends to inhibit the sedimentation of the microbial carrier for water treatment in water.

また、セル膜のないポリウレタン発泡体を界面活性剤が分散した水中に入れ、十分に浸漬させた後に水を絞って乾燥させ、これによってセル膜のないポリウレタン発泡体に界面活性剤を付着させた水処理用微生物担体を得ることが提案されている。しかし、この水処理用微生物担体にあっては、曝気槽等の排水に投入されて使用されている間に、水処理用微生物担体から界面活性剤が溶け出し、曝気槽等内に滞留して水質を汚染させるおそれがある。   In addition, the polyurethane foam without cell membrane was placed in water in which the surfactant was dispersed, and after sufficiently immersed, the water was squeezed and dried, thereby attaching the surfactant to the polyurethane foam without the cell membrane. It has been proposed to obtain a microbial carrier for water treatment. However, in this microbial carrier for water treatment, the surfactant dissolves from the microbial carrier for water treatment and stays in the aeration tub etc. while being put into the wastewater of the aeration tub etc. and used. May contaminate water quality.

特開2004−250593号公報JP 2004-250593 A 特開2001−96289号公報JP 2001-96289 A

本発明は前記の点に鑑みなされたものであって、曝気槽等に投入後速やかに水中に沈降してエアレーションにより旋回することができ、しかも溶出成分によって水質が汚染されるおそれの少ないポリウレタン発泡体からなる水処理用微生物担体の製造方法の提供を目的とする。 The present invention has been made in view of the above points, and is polyurethane foam which can be quickly settled in water after being put into an aeration tank or the like and swirled by aeration, and the water quality is less likely to be contaminated by eluted components. It aims at providing the manufacturing method of the microorganism carrier for water treatment which consists of bodies.

請求項1の発明は、ポリウレタン発泡体を所定サイズの小片に裁断した後、前記ポリウレタン発泡体の小片に、プロピレングリコール、エチレングリコール、グリセリンの何れか1種からなる生分解性を有する親水化剤を付着させることを特徴とする水処理用微生物担体の製造方法に係る。 The invention according to claim 1 is characterized in that after the polyurethane foam is cut into small pieces of a predetermined size, the polyurethane foam small piece has a biodegradable hydrophilizing agent composed of any one of propylene glycol, ethylene glycol, and glycerin. The present invention relates to a method for producing a microbial carrier for water treatment, wherein

本発明の水処理用微生物担体によれば、ポリウレタン発泡体に、親水化剤が付着しているため、水処理用微生物担体が曝気槽等に投入された際には親水化剤によって水処理用微生物担体の表面が水に濡れ易くなり、しかも泡を生じにくく、泡が水処理用微生物担体内に保持されにくいことから、曝気槽等の排水内に水処理用微生物担体が速やかに沈降して、エアレーションによって旋回し、微生物による処理を効率よく行うことができる。また、ポリウレタン発泡体に付着している親水化剤は、生分解性を有するため、水処理用微生物担体から排水中に溶出して水質を汚染するおそれが少ない。なお、前記裁断と付着の順序を逆にする場合、すなわち、ポリウレタン発泡体に、生分解性を有する親水化剤を付着させた後に小片に裁断する場合、生分解性を有する親水化剤が付着したポリウレタン発泡体を裁断まで保管する間に、生分解性を有する親水化剤がポリウレタン発泡体から流出したり保管用梱包材に付着したり、あるいは裁断装置に付着したりしてポリウレタン発泡体に付着していた生分解性を有する親水化剤の量が少なくなり、効率が悪くなる。 According to the microbial carrier for water treatment of the present invention, since the hydrophilic agent is attached to the polyurethane foam, when the microbial carrier for water treatment is put into an aeration tank or the like, the hydrophilic agent is used for water treatment. Since the surface of the microbial carrier is easily wetted with water, it is difficult for bubbles to form, and the bubbles are not easily retained in the microbial carrier for water treatment. It can be swirled by aeration and efficiently treated with microorganisms. Moreover, since the hydrophilizing agent adhering to the polyurethane foam has biodegradability, it is less likely to elute into the waste water from the water treatment microorganism carrier to contaminate the water quality. In the case of reversing the order of cutting and attachment, that is, when biodegradable hydrophilic agent is attached to polyurethane foam and then cut into small pieces, biodegradable hydrophilic agent is attached. While storing the polyurethane foam until cutting, the biodegradable hydrophilizing agent flows out of the polyurethane foam, adheres to the packing material for storage, or adheres to the cutting device. The amount of the biodegradable hydrophilizing agent that has adhered is reduced and the efficiency is deteriorated.

本発明における水処理用微生物担体は、ポリウレタン発泡体に、生分解性を有する親水化剤が付着したものからなる。なお、水処理用微生物担体のサイズ及び形状は適宜とされるが、一辺が数mm〜70mm程度の直方体あるいは立方体形状のものが一般的である。   The microbial carrier for water treatment in the present invention comprises a polyurethane foam to which a biodegradable hydrophilizing agent is attached. In addition, although the size and shape of the microorganism carrier for water treatment are set appropriately, a rectangular parallelepiped or a cubic shape having a side of about several mm to 70 mm is generally used.

ポリウレタン発泡体は、ポリオールとイソシアネートを発泡剤及び触媒の存在下反応させることにより得られる公知の軟質ポリウレタン発泡体を使用することができる。また、ポリウレタン発泡体の密度は、20〜70kg/mが好ましい。 As the polyurethane foam, a known soft polyurethane foam obtained by reacting a polyol and an isocyanate in the presence of a foaming agent and a catalyst can be used. The density of the polyurethane foam is preferably 20 to 70 kg / m 3 .

ポリオールは、加水分解のし難いポリウレタン発泡体とするため、ポリエーテルポリオールからなるもの、あるいはポリエーテルポリオールを主体とするものが好ましく、一部にエステル基を含むポリエーテルポリエステルポリオールを用いることもできる。ポリエーテルポリオールとしては特に制限されるものではなく、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ハイドロキノン、水、レゾルシン、ビスフェノールA、水添ビスフェノールA、グリセリン、トリメチロールプロパン、ペンタエリスリトール、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン、エチレンジアミン、1,6−ヘキサンジアミン、トリレンジアミン、ジフェニルメタンジアミン、トリエチレンテトラアミン、ソルビトール、マンニトール、ズルシトール等を出発原料として、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加して得られるものなどを用いることができる。   In order to make the polyurethane foam difficult to hydrolyze, the polyol is preferably composed of a polyether polyol, or is mainly composed of a polyether polyol, and a polyether polyester polyol partially containing an ester group can also be used. . The polyether polyol is not particularly limited, for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, hydroquinone, water, resorcin, bisphenol A, hydrogenated bisphenol A, glycerin, trimethylolpropane, pentaerythritol, Monoethanolamine, diethanolamine, triethanolamine, tripropanolamine, ethylenediamine, 1,6-hexanediamine, tolylenediamine, diphenylmethanediamine, triethylenetetraamine, sorbitol, mannitol, dulcitol, etc. as starting materials, ethylene oxide, propylene Those obtained by adding alkylene oxide such as oxide can be used.

本発明におけるイソシアネートは特に制限されるものではなく、芳香族系、脂環式、脂肪族系の何れでもよく、また、1分子中に2個のイソシアネート基を有する2官能のイソシアネート、あるいは1分子中に3個以上のイソシアネート基を有する3官能以上のイソシアネートであってもよく、それらを単独であるいは複数組み合わせて使用してもよい。   The isocyanate in the present invention is not particularly limited, and may be any of aromatic, alicyclic, and aliphatic, bifunctional isocyanate having two isocyanate groups in one molecule, or one molecule. It may be a trifunctional or higher functional isocyanate having three or more isocyanate groups, and may be used alone or in combination.

例えば、2官能のイソシアネートとしては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、m−フェニレンジイソシネート、p−フェニレンジイソシアネート、4,4’−フェニルメタンジイソシアネート、2,4’−ジフェニルメタンジアネート、2,2’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソネート、3,3’−ジメトキシ−4,4’−ビフェニレンジイソシアネートなどの芳香族系のもの、シクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、メチルシクロヘキサンジイソシアネートなどの脂環式のもの、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、リジンイソシアネートなどの芳香族系のものを挙げることができる。   For example, as the bifunctional isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-phenylmethane diisocyanate, 2,4 ′ -Diphenylmethane diate, 2,2'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisonate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, etc. Aromatic ones such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, methylcyclohexane diisocyanate, butane-1,4-diisocyanate DOO, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, mention may be made of aromatic, such as lysine isocyanate.

また、3官能以上のイソシアネートとしては、1−メチルベンゾール−2,4,6−トリイソシアネート、1,3,5−トリメチルベンゾール−2,4,6−トリイソシアネート、ビフェニル−2,4,4’−トリイソシアネート、ジフェニルメタン−2,4,4’−トリイソシアネート、メチルジフェニルメタン−4,6,4’−トリイソシアネート、4,4’−ジメチルジフェニルメタン−2,2’,5,5’テトライソシアネート、トリフェニルメタン−4,4’,4”−トリイソシアネート、ポリメリックMDI等を挙げることができる。   Examples of the tri- or higher functional isocyanate include 1-methylbenzole-2,4,6-triisocyanate, 1,3,5-trimethylbenzole-2,4,6-triisocyanate, biphenyl-2,4,4 ′. -Triisocyanate, diphenylmethane-2,4,4'-triisocyanate, methyldiphenylmethane-4,6,4'-triisocyanate, 4,4'-dimethyldiphenylmethane-2,2 ', 5,5' tetraisocyanate, triisocyanate Examples thereof include phenylmethane-4,4 ′, 4 ″ -triisocyanate, polymeric MDI, and the like.

発泡剤としては、水が好適である。水の添加量はポリオール100重量部に対して1.5〜5重量部程度が一般的である。   As the foaming agent, water is suitable. The amount of water added is generally about 1.5 to 5 parts by weight per 100 parts by weight of polyol.

触媒としては、ポリウレタン発泡体用として公知のものを用いることができ、例えば、トリエチルアミン、トリエチレンジアミン、ジエタノールアミン、ジメチルアミノモルフォリン、N−エチルモルホリン、テトラメチルグアニジン等のアミン触媒や、スタナスオクトエートやジブチルチンジラウレート等の錫触媒やフェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒とも称される。)を挙げることができる。触媒の一般的な量は、ポリオール100重量部に対して0.05〜0.7重量部程度である。   As the catalyst, those known for polyurethane foams can be used. For example, amine catalysts such as triethylamine, triethylenediamine, diethanolamine, dimethylaminomorpholine, N-ethylmorpholine, tetramethylguanidine, stannous octoate, etc. And tin catalysts such as dibutyltin dilaurate and metal catalysts (also referred to as organometallic catalysts) such as phenylmercury propionate or lead octenoate. The general amount of the catalyst is about 0.05 to 0.7 parts by weight with respect to 100 parts by weight of the polyol.

その他、整泡剤、顔料などの添加剤を適宜配合することができる。整泡剤は、ポリウレタン発泡体に用いられるものであればよく、シリコーン系整泡剤、含フッ素化合物系整泡剤および公知の界面活性剤を挙げることができる。顔料は、求められる色に応じたものが用いられる。   In addition, additives such as foam stabilizers and pigments can be appropriately blended. Any foam stabilizer may be used as long as it is used for polyurethane foams, and examples thereof include silicone foam stabilizers, fluorine-containing compound foam stabilizers, and known surfactants. As the pigment, those according to the required color are used.

なお、本発明のポリウレタン発泡体は、前記ポリオール、イソシアネート、発泡剤、触媒、及び適宜の添加剤からなるポリウレタン発泡原料を攪拌混合して前記ポリオールとイソシアネートを反応させ、発泡させる公知の発泡方法によって製造される。   The polyurethane foam of the present invention is prepared by a known foaming method in which a polyurethane foam raw material comprising the polyol, isocyanate, foaming agent, catalyst, and appropriate additives is stirred and mixed to react with the polyol and isocyanate to foam. Manufactured.

ポリウレタン発泡体に付着させる生分解性を有する親水化剤としては、プロピレングリコール(PG)、エチレングリコール(EG)、グリセリン(Gly)の何れか一種を挙げることができる。なお、本発明において「生分解性を有する」とは、担体に付着して使用しても微生物による分解が行われることであり、生分解性を有する親水化剤であるか否かは、BOD/CODcr比によって判断することができる。前記生分解性を有する親水化剤は、ポリウレタン発泡体に対する付着量が適宜の量とされるが、一般的には、ポリウレタン発泡体100gに対して1〜15gとされる。   Examples of the biodegradable hydrophilizing agent attached to the polyurethane foam include one of propylene glycol (PG), ethylene glycol (EG), and glycerin (Gly). In the present invention, “having biodegradability” means that microorganisms are decomposed even when used attached to a carrier. Whether or not a hydrophilizing agent has biodegradability is determined by BOD. This can be determined by the / CODcr ratio. The biodegradable hydrophilizing agent has an appropriate amount of adhesion to the polyurethane foam, but is generally 1 to 15 g with respect to 100 g of the polyurethane foam.

前記水処理用微生物担体の製造は、ポリウレタン発泡体を所定サイズの小片、一般的には一辺が数mm〜70mm程度の直方体あるいは立方体形状の小片に裁断した後、ポリウレタン発泡体の小片に前記生分解性を有する親水化剤を付着させることにより行うのが好ましい。なお、前記裁断と付着の順序を逆にする場合、すなわち、ポリウレタン発泡体に、生分解性を有する親水化剤を付着させた後に小片に裁断する場合、生分解性を有する親水化剤が付着したポリウレタン発泡体を裁断まで保管する間に、生分解性を有する親水化剤がポリウレタン発泡体から流出したり保管用梱包材に付着したり、あるいは裁断装置に付着したりしてポリウレタン発泡体に付着していた生分解性を有する親水化剤の量が少なくなり、効率が悪くなる。   The microbial carrier for water treatment is manufactured by cutting a polyurethane foam into small pieces of a predetermined size, generally a rectangular parallelepiped or a cube-shaped piece having a side of about several millimeters to 70 mm, and then forming the green foam into small pieces of polyurethane foam. It is preferable to carry out by attaching a hydrolyzing agent having degradability. In the case of reversing the order of cutting and attachment, that is, when biodegradable hydrophilic agent is attached to polyurethane foam and then cut into small pieces, biodegradable hydrophilic agent is attached. While storing the polyurethane foam until cutting, the biodegradable hydrophilizing agent flows out of the polyurethane foam, adheres to the packing material for storage, or adheres to the cutting device. The amount of the biodegradable hydrophilizing agent that has adhered is reduced and the efficiency is deteriorated.

前記ポリウレタン発泡体の小片に、生分解性を有する親水化剤を付着させる方法は、適宜の方法で行うことができる。例えば、図1の(1−A)に示すように、攪拌槽11に前記裁断で得られたポリウレタン発泡体の小片51を所定量投入し、次に図1の(1−B)に示すように、前記ポリウレタン発泡体の小片51を攪拌羽根24で攪拌しながら、生分解性を有する親水化剤41をスプレー塗布装置31でポリウレタン発泡体の小片51にスプレー塗布する方法を挙げることができる。符号21は攪拌羽根24が取り付けられた回転シャフト、22は回転シャフト21を回転させるモータである。   A method of attaching a biodegradable hydrophilizing agent to the polyurethane foam pieces can be carried out by an appropriate method. For example, as shown in FIG. 1 (1 -A), a predetermined amount of polyurethane foam small pieces 51 obtained by the cutting are put into the stirring tank 11, and then as shown in FIG. 1 (1 -B). In addition, a method of spray-applying the biodegradable hydrophilizing agent 41 to the polyurethane foam small piece 51 with the spray coating device 31 while stirring the polyurethane foam small piece 51 with the stirring blade 24 can be mentioned. Reference numeral 21 denotes a rotary shaft to which the stirring blade 24 is attached, and 22 denotes a motor that rotates the rotary shaft 21.

以下この発明の実施例について具体的に説明する。ポリエーテルポリオール(水酸基価56mgKOH/g、品名:サンニックスGP−3050、三洋化成工業株式会社製)100重量部、発泡剤(水)1.7重量部、アミン触媒(品名:カオーライザーNo.31、花王株式会社製)0.3重量部、錫触媒(オクチル酸第一スズ、品名:MRH110、城北化学工業株式会社製)0.2重量部、整泡剤(シリコーン系界面活性剤、品名:B8110、ゴールドシュミット株式会社製)1重量部、ポリイソシアネート(2,4−TDI/2,6−TDI=80/20、品名:コロネートT−80、日本ポリウレタン工業株式会社製)27.7重量部、イソシアネートインデックス110からなる発泡原料を用い、公知のポリウレタンスラブ発泡方法によってポリウレタン発泡体のブロックを製造した。なお、スラブ発泡方法は、混合攪拌した発泡原料をベルトコンベア上に吐出し、ベルトコンベアが移動する間に、発泡原料を常温、大気圧下で自然発泡させて硬化させ、さらに乾燥炉でキュアさせた後に所定のブロック形状に裁断する方法である。得られたポリエーテル系ポリウレタン発泡体は、密度48kg/mった。 Examples of the present invention will be specifically described below. Polyether polyol (hydroxyl value 56 mgKOH / g, product name: Sannix GP-3050, manufactured by Sanyo Chemical Industries, Ltd.) 100 parts by weight, foaming agent (water) 1.7 parts by weight, amine catalyst (product name: Kao Riser No. 31) 0.3 parts by weight, manufactured by Kao Corporation, tin catalyst (stannous octylate, product name: MRH110, manufactured by Johoku Chemical Industry Co., Ltd.), 0.2 parts by weight, foam stabilizer (silicone surfactant, product name: B8110, manufactured by Goldschmidt Co., Ltd.) 1 part by weight, polyisocyanate (2,4-TDI / 2,6-TDI = 80/20, product name: Coronate T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) 27.7 parts by weight A polyurethane foam block is produced by a known polyurethane slab foaming method using a foaming material comprising isocyanate index 110. It was. In the slab foaming method, the mixed and stirred foam material is discharged onto a belt conveyor, and while the belt conveyor moves, the foam material is naturally foamed and cured at room temperature and atmospheric pressure, and further cured in a drying furnace. And then cutting into a predetermined block shape. The resulting polyether-based polyurethane foams were Tsu Oh density 48 kg / m 3.

このようにして製造されたポリウレタン発泡体のブロックをトムソン刃で一辺10mmの立方体の小片に裁断し、得られたポリウレタン発泡体の小片を図1に示す攪拌槽に6.75kg投入し、直径800mm、回転速度60回/分のプロペラミキサーで攪拌しながら、生分解性を有する親水化剤としてプロピレングリコール(PG)、エチレングリコール(EG)、グリセリン(Gly)を、ポリウレタン発泡体の小片にスプレー塗布装置でそれぞれ塗布し、15分間攪拌した。その後、攪拌を停止して実施例1〜5の水処理用微生物担体を得た。ポリウレタン発泡体の小片に対する、生分解性を有する親水化剤の塗布量(付着量)は、表1に示すとおりである。   The polyurethane foam block produced in this manner was cut into small pieces of a 10 mm side cube with a Thomson blade, and 6.75 kg of the obtained polyurethane foam pieces were put into the stirring tank shown in FIG. Spraying propylene glycol (PG), ethylene glycol (EG), and glycerin (Gly) as biodegradable hydrophilizing agents onto small pieces of polyurethane foam while stirring with a propeller mixer at a rotational speed of 60 times / minute Each was applied with an apparatus and stirred for 15 minutes. Then, stirring was stopped and the microbial carrier for water treatment of Examples 1-5 was obtained. Table 1 shows the application amount (adhesion amount) of the biodegradable hydrophilizing agent to the polyurethane foam pieces.

このようにして得られた実施例1〜5の水処理用微生物担体を、静水面に落とし、30分後の沈み具合を調べたところ、何れも全体が水面下に沈み、沈み性が良好であった。また、前記水面下に沈んだ実施例の水処理用微生物担体を攪拌棒で5分間かき混ぜたところ、泡立ちを殆ど生じないことが確認できた。また、実施例1〜5の水処理用微生物担体に手でふれてみてべたつきの有無を調べ、べたつきがない場合を(○)、ある場合を(×)とした。水処理用微生物担体にべたつきがあると、水処理用微生物担体を扱い難いうえに、曝気槽(エアレーションタンク)への投入時に水処理用微生物担体が梱包袋内に残量するおそれがある。   When the microbial carriers for water treatment of Examples 1 to 5 obtained in this way were dropped on a static water surface and examined for sinking after 30 minutes, all of them submerged below the water surface, and the sinkability was good. there were. Moreover, when the microbial carrier for water treatment of the Example which submerged under the said water surface was stirred for 5 minutes with the stirring rod, it has confirmed that there was almost no foaming. Moreover, the presence or absence of stickiness was examined by touching the microbial carriers for water treatment of Examples 1 to 5 by hand. If the microbial carrier for water treatment is sticky, it is difficult to handle the microbial carrier for water treatment, and the microbial carrier for water treatment may remain in the packing bag when it is put into the aeration tank.

さらに、実施例の水処理用微生物担体について、溶出成分による水質の汚染を調べるため、CODcr(化学的酸素要求量)とBOD(生物学的酸素要求量)を測定した。CODcrの測定は2クロム酸カリウムを用いる公知の方法で行った。測定結果は、表1に示すとおりである。   Furthermore, CODcr (chemical oxygen demand) and BOD (biological oxygen demand) were measured in order to investigate the contamination of water quality due to the eluted components of the microbial carrier for water treatment of the examples. CODcr was measured by a known method using potassium dichromate. The measurement results are as shown in Table 1.

Figure 0004828370
Figure 0004828370

比較のため、生分解性を有する親水化剤に代えて界面活性剤を用いて比較例1〜7の水処理用微生物担体を製造した。界面活性剤は比較例1〜3では品名:アセチレノールEH、川研ファインケミカル株式会社製、比較例4では品名:PEG−200、三洋化成工業株式会社製、比較例5では品名:PEG−400、三洋化成工業株式会社製、比較例6では品名:PP−200、三洋化成工業株式会社製、比較例7では品名:PP−400、三洋化成工業株式会社製である。なお、比較例におけるポリウレタン発泡体の小片に対する、界面活性剤の塗布量(付着量)は、表2に示すとおりである。また、比較例についても、CODcr(化学的酸素要求量)とBOD(生物学的酸素要求量)を測定すると共に、べたつきの有無についても調べた。結果は表2に示すとおりである。   For comparison, a microbial carrier for water treatment of Comparative Examples 1 to 7 was produced using a surfactant in place of the biodegradable hydrophilizing agent. In Comparative Examples 1 to 3, the surfactants are product names: acetylenol EH, manufactured by Kawaken Fine Chemical Co., Ltd., in Comparative Examples 4, product names: PEG-200, manufactured by Sanyo Chemical Industries, Ltd., and in Comparative Example 5, product names: PEG-400, Sanyo. In Comparative Example 6, product name: PP-200, manufactured by Sanyo Chemical Industries, Ltd., and in Comparative Example 7, product name: PP-400, manufactured by Sanyo Chemical Industries, Ltd. In addition, the application amount (adhesion amount) of the surfactant with respect to the polyurethane foam piece in the comparative example is as shown in Table 2. Further, for the comparative example, CODcr (chemical oxygen demand) and BOD (biological oxygen demand) were measured, and the presence or absence of stickiness was also examined. The results are as shown in Table 2.

Figure 0004828370
Figure 0004828370

表1および表2の結果から理解されるように、実施例の水処理用微生物担体は、比較例の水処理用微生物担体と比べて、BOD/CODcr比が一桁以上高く、実施例の水処理用微生物担体は親水化剤の微生物による分解が促進される担体であることがわかる。また、実施例の水処理用微生物担体はべたつきが無かったのに対し、比較例の水処理用微生物担体はべたつきがあった。   As can be understood from the results of Tables 1 and 2, the water treatment microbial carrier of the example had a BOD / CODcr ratio higher by one digit or more than the water treatment microbial carrier of the comparative example. It can be seen that the microbial carrier for treatment is a carrier that promotes the degradation of the hydrophilizing agent by microorganisms. In addition, the microbial carrier for water treatment in the examples was not sticky, whereas the microbial carrier for water treatment in the comparative examples was sticky.

ポリウレタン発泡体に、生分解性を有する親水化剤を塗布する方法の一例を示す図である。It is a figure which shows an example of the method of apply | coating the hydrophilizing agent which has biodegradability to a polyurethane foam.

符号の説明Explanation of symbols

11 攪拌槽
24 攪拌羽根
31 スプレー塗布装置
41 生分解性を有する親水化剤
51 ポリウレタン発泡体の小片
DESCRIPTION OF SYMBOLS 11 Stirrer tank 24 Stirrer blade 31 Spray coating device 41 Hydrophilic agent having biodegradability 51 Small piece of polyurethane foam

Claims (1)

ポリウレタン発泡体を所定サイズの小片に裁断した後、前記ポリウレタン発泡体の小片に、プロピレングリコール、エチレングリコール、グリセリンの何れか1種からなる生分解性を有する親水化剤を付着させることを特徴とする水処理用微生物担体の製造方法。   After the polyurethane foam is cut into small pieces of a predetermined size, a biodegradable hydrophilizing agent made of any one of propylene glycol, ethylene glycol, and glycerin is attached to the small pieces of the polyurethane foam. A method for producing a microbial carrier for water treatment.
JP2006285828A 2006-10-20 2006-10-20 Method for producing microbial carrier for water treatment Active JP4828370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285828A JP4828370B2 (en) 2006-10-20 2006-10-20 Method for producing microbial carrier for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285828A JP4828370B2 (en) 2006-10-20 2006-10-20 Method for producing microbial carrier for water treatment

Publications (2)

Publication Number Publication Date
JP2008100185A JP2008100185A (en) 2008-05-01
JP4828370B2 true JP4828370B2 (en) 2011-11-30

Family

ID=39434912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285828A Active JP4828370B2 (en) 2006-10-20 2006-10-20 Method for producing microbial carrier for water treatment

Country Status (1)

Country Link
JP (1) JP4828370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354165A (en) * 2018-12-03 2019-02-19 巩义市宏盛稀有金属有限公司 A method of using hybrid biosystem integrated treatment sanitary sewage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914855B2 (en) * 2008-03-18 2012-04-11 株式会社イノアックコーポレーション Water treatment carrier
JP5284057B2 (en) * 2008-11-21 2013-09-11 株式会社イノアックコーポレーション Method for producing microbial carrier for water treatment

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198978A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Base material for cultivating cell
JPH025852A (en) * 1988-06-25 1990-01-10 Nippon Steel Chem Co Ltd Carrier of microorganism
ES2093967T3 (en) * 1992-05-04 1997-01-01 Allied Signal Inc DEVICE AND PROCESS FOR THE ELIMINATION OF POLLUTANTS FROM WASTEWATER.
JPH10180280A (en) * 1996-12-24 1998-07-07 Nkk Corp Microorganism immobilizing carrier for water treatment
JP2001096289A (en) * 1999-07-28 2001-04-10 Bridgestone Corp Carrier for microorganism immobilization and process and equipment for purifying sewage
JP3965006B2 (en) * 1999-09-27 2007-08-22 株式会社バイオセル Foam carrier for microbial immobilization treatment, and waste water such as organic waste water and eutrophication water using the same
JP3347695B2 (en) * 1999-11-09 2002-11-20 株式会社バイオキャリアテクノロジー Microbial adsorbent carrier, method for producing the carrier, and method for forming film on carrier surface
JP2002159986A (en) * 2000-11-27 2002-06-04 Hitachi Chem Co Ltd Carrier having inorganic particle stuck on the surface firmly for carrying microbe, sewage purifying tank and method or manufacturing the carrier for carrying microbe
JP2002186986A (en) * 2000-12-19 2002-07-02 Hitachi Plant Eng & Constr Co Ltd Carrier for microorganism adhesion
JP2002292384A (en) * 2001-04-02 2002-10-08 Achilles Corp Microorganism immobilizing carrier
JP4059793B2 (en) * 2003-03-12 2008-03-12 アキレス株式会社 Sheet-like microorganism fixing carrier
JP4024706B2 (en) * 2003-03-25 2007-12-19 株式会社イノアックコーポレーション Hydrophilic polyolefin resin foam
JP4779337B2 (en) * 2004-10-20 2011-09-28 株式会社カネカ Biodegradable foam
JP2006175311A (en) * 2004-12-21 2006-07-06 Kansai Paint Co Ltd Carrier for holding microorganism
JP5005173B2 (en) * 2005-02-08 2012-08-22 ダイセルノバフォーム株式会社 Resin composition for foam and foam using the same
JP4722518B2 (en) * 2005-03-22 2011-07-13 株式会社イノアックコーポレーション Microbial carrier for water treatment and production method thereof
JP4969817B2 (en) * 2005-05-06 2012-07-04 株式会社イノアックコーポレーション Microbial carrier assembly for water treatment
JP2006346551A (en) * 2005-06-15 2006-12-28 Inoac Corp Microorganism carrier for water treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354165A (en) * 2018-12-03 2019-02-19 巩义市宏盛稀有金属有限公司 A method of using hybrid biosystem integrated treatment sanitary sewage
CN109354165B (en) * 2018-12-03 2021-08-27 河北雄安迈嵘环保科技有限公司 Method for integrally treating domestic sewage by adopting composite MBR (membrane bioreactor)

Also Published As

Publication number Publication date
JP2008100185A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
CN101253022B (en) Polishing pad
JP5519128B2 (en) Polyurethane foam used as a carrier for water treatment
KR20160140799A (en) Polishing pad and process for producing same
JP7354218B2 (en) Flexible polyurethane foam for microbial carriers and microbial carriers
WO2010023885A1 (en) Method of manufacturing flexible polyurethane foam
JP4828370B2 (en) Method for producing microbial carrier for water treatment
JP4914855B2 (en) Water treatment carrier
JP4123003B2 (en) Microorganism immobilization carrier, sewage purification method and sewage purification device
JP2017523297A (en) Abrasive material for polishing hard surfaces, media comprising this material, and methods of forming and using the same
JP5490426B2 (en) Polyurethane foam for microbial immobilization support
JP4879553B2 (en) Microbial carrier for water treatment
JP6917535B1 (en) Manufacturing method of flexible polyurethane foam
JP2006346551A (en) Microorganism carrier for water treatment
US4503150A (en) Polyurethane foam and a microbiological metabolizing system
JP5284057B2 (en) Method for producing microbial carrier for water treatment
WO2021131934A1 (en) Support for immobilizing microorganisms for water treatment, resin-foamed body and starting material composition thereof
JP2004359950A (en) Water-swelling polyurethane foam furnished with chemical resistance, method for producing the same, and carrier for bioreactor given by using the same
JP6625849B2 (en) Polyurethane foam for water treatment carrier
WO2021045103A1 (en) Production method for soft polyurethane foam
KR100955032B1 (en) Absorbing pad composition for polishing, Absorbing pad for polishing and Method of manufacturing thereof
JP2021181538A (en) Lowly swelling hydrophilic urethane foam
WO2023053984A1 (en) Microorganism-fixing carrier for water treatment, and method for producing same
JP6714053B2 (en) Polyurethane resin composition for cutting
WO2021045104A1 (en) Method for producing microorganism-immobilized carrier for water treatment use
JP2004217708A (en) Water-swellable polyurethane foam provided with chemical resistance and carrier for bioreactor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250