WO2023053984A1 - Microorganism-fixing carrier for water treatment, and method for producing same - Google Patents

Microorganism-fixing carrier for water treatment, and method for producing same Download PDF

Info

Publication number
WO2023053984A1
WO2023053984A1 PCT/JP2022/034513 JP2022034513W WO2023053984A1 WO 2023053984 A1 WO2023053984 A1 WO 2023053984A1 JP 2022034513 W JP2022034513 W JP 2022034513W WO 2023053984 A1 WO2023053984 A1 WO 2023053984A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane foam
flexible polyurethane
carrier
water
microorganism
Prior art date
Application number
PCT/JP2022/034513
Other languages
French (fr)
Japanese (ja)
Inventor
一宏 大西
雅弘 内藤
惣一郎 廣川
Original Assignee
日清紡ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ケミカル株式会社 filed Critical 日清紡ケミカル株式会社
Publication of WO2023053984A1 publication Critical patent/WO2023053984A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/093Polyurethanes

Definitions

  • the present invention relates to a microorganism-immobilizing carrier for water treatment (hereinafter also simply referred to as "carrier”) and a method for producing the same.
  • carrier a microorganism-immobilizing carrier for water treatment
  • Patent Document 1 describes a hollow tubular plastic carrier with a large specific surface area as a carrier. The introduction of water-soluble polymers containing microorganisms into the pores of the material is disclosed.
  • Patent Document 2 a porous resin obtained by extruding and foaming a thermoplastic resin is preheated, and a coating material extruded from an extruder is adhered to the outer surface of the resin.
  • a carrier that suppresses the deformation of the porous resin and the accompanying increase in water flow resistance is described.
  • the carrier described in Patent Document 1 has a risk that the water-soluble polymer may peel off during water treatment due to physical stirring or the like, and it is difficult to maintain the organic wastewater treatment performance for a long time, and it does not have sufficient durability. I wouldn't say I did.
  • the water-soluble polymer containing microorganisms has a small contact area between the water-soluble polymer portion and the organic wastewater, and the organic wastewater treatment capacity is not sufficient.
  • the carrier described in Patent Document 2 is obtained by bonding a porous resin and a coating material made of a thermoplastic resin, and the pore (cell) structure of the preheated porous resin allows microorganisms to reach the inside of the carrier. A uniform state that facilitates penetration was not maintained, and it could not be said that the organic wastewater treatment performance was good.
  • the present invention has been made to solve such problems, and it is an object of the present invention to provide a microorganism-immobilizing carrier for water treatment that is excellent in durability while maintaining organic wastewater treatment performance, and a method for producing the same. aim.
  • the present invention is based on the discovery that by coating a flexible polyurethane foam with a predetermined coating member, it is possible to obtain a microorganism-immobilizing carrier for water treatment that has excellent durability while maintaining organic wastewater treatment performance. is.
  • a microorganism-immobilizing carrier for water treatment wherein at least part of the side peripheral surface of a columnar body of flexible polyurethane foam is coated with a coating member harder than the flexible polyurethane foam.
  • the covering member is integrally formed and has one or more slits in a portion of the covering member that covers the side peripheral surface of the columnar body.
  • Microorganism immobilization carrier for water treatment of. [3] The above [2], wherein one of the slits is a communicating slit extending from one bottom-side end of the columnar body to the other bottom-side end of the covering member.
  • a method for producing a microorganism-immobilizing carrier for water treatment in which the side peripheral surface of a columnar body of flexible polyurethane foam is coated with an integrally formed coating member having slits, wherein the coating member comprises: A hollow elongated member having a slit extending in the length direction is used, and a flexible polyurethane foam composition is poured into the hollow portion of the elongated member through the slit or the end portion in the length direction of the elongated member.
  • Manufacture of a microorganism-immobilizing carrier for water treatment comprising the steps of injecting and foaming to obtain a rod-shaped object having the flexible polyurethane foam in the hollow part of the elongated material, and cutting the rod-shaped object into a predetermined length.
  • a microorganism-immobilizing carrier for water treatment which is excellent in durability while maintaining organic wastewater treatment performance. Further, according to the present invention, there is also provided a method for easily producing the microorganism-immobilized carrier for water treatment.
  • FIG. 1 is a perspective view showing one embodiment of a microorganism-immobilizing carrier for water treatment of the present invention.
  • FIG. Fig. 2 is a perspective view showing another embodiment of the microorganism-immobilizing carrier for water treatment of the present invention;
  • microorganism-immobilizing carrier for water treatment of the present invention and the method for producing the same will be described in detail.
  • Microorganism immobilization carrier for water treatment In the microorganism-immobilizing carrier for water treatment of the present invention, at least a part of the side peripheral surface of the columnar body of flexible polyurethane foam is coated with a coating member harder than the flexible polyurethane foam.
  • the carrier as described above maintains the organic wastewater treatment performance of the flexible polyurethane foam, and has good durability against physical agitation by stirring blades and the like, impact by water flow, and self-weight pressure in a fixed bed.
  • Embodiments of the carrier of the present invention include, for example, those shown in FIGS. The carrier shown in FIGS.
  • the columnar body 1 and 2 includes a covering member 2 having slits S on the side peripheral surface of a columnar body 1 of flexible polyurethane foam.
  • the covering member 2 may cover the entire side peripheral surface of the columnar body 1, but preferably has a slit S as shown in FIGS.
  • the columnar body 1 is a cylindrical body, and in FIG. 2, the columnar body 1 is a quadrangular prism.
  • the covering member 2 covering the flexible polyurethane foam pillars 1 is made of a material harder than the flexible polyurethane foam. Since the coating member 2 is harder than the flexible polyurethane foam forming the columnar body 1, deformation and breakage of the columnar body 1 are suppressed during use of the carrier. Therefore, in the above-described carrier in which the columnar bodies 1 are covered with the hard coating member 2, the contact surface with the organic wastewater is secured by the flexible polyurethane foam constituting the columnar bodies 1, and the organic wastewater treatment performance is maintained. , the covering member 2 provides excellent durability.
  • the covering member 2 itself is integrally formed from the viewpoint of manufacturing efficiency and cost during mass production of the carrier, and the portion of the covering member 2 that covers the side peripheral surface of the columnar body 1 It is preferable to have one or more slits S in the . Since the covering member 2 is a single member, it is possible to reduce the labor and burden of forming the covering member compared to the case where a plurality of members are combined. is likely to be retained, and separation and detachment can also be suppressed.
  • the shape of the slit S is not particularly limited. 1 and 2, one of S is a communication slit extending from one bottom end of the columnar body 1 of the covering member 2 to the other bottom end thereof. is preferred. If one of the slits S is a communicating slit, the contact surface between the flexible urethane foam columnar body 1 and the organic waste water can be easily secured when the carrier is used while maintaining the integrity of the coating member 2. It is also preferable from the viewpoint of manufacturing efficiency during mass production.
  • the covering member 2 only needs to cover at least a part of the side peripheral surface of the columnar body 1, and from the viewpoint of not increasing the water flow resistance inside the carrier, the bottom surfaces of the columnar body 1 are not covered. is preferred. That is, it is preferable that the flexible polyurethane foam is exposed on both bottom surfaces of the columnar body 1 .
  • the material of the covering member 2 is not particularly limited as long as it is harder than the flexible polyurethane foam forming the columnar body 1 . From the viewpoints of preventing damage to the water treatment tank, facilitating integration with the flexible polyurethane foam, versatility, etc., it is preferable that the resin contains a thermoplastic resin.
  • thermoplastic resins include polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-(meth)acrylate copolymer, Polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), nylon, polycarbonate, polyethylene terephthalate, poly(meth)acrylate, polyvinyl alcohol and the like.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • the coating member 2 increases the specific gravity of the carrier so that the carrier quickly settles in water when it is put into the water treatment tank, thereby preventing the adhesion of microorganisms. While facilitating, it may also have a specific gravity adjusting role such as ensuring good carrier fluidity in organic waste water. Therefore, it is also preferable to select the material of the covering member 2 from the viewpoint of adjusting the specific gravity.
  • a flexible polyurethane foam is used as a porous material for immobilizing microorganisms.
  • Flexible polyurethane foams are thermosetting, have excellent heat resistance compared to thermoplastic resins, and have good flexibility with excellent adhesiveness to microorganisms, and are suitably used as carriers. be able to.
  • the flexible polyurethane foam is columnar body 1 . If it is a columnar body, it is advantageous in terms of production efficiency, cost, and the like during mass production of the carrier. Examples of the columnar body 1 include a columnar body as shown in FIG. 1, a prismatic body as shown in FIG.
  • the columnar body 1 is a cylindrical body
  • the covering member 2 covering the side peripheral surface of the cylindrical body has, for example, a C-shaped cross section in the bottom direction, as shown in FIG.
  • Flexible polyurethane foam is mainly composed of polyurethane resin (the content ratio is the largest), and optional components such as inorganic fillers, colorants, etc., and curing agents and Other ingredients may be included, such as ingredients derived from blowing agents, foam stabilizers, surfactants, catalysts, and the like.
  • the content of these other components in the flexible polyurethane foam is within a range that does not interfere with the effects of the present invention.
  • a known flexible polyurethane foam for microorganism immobilization carriers for water treatment can be used.
  • those produced using the flexible polyurethane foam composition described later are preferable.
  • the flexible polyurethane foam preferably has a swelling density of 20 to 70 kg/m 3 , more preferably 25 to 65 kg/m 3 , still more preferably 30 to 60 kg/m 3 when swollen with water, from the viewpoint of efficient water treatment. is.
  • swelling density refers to a value obtained by dividing the absolute-dry mass of flexible polyurethane foam by the volume when swollen with water.
  • absolute dry state is also referred to as an absolutely dry state, and refers to a state in which the flexible polyurethane foam is dried at 110°C, which is the heat-resistant temperature of the polyurethane resin or less, and no weight reduction is observed.
  • “When swollen with water” refers to a state in which the flexible polyurethane foam is immersed in pure water at 25°C for 1 hour.
  • the flexible polyurethane foam preferably has an absolute dry density of 30 to 100 kg/m 3 , more preferably 35 to 95 kg/m 3 , still more preferably 40 to 90 kg/m 3 from the viewpoint of a moderate volume swelling rate. be.
  • the flexible polyurethane foam preferably has a volume swelling ratio of more than 100% to 1000% or less, more preferably 105 to 600%, and still more preferably 110 to 300% when swelled with water.
  • volume swelling rate refers to a value expressed by the ratio of the volume of a flexible polyurethane foam when swollen with water to the volume of the flexible polyurethane foam in an absolutely dry state.
  • the absolute dry volume includes the volume of the pores (cells) of the flexible polyurethane foam, and is the volume determined based on the external dimensions.
  • the value is calculated as the product of the length, width and height of the three sides.
  • the volume when swollen with water is also the volume determined based on the external dimensions, and includes the volume of water inside and the cells of the flexible polyurethane foam.
  • the cell structure of the flexible polyurethane foam should be a continuous pore structure from the viewpoint of allowing microorganisms, oxygen, and substrates that serve as nutrients for microorganisms in water to penetrate sufficiently into the interior of the foam, thereby facilitating the immobilization of microorganisms on the carrier. is preferred.
  • the polyurethane skeleton constituting the cell structure has a so-called wall structure in which adjacent cells are partially film-like and partitioned by wall surfaces having a large surface area.
  • the average number of pores when swollen with water is preferably 2 to 8/5 mm, more preferably 3 to 7/5 mm, and still more preferably 4 to 6/5 mm.
  • the term "average number of pores" as used herein refers to the average number of pores existing on a straight line of arbitrary three lengths of 5 mm in flexible polyurethane foam when swollen with water.
  • the average pore size of the flexible polyurethane foam when swollen with water is preferably 0.2 to 5 mm, more preferably 0.4 to 3 mm, still more preferably 0.5 to 2 mm.
  • the average pore diameter is the average diameter of 50 pores, assuming that the pores in the microscopic image are perfect circles whose diameter is the average value of the long and short diameters.
  • the flexible polyurethane foam preferably exhibits good hydrophilicity, and as an indicator of hydrophilicity, the settling time in water is preferably 1 hour or less, more preferably 30 minutes or less, and still more preferably 15 minutes. It is below.
  • the term “submersion time” refers to the time until all cubic pieces of flexible polyurethane foam with a side length of 5 mm dropped on the surface of distilled water at 25° C. settle below the water surface (in water). say the time
  • the size of the carrier is not particularly limited, and can be set as appropriate in consideration of the shape and scale of the water treatment tank, water swelling, microbial adhesion, handling, manufacturing efficiency, and the like.
  • the diameter of the bottom surface and the height of the columnar body 1 are each preferably 3. It is about to 200 mm, more preferably 5 to 100 mm, still more preferably 6 to 80 mm, still more preferably 7 to 50 mm.
  • the thickness of the coating member 2 that covers the columnar body 1 is not particularly limited, and the size and thickness of the carrier are within the range in which deformation and breakage of the columnar body 1 are suppressed and excellent durability of the carrier is obtained. It can be appropriately set according to the material of the covering member 2 and the like. For example, when the diameter and height of the bottom surface of the support of the columnar body 1 are each about 3 to 200 mm, the thickness of the covering member 2 is preferably 0.1 to 10 mm, more preferably 0.2 to 8 mm. , more preferably 0.3 to 5 mm.
  • the production method of the present invention is a method for producing a carrier in which the side peripheral surface of a columnar body of flexible polyurethane foam is covered with an integrally formed covering member having slits. A hollow elongated member having an extended slit is used, and a flexible polyurethane foam composition is injected and foamed into the hollow portion of the elongated member through the slit or the longitudinal end of the elongated member, and the elongated member is and a step of cutting the resulting rod into a predetermined length.
  • the flexible polyurethane foam composition injected and foamed from the slit or the end of the long material has a uniform cell structure throughout the hollow part of the long material.
  • Polyurethane foams can be formed. Injection and foaming through a slit is more preferable from the viewpoint of performing more uniform injection and foaming in the length direction of the elongated material.
  • the slit or the end of the elongated material is used to obtain a rod in which the flexible polyurethane foam columnar body and the covering member are integrated, and by cutting the rod, the same shape is obtained.
  • the cell structure of the porous body soft polyurethane foam
  • the carrier in which the covering member and the porous body are integrated can be mass-produced efficiently.
  • the manufacturing method can be performed, for example, by the following steps.
  • a single linear slit is processed in the length direction of a cylindrical pipe made of thermoplastic resin, and a cylindrical body having a C-shaped cross section in the radial direction (bottom direction) of the pipe (hereinafter referred to as “C-shaped ) is obtained.
  • a flexible polyurethane foam composition is injected and foamed into the hollow portion of the C-shaped tubular body through a slit or an end portion in the length direction of the tubular body, and the flexible polyurethane foam is injected into the hollow portion of the C-shaped tubular body. to obtain a bar having
  • a carrier in which a cylindrical body of flexible polyurethane foam is covered with a C-shaped cylindrical body can be produced. .
  • ⁇ Flexible polyurethane foam composition As the flexible polyurethane foam composition of the present invention, known raw material compositions for producing flexible polyurethane foams for carriers can be used. For example, a flexible polyurethane foam composition containing a urethane prepolymer, a polyisocyanate compound, a curing agent and a foaming agent, and optionally other components such as a foam stabilizer and a catalyst is preferably used. A polyol compound can also be used instead of the urethane prepolymer. A flexible polyurethane foam is obtained by foaming and curing the flexible polyurethane foam composition.
  • polyisocyanate compound (a) in order to distinguish it from the polyisocyanate compound that is a raw material for synthesizing the urethane prepolymer, which will be described later. It may be described as “polyisocyanate compound (b)”.
  • the urethane prepolymer is a polymer obtained by reacting a polyol compound with an amount of polyisocyanate compound (b) in which the molar equivalent ratio of the isocyanate group to the hydroxyl group of the polyol compound is excessive. has two or more isocyanate groups.
  • the urethane prepolymer may be used alone or in combination of two or more. By using such a prepolymer as a raw material component, the production reaction of a flexible polyurethane foam is facilitated, and a flexible polyurethane foam having excellent homogeneity with little variation in cell structure can be easily obtained.
  • the urethane prepolymer is preferably a reaction product of a polyether polyol and a polyisocyanate compound (b), and is a polyether urethane prepolymer having two or more isocyanate groups in one molecule.
  • Both polyether polyols and polyester polyols can impart hydrophilicity to the resulting flexible polyurethane foams, but polyether polyols are superior in hydrolysis resistance to polyester polyols. Since flexible polyurethane foams are used in water, polyether polyols are preferable to polyester polyols as the polyol compound used as the raw material for synthesizing the urethane prepolymer from the viewpoint of the durability of the carrier.
  • Polyether polyols include, for example, polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol. These are obtained by ring-opening polymerization of cyclic ether compounds such as ethylene oxide (hereinafter referred to as "EO"), propylene oxide (hereinafter referred to as "PO”) and tetrahydrofuran. Polyether polyols may be used singly or in combination of two or more. A copolymer of a cyclic ether compound may also be used, and an EO-PO copolymer is preferable from the viewpoint of the flexibility and hydrophilicity of the resulting flexible polyurethane foam.
  • the monomer composition ratio of EO and PO in the EO-PO copolymer is preferably 90/10 to 10/90, more preferably 85/15 to 15/85, and still more preferably 80/20 in mass ratio. ⁇ 20/80.
  • the polyether polyol preferably has a viscosity that is not too high, and preferably has a number average molecular weight of 1,000 to 8,000, more preferably 2,000 to 7,000, and still more preferably 2,500 to 5,000. .
  • the polyisocyanate compound (b) to be reacted with the polyether polyol is a compound having two or more isocyanate groups in one molecule, and is not particularly limited.
  • the polyisocyanate compound (b) include toluene diisocyanate (hereinafter referred to as "TDI"), xylylene diisocyanate, diphenylmethane diisocyanate, naphthylene diisocyanate, biphenylene diisocyanate, diphenyl ether diisocyanate, tolidine diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate. , dicyclohexylmethane diisocyanate, and the like.
  • the polyisocyanate compound (b) may be used singly or in combination of two or more.
  • the polyisocyanate compound (b) when the polyisocyanate compound (b) is a compound having isomers, it may be one type of each isomer or a mixture of two or more isomers.
  • TDI has two isomers, toluene-2,4-diisocyanate (2,4-TDI) and toluene-2,6-diisocyanate (2,6-TDI). ,6-TDI alone or a mixture of the two may be used.
  • the polyisocyanate compound (a) is not particularly limited, and specific examples thereof include the same as those exemplified for the polyisocyanate compound (b), which is the starting material for synthesizing the urethane prepolymer.
  • the polyisocyanate compound (a) may be used alone or in combination of two or more.
  • the polyisocyanate compound (a) may be the same as or different from the polyisocyanate compound (b) used as the starting material for synthesizing the urethane prepolymer.
  • the content of the polyisocyanate compound (a) is set in consideration of the viscosity of the flexible polyurethane foam composition, the hydrophilicity of the flexible polyurethane foam, etc., and is preferably 35 parts by mass with respect to 100 parts by mass of the urethane prepolymer. Below, it is more preferably 1 to 30 parts by mass, still more preferably 2 to 25 parts by mass.
  • the curing agent is a compounding component for cross-linking and curing the urethane prepolymer and the polyisocyanate compound (a), and is also called a cross-linking agent.
  • curing agents include water; polyhydric alcohols such as glycerin, 1,4-butanediol and diethylene glycol; amine compounds such as ethanolamines and polyethylenepolyamines. Polyols obtained by ring-opening polymerization of polyhydric alcohol with ethylene oxide, propylene oxide, etc., and those obtained by adding a small amount of propylene oxide to the above-mentioned amine compounds may also be used. These may be used individually by 1 type, or may use 2 or more types together.
  • water is preferably used from the viewpoint of reactivity, ease of handling, cost, and the like.
  • the content of the curing agent in the flexible polyurethane foam composition can be appropriately set in consideration of the flexibility, elasticity, strength, etc. of the flexible polyurethane foam obtained from the composition.
  • a blowing agent is a formulation ingredient for the foam formation of flexible polyurethane foams.
  • the foaming agent generates carbon dioxide gas by reacting with an isocyanate group during a reaction to produce polyurethane, or evaporates itself during an exothermic reaction to foam polyurethane.
  • foaming agents include water, hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), hydrochlorofluoroolefins (HCFO), carbon dioxide, and hydrocarbons such as cyclopentane. These may be used individually by 1 type, or may be used in combination of 2 or more types.
  • water is preferably used alone from the viewpoint of ease of handling, cost, environmental protection, and the like.
  • the content of the foaming agent in the flexible polyurethane foam composition is appropriately set in consideration of the foaming speed (foam generation speed) of the flexible polyurethane foam produced using the composition, the mixing state of the composition, and the like. can do.
  • water works both as a curing agent and as a foaming agent, and is suitable as a compounding component of a flexible polyurethane foam composition.
  • the content of water when used as a curing agent and a foaming agent in the flexible polyurethane foam composition is preferably 20 to 90 parts by mass with respect to a total of 100 parts by mass of the urethane prepolymer and the polyisocyanate compound (a). More preferably 25 to 85 parts by mass, still more preferably 30 to 80 parts by mass.
  • the flexible polyurethane foam composition may optionally contain other ingredients such as foam stabilizers, catalysts, inorganic fillers, colorants, and solvents.
  • the content of the other compounding components in 100 parts by mass of the flexible polyurethane foam composition is preferably 15 parts by mass or less, from the viewpoint of production efficiency of flexible polyurethane foams using the composition. It is more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less.
  • a foam stabilizer is a compounding component for adjusting the foam state of a flexible polyurethane foam, and examples thereof include surfactants and silicone oils. These may be used individually by 1 type, or may use 2 or more types together.
  • the content of the foam stabilizer in 100 parts by mass of the flexible polyurethane foam composition is such that excess foam stabilizer remains in the flexible polyurethane foam, and from the viewpoint of suppressing foaming when the carrier is used. , preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less.
  • catalysts include known catalysts used in the production of flexible polyurethane foams, such as triethylamine, triethylenediamine, diethanolamine, N,N-dimethylaminoethoxyethanol, N-methylmorpholine, N-ethylmorpholine, tetramethylguanidine.
  • tin catalysts such as stannous octoate and dibutyltin dilaurate; and other metal catalysts such as phenylmercuric propionate and lead octenate.
  • the inorganic filler is a compounding component for adjusting the specific gravity for the purpose of, for example, allowing the flexible polyurethane foam to quickly settle in water.
  • Examples thereof include barium sulfate, calcium carbonate, talc, silica, alumina, activated carbon, zeolite, and graphite. etc. These may be used individually by 1 type, or may use 2 or more types together.
  • the flexible polyurethane foam composition may be a one-component composition containing all of the ingredients, but is preferably a two-component composition of A and B components.
  • Liquid A preferably contains a urethane prepolymer and a polyisocyanate compound (a), and liquid B preferably contains a curing agent and a foaming agent.
  • a two-component composition in which two component liquids, A component and B component, are separately prepared and then mixed and foamed, is suitable for stable and efficient production of flexible polyurethane foam.
  • Liquid A contains the above-described urethane prepolymer and polyisocyanate compound (a), and may contain the other ingredients in the flexible polyurethane foam composition.
  • the total content of the urethane prepolymer and the polyisocyanate compound (a) in liquid A is preferably 30 parts by mass or more, more preferably 35 to 100 parts by mass in 100 parts by mass of liquid A, from the viewpoint of production efficiency of flexible polyurethane foam. parts by mass, more preferably 40 to 100 parts by mass.
  • Liquid B contains a curing agent and a foaming agent, and may contain the above-mentioned other compounding ingredients in the flexible polyurethane foam composition. From the viewpoint of efficiently producing a flexible polyurethane foam having a good cell structure, the total content of the curing agent and foaming agent in liquid B is preferably 45 parts by mass or more, more preferably 60 to 100 parts by mass, more preferably 65 to 100 parts by mass.
  • a method for producing a flexible polyurethane foam using a two-component flexible polyurethane foam composition of liquids A and B a known production method for a two-component flexible polyurethane foam can be applied.
  • a flexible polyurethane foam can be obtained by a method such as mixing liquid A and liquid B using a mixing head and performing injection foaming.
  • the mass mixing ratio of liquid A and liquid B is preferably 45/55 to 80/20, more preferably 50/50 to 77/23, from the viewpoint of efficiently obtaining a homogeneous flexible polyurethane foam with a desired cell structure. , more preferably 55/45 to 75/25.
  • sample carrier [Preparation of sample carrier] ⁇ Sample carrier (1)> A cylindrical transparent resin pipe made of polycarbonate having an outer diameter of 22 mm and a wall thickness of 2 mm was slit in the longitudinal direction with a width of about 10 mm to obtain a C-shaped tubular body. A flexible polyurethane foam composition obtained by mixing the following liquid A and liquid B at a mass mixing ratio of 71/29 was injected into the hollow portion of the C-shaped cylindrical body through a slit and foamed. After removing the soft polyurethane foam protruding from the C-shaped cylindrical body, the carrier was cut into a length of 22 mm, and the cylindrical body of the flexible polyurethane foam was covered with the C-shaped cylindrical body (sample carrier (1)). manufactured.
  • TDI-modified EO-PO copolymer as urethane prepolymer ⁇ Liquid A ⁇ TDI-modified EO-PO copolymer as urethane prepolymer (EO/PO mass ratio: 24/76, number average molecular weight of EO-PO copolymer: 2700 (theoretical value), NCO (isocyanate group) content: 4. 5% by mass)) and 88.3 g of TDI ("Coronate (registered trademark) T-80" manufactured by Tosoh Corporation; 2,4-TDI/2,6-TDI molar ratio 80/20) were stirred and mixed. was prepared.
  • a comparison sample carrier (1) was obtained by cutting the C-shaped tubular body of the sample carrier (1) as it was into a length of 22 mm.
  • sample carrier (2) In the manufacture of the above sample carrier (1), instead of the cylindrical transparent resin pipe made of polycarbonate, a cylindrical resin pipe made of ABS resin having the same shape is used, and the rest is the same as the sample carrier (1). , to prepare the sample carrier (2).
  • sample carrier (3) In the manufacture of the sample carrier (2), the cylindrical resin pipe made of ABS resin was not subjected to slit processing, but in the same manner as the sample carrier (2), the peripheral surface of the cylindrical body of flexible polyurethane foam was prepared. A carrier (sample carrier (3)) entirely covered with a cylindrical body (without slits) was produced.
  • Comparison sample carrier (2) was obtained by cutting the C-shaped tubular body of the sample carrier (2) as it was into a length of 22 mm.
  • Comparative sample carrier (3) A flexible polyurethane foam (without a covering member) hollowed out from the sample carrier (1) was used as a comparative sample carrier (3).
  • a test piece (approximately 5 mm ⁇ approximately 5 mm, thickness of approximately 5 mm when swollen with water) was weighed with an electronic balance, dried in a drier at 110° C., and the absolute dry mass M d was measured.
  • the length of each side of the test piece in the absolute dry state is measured with a vernier caliper (resolution 0.05 mm; hereinafter the same), and the product of the length of each side is the volume of the test piece in the absolute dry state V d and The value of M d /V d was taken as the absolute dry density.
  • the volume swelling ratio is the ratio (V w /V d ) of the volume V w when swollen with water and the volume V d in the absolute dry state (V w /V d ).
  • ⁇ Average pore diameter> After measuring the volume Vw when swollen with water, an arbitrary point near the center of the surface of the test piece was observed with a microscope, and the major axis and minor axis of one pore in the observed image were measured.
  • the pore shape was regarded as a perfect circle whose diameter was the average value of the major and minor axes, and the diameters of 50 pores were obtained in the same manner. The average value of these diameters was taken as the average pore diameter when swollen with water.
  • ⁇ Underwater sedimentation time> One test piece (a cube with a length of 5 mm on each side) is placed in a 1 L polypropylene disposable cup and placed on the water surface of 600 mL of distilled water at 25 ° C. After dropping and putting it, the entire test piece is on the water surface. The time until it settled down (under water) was measured. Ten test pieces were measured. If the time until sedimentation (sedimentation time in water) was 1 hour or less, it was determined that the hydrophilicity was good.
  • sample carriers (1) to (3) were adhered to a tensile breaking strength tester (manufactured by Shimadzu Corporation), and tensile strength was measured . It was confirmed that the flexible polyurethane foam and the C-shaped cylindrical body covering it did not separate and maintained their integrated state. The same tensile strength measurement was performed on the flexible polyurethane foams having the same shape and size as the sample carriers (1) to (3) and the comparative sample carrier (3) (both flexible polyurethane foams only). All of them had a tensile breaking strength of about 3 N/cm 2 . From these evaluation results, sample carriers (1) to (3) maintained the state of integration between the flexible polyurethane foam and the covering member even when used for water treatment, and had greater strength than the case without the covering member. It can be said that it is high and has excellent durability.
  • test (1) sample carrier (1) and comparative sample carrier (1) were used, and in test (2), sample carriers (2) and (3), and comparative sample carriers (2) and (3) were used. .
  • test raw water mainly containing sodium nitrate was passed through the tank, and treated water was appropriately sampled from the tank to measure the residual NO 3 —N concentration (N 1 ).
  • the NO 3 —N concentration (N 0 ) of the test raw water passing through was also measured.
  • the ratio of the NO 3 -N concentration decrease (N 0 -N 1 ) to the NO 3 -N concentration (N 0 ) of the test raw water was calculated as the NO 3 -N removal rate [%].
  • the NO 3 —N concentration and raw water flow rate of the test raw water were adjusted, and the nitrogen volume load was changed to a high state, and the treatment effect was confirmed.
  • Table 2 shows the test results for the sample carrier (1) and the comparative sample carrier (1).
  • COD source glucose; COD 400 mg/L
  • the ratio of the decrease in COD value (C 0 ⁇ C 1 ) to the COD value (C 0 ) of test raw water was calculated as the COD removal rate [%].
  • the glucose concentration and raw water flow rate of test raw water were adjusted, and the treatment effect was confirmed assuming a state of high COD volume load.
  • Table 3 shows the test results for sample carriers (2) and (3) and comparative sample carriers (2) and (3).
  • the comparative sample carrier (2) No. Since the COD removal rate in No. 5 decreased, After 6 trials were discontinued.
  • the sample carriers (1) to (3) coated with the coating member showed sufficiently high NO 3 —N removal, comparable to the comparative sample carrier (3) without the coating member. and COD removal rate.
  • all of the sample carriers (1) to (3) maintained the integrated state of the flexible polyurethane foam and the covering member even after the test, and were excellent in durability.

Abstract

Provided are: a microorganism-fixing carrier for water treatment, the microorganism-fixing carrier having exceptional durability while maintaining organic wastewater treatment performance; and a method for producing the microorganism-fixing carrier for water treatment. In the microorganism-fixing carrier for water treatment according to the present invention, at least part of the peripheral side surface of a columnar body 1 made of soft polyurethane foam is coated with a coating member 2 that is harder than the soft polyurethane foam.

Description

水処理用微生物固定化担体及びその製造方法Microorganism immobilization carrier for water treatment and method for producing the same
 本発明は、水処理用微生物固定化担体(以下、単に「担体」とも言う。)、及びその製造方法に関する。 The present invention relates to a microorganism-immobilizing carrier for water treatment (hereinafter also simply referred to as "carrier") and a method for producing the same.
 下水やし尿、産業排水等の有機排水の水処理において、微生物を利用して有機物を分解させて水を浄化処理する方法がある。微生物を利用した水処理方法の一つとして、樹脂やセラミックス等の担体に、水処理に有効な微生物を付着(固定化)させた担体の固定床や流動床を用いる方法が知られている。流動床の場合には、例えば、水処理槽内で、撹拌翼による撹拌や、ポンプによる曝気等により、担体が移動可能な状態で使用される。 In the water treatment of organic wastewater such as sewage, night soil, and industrial wastewater, there is a method of purifying water by decomposing organic matter using microorganisms. As one of water treatment methods using microorganisms, there is known a method using a fixed bed or a fluidized bed of a carrier such as resin or ceramics on which microorganisms effective for water treatment are adhered (immobilized). In the case of a fluidized bed, for example, the carrier is used in a state in which it can be moved by stirring with a stirring blade, aeration with a pump, or the like in a water treatment tank.
 水処理の効率化のため、担体としては、例えば、特許文献1に、比表面積を大きくした中空管状のプラスチック製担体が記載されており、さらに、微生物の付着性を高めるため、中空管状の基材の空孔内に微生物を含有する水溶性高分子を導入することが開示されている。 For efficient water treatment, for example, Patent Document 1 describes a hollow tubular plastic carrier with a large specific surface area as a carrier. The introduction of water-soluble polymers containing microorganisms into the pores of the material is disclosed.
 また、長期の使用に耐え得る担体として、特許文献2に、熱可塑性樹脂を押出発泡させた多孔性樹脂を予熱し、その外側表面に、押出機から押し出した被覆材を接着させて形成し、前記多孔性樹脂の変形及びそれに伴う通水抵抗の増加を抑制させた担体が記載されている。 In addition, as a carrier that can withstand long-term use, in Patent Document 2, a porous resin obtained by extruding and foaming a thermoplastic resin is preheated, and a coating material extruded from an extruder is adhered to the outer surface of the resin. A carrier that suppresses the deformation of the porous resin and the accompanying increase in water flow resistance is described.
特開平11-276164号公報JP-A-11-276164 特開2001-231554号公報JP-A-2001-231554
 しかしながら、特許文献1に記載の担体は、物理的撹拌等によって水処理中に水溶性高分子が剥離するおそれがあり、有機排水処理性能を長時間維持することは難しく、十分な耐久性を有しているとは言えなかった。また、水溶性高分子に微生物を含有させた担体は、水溶性高分子の部分と有機排水との接触面積が小さく、有機廃水処理能力が十分とは言えなかった。 However, the carrier described in Patent Document 1 has a risk that the water-soluble polymer may peel off during water treatment due to physical stirring or the like, and it is difficult to maintain the organic wastewater treatment performance for a long time, and it does not have sufficient durability. I couldn't say I did. In addition, the water-soluble polymer containing microorganisms has a small contact area between the water-soluble polymer portion and the organic wastewater, and the organic wastewater treatment capacity is not sufficient.
 また、特許文献2に記載の担体は、熱可塑性樹脂による多孔性樹脂と被覆材とを接着させたものであり、予熱された多孔性樹脂の気孔(セル)構造は、担体内部にまで微生物が侵入しやすい均一な状態が維持されておらず、有機排水処理性能が良好であるとは言えないものであった。 In addition, the carrier described in Patent Document 2 is obtained by bonding a porous resin and a coating material made of a thermoplastic resin, and the pore (cell) structure of the preheated porous resin allows microorganisms to reach the inside of the carrier. A uniform state that facilitates penetration was not maintained, and it could not be said that the organic wastewater treatment performance was good.
 本発明は、このような課題を解決するためになされたものであり、有機排水処理性能を維持しつつ、耐久性に優れた水処理用微生物固定化担体、及びその製造方法を提供することを目的とする。 The present invention has been made to solve such problems, and it is an object of the present invention to provide a microorganism-immobilizing carrier for water treatment that is excellent in durability while maintaining organic wastewater treatment performance, and a method for producing the same. aim.
 本発明は、軟質ポリウレタンフォームを所定の被覆部材で被覆することにより、有機排水処理性能を維持しつつ、耐久性に優れた水処理用微生物固定化担体が得られることを見出したことに基づくものである。 The present invention is based on the discovery that by coating a flexible polyurethane foam with a predetermined coating member, it is possible to obtain a microorganism-immobilizing carrier for water treatment that has excellent durability while maintaining organic wastewater treatment performance. is.
 すなわち、本発明は、以下の手段を提供する。
 [1]軟質ポリウレタンフォームの柱状体の側周面の少なくとも一部が、前記軟質ポリウレタンフォームよりも硬い被覆部材で被覆されてなる、水処理用微生物固定化担体。
 [2]前記被覆部材は、一体で形成されており、かつ、前記被覆部材のうち前記柱状体の側周面を被覆している部分に1個以上のスリットを有する、上記[1]に記載の水処理用微生物固定化担体。
 [3]前記スリットのうちの1個は、前記被覆部材のうち前記柱状体の一方の底面側の端部から他方の底面側の端部にわたって延在している連通スリットである、上記[2]に記載の水処理用微生物固定化担体。
 [4]前記柱状体は、円柱体である、上記[1]~[3]のいずれか1項に記載の水処理用微生物固定化担体。
That is, the present invention provides the following means.
[1] A microorganism-immobilizing carrier for water treatment, wherein at least part of the side peripheral surface of a columnar body of flexible polyurethane foam is coated with a coating member harder than the flexible polyurethane foam.
[2] The above [1], wherein the covering member is integrally formed and has one or more slits in a portion of the covering member that covers the side peripheral surface of the columnar body. Microorganism immobilization carrier for water treatment of.
[3] The above [2], wherein one of the slits is a communicating slit extending from one bottom-side end of the columnar body to the other bottom-side end of the covering member. ] The microorganism immobilizing carrier for water treatment according to .
[4] The microorganism-immobilizing carrier for water treatment according to any one of [1] to [3] above, wherein the columnar body is a columnar body.
 [5]軟質ポリウレタンフォームの柱状体の側周面が、一体で形成された、スリットを有する被覆部材で被覆されてなる水処理用微生物固定化担体の製造方法であって、前記被覆部材として、長さ方向に延設されたスリットを有する中空の長尺材を用い、前記長尺材の中空部に、前記スリット又は前記長尺材の長さ方向の端部から、軟質ポリウレタンフォーム組成物を注入発泡し、前記長尺材の中空部に前記軟質ポリウレタンフォームを有する棒状物を得る工程と、前記棒状物を所定の長さに切断する工程とを含む、水処理用微生物固定化担体の製造方法。 [5] A method for producing a microorganism-immobilizing carrier for water treatment, in which the side peripheral surface of a columnar body of flexible polyurethane foam is coated with an integrally formed coating member having slits, wherein the coating member comprises: A hollow elongated member having a slit extending in the length direction is used, and a flexible polyurethane foam composition is poured into the hollow portion of the elongated member through the slit or the end portion in the length direction of the elongated member. Manufacture of a microorganism-immobilizing carrier for water treatment, comprising the steps of injecting and foaming to obtain a rod-shaped object having the flexible polyurethane foam in the hollow part of the elongated material, and cutting the rod-shaped object into a predetermined length. Method.
 本発明によれば、有機排水処理性能を維持しつつ、耐久性に優れた水処理用微生物固定化担体が提供される。
 また、本発明によれば、前記水処理用微生物固定化担体を簡便に製造する方法も提供される。
INDUSTRIAL APPLICABILITY According to the present invention, a microorganism-immobilizing carrier for water treatment is provided which is excellent in durability while maintaining organic wastewater treatment performance.
Further, according to the present invention, there is also provided a method for easily producing the microorganism-immobilized carrier for water treatment.
本発明の水処理用微生物固定化担体の一実施形態を示す斜視図である。1 is a perspective view showing one embodiment of a microorganism-immobilizing carrier for water treatment of the present invention. FIG. 本発明の水処理用微生物固定化担体の他の実施形態を示す斜視図である。Fig. 2 is a perspective view showing another embodiment of the microorganism-immobilizing carrier for water treatment of the present invention;
 以下、本発明の水処理用微生物固定化担体、及び、その製造方法の実施形態を詳細に説明する。 Hereinafter, embodiments of the microorganism-immobilizing carrier for water treatment of the present invention and the method for producing the same will be described in detail.
[水処理用微生物固定化担体]
 本発明の水処理用微生物固定化担体は、軟質ポリウレタンフォームの柱状体の側周面の少なくとも一部が、前記軟質ポリウレタンフォームよりも硬い被覆部材で被覆されてなるものである。
 上記のような担体は、軟質ポリウレタンフォームによる有機排水処理性能を維持しつつ、撹拌翼等による物理的撹拌や水流による衝撃、また、固定床での自重圧力に対しても良好な耐久性を有する。
 本発明の担体の実施形態としては、例えば、図1及び図2に示すようなものが挙げられる。図1及び図2に示す担体は、軟質ポリウレタンフォームの柱状体1の側周面が、スリットSを有する被覆部材2で被覆されているものである。被覆部材2は、柱状体1の側周面全面を被覆しているものであってもよいが、図1及び図2に示すように、スリットSを有していることが好ましい。図1においては柱状体1が円柱体であり、また、図2においては柱状体1が四角柱である。
[Microorganism immobilization carrier for water treatment]
In the microorganism-immobilizing carrier for water treatment of the present invention, at least a part of the side peripheral surface of the columnar body of flexible polyurethane foam is coated with a coating member harder than the flexible polyurethane foam.
The carrier as described above maintains the organic wastewater treatment performance of the flexible polyurethane foam, and has good durability against physical agitation by stirring blades and the like, impact by water flow, and self-weight pressure in a fixed bed. .
Embodiments of the carrier of the present invention include, for example, those shown in FIGS. The carrier shown in FIGS. 1 and 2 includes a covering member 2 having slits S on the side peripheral surface of a columnar body 1 of flexible polyurethane foam. The covering member 2 may cover the entire side peripheral surface of the columnar body 1, but preferably has a slit S as shown in FIGS. In FIG. 1, the columnar body 1 is a cylindrical body, and in FIG. 2, the columnar body 1 is a quadrangular prism.
<被覆部材>
 軟質ポリウレタンフォームの柱状体1を被覆する被覆部材2は、該軟質ポリウレタンフォームよりも硬い材質からなるものである。
 被覆部材2が柱状体1を構成する軟質ポリウレタンフォームよりも硬いため、担体の使用時に、柱状体1の変形や破損が抑制される。このため、柱状体1が硬い被覆部材2で被覆された上記のような担体は、柱状体1を構成する軟質ポリウレタンフォームによる有機排水との接触面が確保され、有機排水処理性能を維持しつつ、被覆部材2によって優れた耐久性が付与される。
<Covering member>
The covering member 2 covering the flexible polyurethane foam pillars 1 is made of a material harder than the flexible polyurethane foam.
Since the coating member 2 is harder than the flexible polyurethane foam forming the columnar body 1, deformation and breakage of the columnar body 1 are suppressed during use of the carrier. Therefore, in the above-described carrier in which the columnar bodies 1 are covered with the hard coating member 2, the contact surface with the organic wastewater is secured by the flexible polyurethane foam constituting the columnar bodies 1, and the organic wastewater treatment performance is maintained. , the covering member 2 provides excellent durability.
 被覆部材2は、担体の大量生産時の製造効率及びコスト等の観点から、それ自体が一体で形成されており、かつ、被覆部材2のうち柱状体1の側周面を被覆している部分に1個以上のスリットSを有するものであることが好ましい。
 被覆部材2が、一部材であることにより、複数部材を複合させる場合と比較して、被覆部材を形成する労力や負担を削減することができ、また、担体の使用時に、被覆部材2の形状が保持されやすく、分離して脱離することを抑制することもできる。
The covering member 2 itself is integrally formed from the viewpoint of manufacturing efficiency and cost during mass production of the carrier, and the portion of the covering member 2 that covers the side peripheral surface of the columnar body 1 It is preferable to have one or more slits S in the .
Since the covering member 2 is a single member, it is possible to reduce the labor and burden of forming the covering member compared to the case where a plurality of members are combined. is likely to be retained, and separation and detachment can also be suppressed.
 スリットSの形状は特に限定されるものではなく、例えば、複数の孔状に形成されていてもよく、また、1本の直線状又は曲線状に連通して形成されていてもよいが、スリットSの1個は、図1及び図2に示すように、被覆部材2のうち柱状体1の一方の底面側の端部から他方の底面側の端部にわたって延在している連通スリットであることが好ましい。
 スリットSの1個が連通スリットであれば、被覆部材2の一体性を保持しつつ、担体の使用時に軟質ウレタンフォームの柱状体1と有機排水との接触面が確保されやすく、また、担体の大量生産時の製造効率の観点からも好ましい。
The shape of the slit S is not particularly limited. 1 and 2, one of S is a communication slit extending from one bottom end of the columnar body 1 of the covering member 2 to the other bottom end thereof. is preferred.
If one of the slits S is a communicating slit, the contact surface between the flexible urethane foam columnar body 1 and the organic waste water can be easily secured when the carrier is used while maintaining the integrity of the coating member 2. It is also preferable from the viewpoint of manufacturing efficiency during mass production.
 被覆部材2は、柱状体1の側周面の少なくとも一部を被覆していればよく、担体内部の通水抵抗を増大させないようにする観点から、柱状体1の両底面は被覆していないことが好ましい。すなわち、柱状体1の両底面では、軟質ポリウレタンフォームが露出していることが好ましい。 The covering member 2 only needs to cover at least a part of the side peripheral surface of the columnar body 1, and from the viewpoint of not increasing the water flow resistance inside the carrier, the bottom surfaces of the columnar body 1 are not covered. is preferred. That is, it is preferable that the flexible polyurethane foam is exposed on both bottom surfaces of the columnar body 1 .
 被覆部材2の材質は、柱状体1を構成する軟質ポリウレタンフォームよりも硬いものであれば、特に限定されるものではない。水処理槽の損傷防止、軟質ポリウレタンフォームとの一体化容易性、汎用性等の観点から、熱可塑性樹脂を含むものであることが好ましい。熱可塑性樹脂としては、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-(メタ)アクリレート共重合体、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ナイロン、ポリカーボネート、ポリエチレンテレフタレート、ポリ(メタ)アクリレート、ポリビニルアルコール等が挙げられる。 The material of the covering member 2 is not particularly limited as long as it is harder than the flexible polyurethane foam forming the columnar body 1 . From the viewpoints of preventing damage to the water treatment tank, facilitating integration with the flexible polyurethane foam, versatility, etc., it is preferable that the resin contains a thermoplastic resin. Examples of thermoplastic resins include polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-(meth)acrylate copolymer, Polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), nylon, polycarbonate, polyethylene terephthalate, poly(meth)acrylate, polyvinyl alcohol and the like.
 被覆部材2は、例えば、軟質ポリウレタンフォームの柱状体1の比重が小さい場合に、担体の比重を大きくして、担体を水処理槽へ投入した際に迅速に水中に沈降させ、微生物の付着を促しながら、有機排水中での担体の良好な流動性が得られるようにする等の比重調整の役割も有し得る。このため、比重調整の観点から、被覆部材2の材質を選定することも好ましい。 For example, when the specific gravity of the columnar body 1 of flexible polyurethane foam is small, the coating member 2 increases the specific gravity of the carrier so that the carrier quickly settles in water when it is put into the water treatment tank, thereby preventing the adhesion of microorganisms. While facilitating, it may also have a specific gravity adjusting role such as ensuring good carrier fluidity in organic waste water. Therefore, it is also preferable to select the material of the covering member 2 from the viewpoint of adjusting the specific gravity.
<軟質ポリウレタンフォーム>
 本発明では、微生物を固定化させる多孔体として、軟質ポリウレタンフォームが用いられる。軟質ポリウレタンフォームは、熱硬化性であり、熱可塑性樹脂に比べて、耐熱性に優れており、また、微生物の付着性にも優れた良好な柔軟性を有しており、担体として好適に用いることができる。
 本発明の担体において、軟質ポリウレタンフォームは柱状体1である。柱状体であれば、担体の大量生産時の製造効率及びコスト等の点で有利である。
 柱状体1としては、例えば、図1に示すような円柱体や、図2に示すような角柱体、また、底面が星型多角形の柱状体等が挙げられる。これらのうち、担体の均質性や強度等の観点から、円柱体が好ましい。柱状体1が円柱体である場合、円柱体の側周面を被覆する被覆部材2は、図1に示すように、例えば、底面方向断面がC字型に形成されることが好ましい。
<Flexible polyurethane foam>
In the present invention, a flexible polyurethane foam is used as a porous material for immobilizing microorganisms. Flexible polyurethane foams are thermosetting, have excellent heat resistance compared to thermoplastic resins, and have good flexibility with excellent adhesiveness to microorganisms, and are suitably used as carriers. be able to.
In the carrier of the present invention, the flexible polyurethane foam is columnar body 1 . If it is a columnar body, it is advantageous in terms of production efficiency, cost, and the like during mass production of the carrier.
Examples of the columnar body 1 include a columnar body as shown in FIG. 1, a prismatic body as shown in FIG. 2, and a columnar body having a star-shaped polygonal bottom surface. Among these, cylindrical bodies are preferable from the viewpoint of homogeneity and strength of the carrier. When the columnar body 1 is a cylindrical body, it is preferable that the covering member 2 covering the side peripheral surface of the cylindrical body has, for example, a C-shaped cross section in the bottom direction, as shown in FIG.
 軟質ポリウレタンフォームは、ポリウレタン樹脂が主成分(含有質量割合が最も多い)であり、任意の成分として、例えば、無機フィラー、着色剤等、また、原料である軟質ポリウレタンフォーム組成物中の硬化剤や発泡剤、整泡剤、界面活性剤、触媒等を由来とする成分等の、他の成分が含まれていてもよい。軟質ポリウレタンフォーム中のこれらの他の成分の含有量は、本発明の効果を妨げない範囲内の量とする。 Flexible polyurethane foam is mainly composed of polyurethane resin (the content ratio is the largest), and optional components such as inorganic fillers, colorants, etc., and curing agents and Other ingredients may be included, such as ingredients derived from blowing agents, foam stabilizers, surfactants, catalysts, and the like. The content of these other components in the flexible polyurethane foam is within a range that does not interfere with the effects of the present invention.
 軟質ポリウレタンフォームは、水処理用微生物固定化担体用として公知の軟質ポリウレタンフォームを用いることができる。中でも、後述する軟質ポリウレタンフォーム組成物を用いて製造されたものが好適である。 For the flexible polyurethane foam, a known flexible polyurethane foam for microorganism immobilization carriers for water treatment can be used. Among them, those produced using the flexible polyurethane foam composition described later are preferable.
 軟質ポリウレタンフォームは、水処理の効率化の観点から、水膨潤時の膨潤密度が、好ましくは20~70kg/m、より好ましくは25~65kg/m、さらに好ましくは30~60kg/mである。
 なお、本明細書における「膨潤密度」とは、軟質ポリウレタンフォームの絶乾状態の質量を水膨潤時の体積で除した値を言う。「絶乾状態」とは、絶対乾燥状態とも言い、軟質ポリウレタンフォームを、ポリウレタン樹脂の耐熱温度以下である110℃で乾燥させて、質量の減少が見られなくなった状態を言う。「水膨潤時」とは、軟質ポリウレタンフォームを25℃の純水に1時間浸漬させた状態を言う。
The flexible polyurethane foam preferably has a swelling density of 20 to 70 kg/m 3 , more preferably 25 to 65 kg/m 3 , still more preferably 30 to 60 kg/m 3 when swollen with water, from the viewpoint of efficient water treatment. is.
The term "swelling density" as used herein refers to a value obtained by dividing the absolute-dry mass of flexible polyurethane foam by the volume when swollen with water. The "absolutely dry state" is also referred to as an absolutely dry state, and refers to a state in which the flexible polyurethane foam is dried at 110°C, which is the heat-resistant temperature of the polyurethane resin or less, and no weight reduction is observed. "When swollen with water" refers to a state in which the flexible polyurethane foam is immersed in pure water at 25°C for 1 hour.
 また、軟質ポリウレタンフォームは、適度な体積膨潤率の観点から、絶乾密度が、好ましくは30~100kg/m、より好ましくは35~95kg/m、さらに好ましくは40~90kg/mである。 The flexible polyurethane foam preferably has an absolute dry density of 30 to 100 kg/m 3 , more preferably 35 to 95 kg/m 3 , still more preferably 40 to 90 kg/m 3 from the viewpoint of a moderate volume swelling rate. be.
 軟質ポリウレタンフォームは、良好な親水性の観点から、水膨潤による体積膨潤率が、好ましくは100%超1000%以下、より好ましくは105~600%、さらに好ましくは110~300%である。
 なお、本明細書における「体積膨潤率」とは、軟質ポリウレタンフォームの絶乾状態の体積に対する水膨潤時の体積の比で表される値を言う。
 絶乾状態の体積は、軟質ポリウレタンフォームの気孔(セル)の体積も含み、外形の寸法に基づいて求められる体積とする。例えば、外形が直方体又は立方体の場合、縦、横及び高さの3辺の長さの積として算出される値とする。水膨潤時の体積も、同様に、外形の寸法に基づいて求められる体積であり、軟質ポリウレタンフォームのセル及び内部の水の体積も含む。
From the viewpoint of good hydrophilicity, the flexible polyurethane foam preferably has a volume swelling ratio of more than 100% to 1000% or less, more preferably 105 to 600%, and still more preferably 110 to 300% when swelled with water.
As used herein, the term "volume swelling rate" refers to a value expressed by the ratio of the volume of a flexible polyurethane foam when swollen with water to the volume of the flexible polyurethane foam in an absolutely dry state.
The absolute dry volume includes the volume of the pores (cells) of the flexible polyurethane foam, and is the volume determined based on the external dimensions. For example, if the outer shape is a rectangular parallelepiped or a cube, the value is calculated as the product of the length, width and height of the three sides. The volume when swollen with water is also the volume determined based on the external dimensions, and includes the volume of water inside and the cells of the flexible polyurethane foam.
 軟質ポリウレタンフォームのセル構造は、水中で微生物、酸素、及び微生物の栄養源となる基質等を十分に内部に侵入させて、担体に微生物を固定化させやすくする観点から、連通気孔構造であることが好ましい。また、セル構造を構成するポリウレタンによる骨格部分は、隣接セル間が部分的に膜状であり、表面積が大きい壁面で区画された、いわゆるウォール構造であることが好ましい。
 セル構造としては、水膨潤時の平均気孔数が、好ましくは2~8個/5mm、より好ましくは3~7個/5mm、さらに好ましくは4~6個/5mmである。
 なお、本明細書における「平均気孔数」とは、水膨潤時の軟質ポリウレタンフォームの任意の3本の長さ5mmの直線上に存在する気孔数の平均値を言う。
The cell structure of the flexible polyurethane foam should be a continuous pore structure from the viewpoint of allowing microorganisms, oxygen, and substrates that serve as nutrients for microorganisms in water to penetrate sufficiently into the interior of the foam, thereby facilitating the immobilization of microorganisms on the carrier. is preferred. In addition, it is preferable that the polyurethane skeleton constituting the cell structure has a so-called wall structure in which adjacent cells are partially film-like and partitioned by wall surfaces having a large surface area.
As for the cell structure, the average number of pores when swollen with water is preferably 2 to 8/5 mm, more preferably 3 to 7/5 mm, and still more preferably 4 to 6/5 mm.
The term "average number of pores" as used herein refers to the average number of pores existing on a straight line of arbitrary three lengths of 5 mm in flexible polyurethane foam when swollen with water.
 また、軟質ポリウレタンフォームの水膨潤時の平均気孔径が、好ましくは0.2~5mm、より好ましくは0.4~3mm、さらに好ましくは0.5~2mmである。
 なお、平均気孔径は、顕微鏡による観察画像における気孔を、長径及び短径の平均値を直径とする真円とみなし、50個の気孔についての直径の平均値とする。
The average pore size of the flexible polyurethane foam when swollen with water is preferably 0.2 to 5 mm, more preferably 0.4 to 3 mm, still more preferably 0.5 to 2 mm.
The average pore diameter is the average diameter of 50 pores, assuming that the pores in the microscopic image are perfect circles whose diameter is the average value of the long and short diameters.
 また、軟質ポリウレタンフォームは、良好な親水性を示すものであることが好ましく、親水性を表す指標として、水中沈降時間が、好ましくは1時間以下、より好ましくは30分以下、さらに好ましくは15分以下である。
 なお、本明細書における「水中沈降時間」とは、25℃の蒸留水の水面に落下させた1辺の長さが5mmの軟質ポリウレタンフォームの立方体片が全て水面下(水中)に沈降するまでの時間を言う。
In addition, the flexible polyurethane foam preferably exhibits good hydrophilicity, and as an indicator of hydrophilicity, the settling time in water is preferably 1 hour or less, more preferably 30 minutes or less, and still more preferably 15 minutes. It is below.
As used herein, the term “submersion time” refers to the time until all cubic pieces of flexible polyurethane foam with a side length of 5 mm dropped on the surface of distilled water at 25° C. settle below the water surface (in water). say the time
 軟質ポリウレタンフォームの上記の各種物性は、具体的には、後述する実施例に記載の方法により求められる。 The above various physical properties of the flexible polyurethane foam are specifically determined by the methods described in the examples below.
 担体の大きさは、特に限定されるものではなく、水処理槽の形態や規模、水膨潤性、微生物付着性、取り扱い性及び製造効率等を考慮して、適宜設定することができる。例えば、担体が流動床用であって、柱状体1が円柱体である場合、底面の径、及び、柱状体1の高さ(底面に垂直な方向の長さ)が、それぞれ、好ましくは3~200mm程度、より好ましくは5~100mm、さらに好ましくは6~80mm、よりさらに好ましくは7~50mmである。 The size of the carrier is not particularly limited, and can be set as appropriate in consideration of the shape and scale of the water treatment tank, water swelling, microbial adhesion, handling, manufacturing efficiency, and the like. For example, when the carrier is for a fluidized bed and the columnar body 1 is a cylindrical body, the diameter of the bottom surface and the height of the columnar body 1 (the length in the direction perpendicular to the bottom surface) are each preferably 3. It is about to 200 mm, more preferably 5 to 100 mm, still more preferably 6 to 80 mm, still more preferably 7 to 50 mm.
 柱状体1を被覆する被覆部材2の厚さは、特に限定されるものではなく、柱状体1の変形や破損が抑制され、担体の優れた耐久性が得られる範囲内で、担体の大きさや被覆部材2の材質等に応じて、適宜設定することができる。例えば、柱状体1の担体の底面の径及び高さが、それぞれ、3~200mm程度である場合、被覆部材2の厚さは、好ましくは0.1~10mm、より好ましくは0.2~8mm、さらに好ましくは0.3~5mmである。 The thickness of the coating member 2 that covers the columnar body 1 is not particularly limited, and the size and thickness of the carrier are within the range in which deformation and breakage of the columnar body 1 are suppressed and excellent durability of the carrier is obtained. It can be appropriately set according to the material of the covering member 2 and the like. For example, when the diameter and height of the bottom surface of the support of the columnar body 1 are each about 3 to 200 mm, the thickness of the covering member 2 is preferably 0.1 to 10 mm, more preferably 0.2 to 8 mm. , more preferably 0.3 to 5 mm.
[水処理用微生物固定化担体の製造方法]
 上述した担体の製造方法は、特に限定されるものではないが、例えば、本発明の製造方法で製造することが好ましい。
 本発明の製造方法は、軟質ポリウレタンフォームの柱状体の側周面が、一体で形成された、スリットを有する被覆部材で被覆されてなる担体の製造方法であり、被覆部材として、長さ方向に延設されたスリットを有する中空の長尺材を用い、長尺材の中空部に、スリット又は長尺材の長さ方向の端部から、軟質ポリウレタンフォーム組成物を注入発泡し、長尺材の中空部に前記軟質ポリウレタンフォームを有する棒状物を得る工程と、得られた棒状物を所定の長さに切断する工程とを含むものである。
[Method for producing microorganism-immobilized carrier for water treatment]
Although the method for producing the carrier described above is not particularly limited, it is preferably produced by the production method of the present invention, for example.
The production method of the present invention is a method for producing a carrier in which the side peripheral surface of a columnar body of flexible polyurethane foam is covered with an integrally formed covering member having slits. A hollow elongated member having an extended slit is used, and a flexible polyurethane foam composition is injected and foamed into the hollow portion of the elongated member through the slit or the longitudinal end of the elongated member, and the elongated member is and a step of cutting the resulting rod into a predetermined length.
 長尺材のスリット又は端部から注入発泡された軟質ポリウレタンフォーム組成物は、発泡硬化時に発生するガスが、スリットから適度に放出され、長尺材の中空部の全体にわたって均一なセル構造の軟質ポリウレタンフォームを形成することができる。長尺材の長さ方向において、より均等な注入発泡を行う観点から、スリットからの注入発泡がより好ましい。
 上記のように、長尺材のスリット又は端部を利用して軟質ポリウレタンフォームの柱状体と被覆部材とが一体化した棒状物を得て、該棒状物を切断することにより、同一形状で、多孔体(軟質ポリウレタンフォーム)のセル構造が均一であり、被覆部材と多孔体とが一体化された担体を効率的に大量生産することができる。
The flexible polyurethane foam composition injected and foamed from the slit or the end of the long material has a uniform cell structure throughout the hollow part of the long material. Polyurethane foams can be formed. Injection and foaming through a slit is more preferable from the viewpoint of performing more uniform injection and foaming in the length direction of the elongated material.
As described above, the slit or the end of the elongated material is used to obtain a rod in which the flexible polyurethane foam columnar body and the covering member are integrated, and by cutting the rod, the same shape is obtained. The cell structure of the porous body (soft polyurethane foam) is uniform, and the carrier in which the covering member and the porous body are integrated can be mass-produced efficiently.
 上記製造方法は、具体的には、例えば、以下のような工程で行うことができる。
 まず、熱可塑性樹脂製の円筒状パイプの長さ方向に1本の線状のスリット加工を行い、パイプの径方向(底面方向)の断面がC字型の筒状体(以下、「C字型筒状体」と言う。)を得る。
 次いで、C字型筒状体の中空部に、軟質ポリウレタンフォーム組成物を、スリット又は筒状体の長さ方向の端部から注入発泡し、C字型筒状体の中空部に軟質ポリウレタンフォームを有する棒状物を得る。
 そして、前記棒状物を、所望の担体のサイズに応じて、所定の長さに切断することにより、軟質ポリウレタンフォームの円柱体がC字型筒状体で被覆された担体を製造することができる。
Specifically, the manufacturing method can be performed, for example, by the following steps.
First, a single linear slit is processed in the length direction of a cylindrical pipe made of thermoplastic resin, and a cylindrical body having a C-shaped cross section in the radial direction (bottom direction) of the pipe (hereinafter referred to as “C-shaped ) is obtained.
Next, a flexible polyurethane foam composition is injected and foamed into the hollow portion of the C-shaped tubular body through a slit or an end portion in the length direction of the tubular body, and the flexible polyurethane foam is injected into the hollow portion of the C-shaped tubular body. to obtain a bar having
Then, by cutting the bar into a predetermined length according to the size of the desired carrier, a carrier in which a cylindrical body of flexible polyurethane foam is covered with a C-shaped cylindrical body can be produced. .
<軟質ポリウレタンフォーム組成物>
 本発明の軟質ポリウレタンフォーム組成物としては、担体用の軟質ポリウレタンフォームの製造のための公知の原料組成物を用いることができる。例えば、ウレタンプレポリマー、ポリイソシアネート化合物、硬化剤及び発泡剤、その他必要に応じて整泡剤や触媒等の他の成分を含む軟質ポリウレタンフォーム組成物が好適に用いられる。また、ウレタンプレポリマーに代えて、ポリオール化合物を用いることもできる。
 軟質ポリウレタンフォーム組成物を発泡硬化させることにより、軟質ポリウレタンフォームが得られる。
 なお、前記ポリイソシアネート化合物は、後述するウレタンプレポリマーの合成原料のポリイソシアネート化合物との区別のため、「ポリイソシアネート化合物(a)」と表記し、ウレタンプレポリマーの合成原料のポリイソシアネート化合物を、「ポリイソシアネート化合物(b)」と表記する場合もある。
<Flexible polyurethane foam composition>
As the flexible polyurethane foam composition of the present invention, known raw material compositions for producing flexible polyurethane foams for carriers can be used. For example, a flexible polyurethane foam composition containing a urethane prepolymer, a polyisocyanate compound, a curing agent and a foaming agent, and optionally other components such as a foam stabilizer and a catalyst is preferably used. A polyol compound can also be used instead of the urethane prepolymer.
A flexible polyurethane foam is obtained by foaming and curing the flexible polyurethane foam composition.
In addition, the polyisocyanate compound is referred to as "polyisocyanate compound (a)" in order to distinguish it from the polyisocyanate compound that is a raw material for synthesizing the urethane prepolymer, which will be described later. It may be described as "polyisocyanate compound (b)".
(ウレタンプレポリマー)
 ウレタンプレポリマーは、ポリオール化合物と、該ポリオール化合物の水酸基に対して、イソシアネート基のモル当量比が過剰となる量のポリイソシアネート化合物(b)とを反応させて得られるポリマーであり、1分子中に2個以上のイソシアネート基を有している。ウレタンプレポリマーは、1種単独であっても、2種以上を併用してもよい。
 このようなプレポリマーを原料成分として用いることにより、軟質ポリウレタンフォームの生成反応が進行しやすくなり、セル構造のばらつきが小さく、均質性に優れた軟質ポリウレタンフォームが得られやすい。
(urethane prepolymer)
The urethane prepolymer is a polymer obtained by reacting a polyol compound with an amount of polyisocyanate compound (b) in which the molar equivalent ratio of the isocyanate group to the hydroxyl group of the polyol compound is excessive. has two or more isocyanate groups. The urethane prepolymer may be used alone or in combination of two or more.
By using such a prepolymer as a raw material component, the production reaction of a flexible polyurethane foam is facilitated, and a flexible polyurethane foam having excellent homogeneity with little variation in cell structure can be easily obtained.
 ウレタンプレポリマーは、好ましくは、ポリエーテルポリオールとポリイソシアネート化合物(b)との反応生成物であり、1分子中に2個以上のイソシアネート基を有するポリエーテル系ウレタンプレポリマーである。
 ポリエーテルポリオールも、ポリエステルポリオールも、いずれも、得られる軟質ポリウレタンフォームに親水性を付与し得るが、ポリエーテルポリオールの方が、ポリエステルポリオールに比べて、耐加水分解性に優れている。軟質ポリウレタンフォームは、水中で使用されるため、担体の耐久性の観点から、ウレタンプレポリマーの合成原料のポリオール化合物としては、ポリエーテルポリオールの方が、ポリエステルポリオールよりも好ましい。
The urethane prepolymer is preferably a reaction product of a polyether polyol and a polyisocyanate compound (b), and is a polyether urethane prepolymer having two or more isocyanate groups in one molecule.
Both polyether polyols and polyester polyols can impart hydrophilicity to the resulting flexible polyurethane foams, but polyether polyols are superior in hydrolysis resistance to polyester polyols. Since flexible polyurethane foams are used in water, polyether polyols are preferable to polyester polyols as the polyol compound used as the raw material for synthesizing the urethane prepolymer from the viewpoint of the durability of the carrier.
 ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールが挙げられる。これらは、それぞれ、環状エーテル化合物である、エチレンオキシド(以下、「EO」と表記する。)、プロピレンオキシド(以下、「PO」と表記する。)、テトラヒドロフランの、開環重合により得られる。ポリエーテルポリオールは、1種単独で用いても、2種以上を併用してもよい。また、環状エーテル化合物の共重合体であってもよく、得られる軟質ポリウレタンフォームの柔軟性や親水性等の観点から、好ましくはEO-PO共重合体である。
 EO-PO共重合体におけるEOとPOとの単量体組成比は、質量比で、好ましくは90/10~10/90、より好ましくは85/15~15/85、さらに好ましくは80/20~20/80である。
Polyether polyols include, for example, polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol. These are obtained by ring-opening polymerization of cyclic ether compounds such as ethylene oxide (hereinafter referred to as "EO"), propylene oxide (hereinafter referred to as "PO") and tetrahydrofuran. Polyether polyols may be used singly or in combination of two or more. A copolymer of a cyclic ether compound may also be used, and an EO-PO copolymer is preferable from the viewpoint of the flexibility and hydrophilicity of the resulting flexible polyurethane foam.
The monomer composition ratio of EO and PO in the EO-PO copolymer is preferably 90/10 to 10/90, more preferably 85/15 to 15/85, and still more preferably 80/20 in mass ratio. ~20/80.
 ポリエーテルポリオールは、取り扱い容易性等の観点から、粘度が高すぎないことが好ましく、数平均分子量が1000~8000であることが好ましく、より好ましくは2000~7000、さらに好ましくは2500~5000である。 From the viewpoint of ease of handling, the polyether polyol preferably has a viscosity that is not too high, and preferably has a number average molecular weight of 1,000 to 8,000, more preferably 2,000 to 7,000, and still more preferably 2,500 to 5,000. .
 ポリエーテルポリオールと反応させるポリイソシアネート化合物(b)は、1分子中に2個以上のイソシアネート基を有する化合物であり、特に限定されるものではない。
 ポリイソシアネート化合物(b)としては、例えば、トルエンジイソシアネート(以下「TDI」と表記する。)、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフチレンジイソシアネート、ビフェニレンジイソシアネート、ジフェニルエーテルジイソシアネート、トリジンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等が挙げられる。ポリイソシアネート化合物(b)は、1種単独で用いても、2種以上を併用してもよい。
The polyisocyanate compound (b) to be reacted with the polyether polyol is a compound having two or more isocyanate groups in one molecule, and is not particularly limited.
Examples of the polyisocyanate compound (b) include toluene diisocyanate (hereinafter referred to as "TDI"), xylylene diisocyanate, diphenylmethane diisocyanate, naphthylene diisocyanate, biphenylene diisocyanate, diphenyl ether diisocyanate, tolidine diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate. , dicyclohexylmethane diisocyanate, and the like. The polyisocyanate compound (b) may be used singly or in combination of two or more.
 ポリイソシアネート化合物(b)は、異性体がある化合物の場合には、各異性体の1種のみでもよく、2種以上の異性体の混合物であってもよい。例えば、TDIは、トルエン-2,4-ジイソシアネート(2,4-TDI)とトルエン-2,6-ジイソシアネート(2,6-TDI)の2種の異性体があり、2,4-TDI及び2,6-TDIのいずれか一方のみを用いても、2種の混合物を用いてもよい。 When the polyisocyanate compound (b) is a compound having isomers, it may be one type of each isomer or a mixture of two or more isomers. For example, TDI has two isomers, toluene-2,4-diisocyanate (2,4-TDI) and toluene-2,6-diisocyanate (2,6-TDI). ,6-TDI alone or a mixture of the two may be used.
(ポリイソシアネート化合物(a))
 ポリイソシアネート化合物(a)は、特に限定されるものではなく、具体例としては、ウレタンプレポリマーの合成原料のポリイソシアネート化合物(b)について例示したものと同様のものが挙げられる。ポリイソシアネート化合物(a)は、1種単独で用いても、2種以上を併用してもよい。
 また、ポリイソシアネート化合物(a)は、ウレタンプレポリマーの合成原料のポリイソシアネート化合物(b)と同じであっても、異なっていてもよい。
(Polyisocyanate compound (a))
The polyisocyanate compound (a) is not particularly limited, and specific examples thereof include the same as those exemplified for the polyisocyanate compound (b), which is the starting material for synthesizing the urethane prepolymer. The polyisocyanate compound (a) may be used alone or in combination of two or more.
Moreover, the polyisocyanate compound (a) may be the same as or different from the polyisocyanate compound (b) used as the starting material for synthesizing the urethane prepolymer.
 ポリイソシアネート化合物(a)の含有量は、軟質ポリウレタンフォーム組成物の粘度や軟質ポリウレタンフォームの親水性等を考慮して設定されるが、ウレタンプレポリマー100質量部に対して、好ましくは35質量部以下、より好ましくは1~30質量部、さらに好ましくは2~25質量部である。 The content of the polyisocyanate compound (a) is set in consideration of the viscosity of the flexible polyurethane foam composition, the hydrophilicity of the flexible polyurethane foam, etc., and is preferably 35 parts by mass with respect to 100 parts by mass of the urethane prepolymer. Below, it is more preferably 1 to 30 parts by mass, still more preferably 2 to 25 parts by mass.
(硬化剤)
 硬化剤は、ウレタンプレポリマー及びポリイソシアネート化合物(a)を架橋硬化させるための配合成分であり、架橋剤とも言う。
 硬化剤としては、例えば、水;グリセリン、1,4-ブタンジオール、ジエチレングリコール等の多価アルコール;エタノールアミン類、ポリエチレンポリアミン類等のアミン化合物等が挙げられる。また、多価アルコールにエチレンオキシドやプロピレンオキシド等を開環重合させたポリオール類、前記アミン化合物に少量のプロピレンオキサイドを付加したもの等も挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。これらのうち、反応性、取り扱い容易性やコスト等の観点から、好ましくは水が用いられる。
 軟質ポリウレタンフォーム組成物中の硬化剤の含有量は、該組成物から得られる軟質ポリウレタンフォームの柔軟性や弾力性、強度等を考慮して、適宜設定することができる。
(curing agent)
The curing agent is a compounding component for cross-linking and curing the urethane prepolymer and the polyisocyanate compound (a), and is also called a cross-linking agent.
Examples of curing agents include water; polyhydric alcohols such as glycerin, 1,4-butanediol and diethylene glycol; amine compounds such as ethanolamines and polyethylenepolyamines. Polyols obtained by ring-opening polymerization of polyhydric alcohol with ethylene oxide, propylene oxide, etc., and those obtained by adding a small amount of propylene oxide to the above-mentioned amine compounds may also be used. These may be used individually by 1 type, or may use 2 or more types together. Among these, water is preferably used from the viewpoint of reactivity, ease of handling, cost, and the like.
The content of the curing agent in the flexible polyurethane foam composition can be appropriately set in consideration of the flexibility, elasticity, strength, etc. of the flexible polyurethane foam obtained from the composition.
(発泡剤)
 発泡剤は、軟質ポリウレタンフォームのフォーム形成のための配合成分である。発泡剤は、ポリウレタンの生成反応時に、イソシアネート基との反応により炭酸ガスを発生したり、発熱反応の際に発泡剤自体が気化することにより、ポリウレタンを発泡させる。
 発泡剤としては、例えば、水、ハイドロフルオロカーボン(HFC)、ハイドロフルオロオレフィン(HFO)、ハイドロクロロフルオロオレフィン(HCFO)、炭酸ガス、シクロペンタン等の炭化水素等が挙げられる。これらは、1種単独で用いても、2種以上併用してもよい。発泡剤のうち、取り扱い容易性やコスト、環境保全等の観点から、好ましくは水が単独で用いられる。
 軟質ポリウレタンフォーム組成物中の発泡剤の含有量は、該組成物を用いて製造される軟質ポリウレタンフォームの発泡速度(フォーム生成速度)、及び該組成物の混合状態等を考慮して、適宜設定することができる。
(foaming agent)
A blowing agent is a formulation ingredient for the foam formation of flexible polyurethane foams. The foaming agent generates carbon dioxide gas by reacting with an isocyanate group during a reaction to produce polyurethane, or evaporates itself during an exothermic reaction to foam polyurethane.
Examples of foaming agents include water, hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), hydrochlorofluoroolefins (HCFO), carbon dioxide, and hydrocarbons such as cyclopentane. These may be used individually by 1 type, or may be used in combination of 2 or more types. Among the foaming agents, water is preferably used alone from the viewpoint of ease of handling, cost, environmental protection, and the like.
The content of the foaming agent in the flexible polyurethane foam composition is appropriately set in consideration of the foaming speed (foam generation speed) of the flexible polyurethane foam produced using the composition, the mixing state of the composition, and the like. can do.
 上記のように、水は、硬化剤として、また、発泡剤としての両方の働きを有するものであり、軟質ポリウレタンフォーム組成物の配合成分として好適である。軟質ポリウレタンフォーム組成物中の硬化剤かつ発泡剤として用いられる場合の水の含有量は、ウレタンプレポリマー及びポリイソシアネート化合物(a)の合計100質量部に対して、好ましくは20~90質量部、より好ましくは25~85質量部、さらに好ましくは30~80質量部である。 As described above, water works both as a curing agent and as a foaming agent, and is suitable as a compounding component of a flexible polyurethane foam composition. The content of water when used as a curing agent and a foaming agent in the flexible polyurethane foam composition is preferably 20 to 90 parts by mass with respect to a total of 100 parts by mass of the urethane prepolymer and the polyisocyanate compound (a). More preferably 25 to 85 parts by mass, still more preferably 30 to 80 parts by mass.
(他の配合成分)
 軟質ポリウレタンフォーム組成物中には、例えば、整泡剤、触媒、無機フィラー、着色剤等の他の配合成分、また、溶剤が、必要に応じて含まれていてもよい。他の配合成分を含む場合、軟質ポリウレタンフォーム組成物100質量部中の他の配合成分の含有量は、該組成物を用いた軟質ポリウレタンフォームの製造効率の観点から、好ましくは15質量部以下、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。
(Other ingredients)
The flexible polyurethane foam composition may optionally contain other ingredients such as foam stabilizers, catalysts, inorganic fillers, colorants, and solvents. When other compounding components are included, the content of the other compounding components in 100 parts by mass of the flexible polyurethane foam composition is preferably 15 parts by mass or less, from the viewpoint of production efficiency of flexible polyurethane foams using the composition. It is more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less.
 整泡剤は、軟質ポリウレタンフォームのフォーム状態を調整するための配合成分であり、例えば、界面活性剤、シリコーンオイル等が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。
 整泡剤を含む場合、軟質ポリウレタンフォーム組成物100質量部中の整泡剤の含有量は、軟質ポリウレタンフォーム中に余剰の整泡剤が残存し、担体の使用時の発泡を抑制する観点から、好ましくは5質量部以下、より好ましくは4質量部以下、さらに好ましくは3質量部以下である。
A foam stabilizer is a compounding component for adjusting the foam state of a flexible polyurethane foam, and examples thereof include surfactants and silicone oils. These may be used individually by 1 type, or may use 2 or more types together.
When a foam stabilizer is included, the content of the foam stabilizer in 100 parts by mass of the flexible polyurethane foam composition is such that excess foam stabilizer remains in the flexible polyurethane foam, and from the viewpoint of suppressing foaming when the carrier is used. , preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less.
 触媒としては、軟質ポリウレタンフォームの製造に用いられる公知の触媒が挙げられ、例えば、トリエチルアミン、トリエチレンジアミン、ジエタノールアミン、N,N-ジメチルアミノエトキシエタノール、N-メチルモルホリン、N-エチルモルホリン、テトラメチルグアニジン等のアミン触媒;スタナスオクトエート、ジブチル錫ジラウレート等の錫触媒;フェニル水銀プロピオン酸塩、オクテン酸鉛等のその他の金属触媒等が挙げられる。 Examples of catalysts include known catalysts used in the production of flexible polyurethane foams, such as triethylamine, triethylenediamine, diethanolamine, N,N-dimethylaminoethoxyethanol, N-methylmorpholine, N-ethylmorpholine, tetramethylguanidine. tin catalysts such as stannous octoate and dibutyltin dilaurate; and other metal catalysts such as phenylmercuric propionate and lead octenate.
 無機フィラーは、例えば、軟質ポリウレタンフォームを水中に速やかに沈降させる等の目的で比重を調整するための配合成分であり、例えば、硫酸バリウム、炭酸カルシウム、タルク、シリカ、アルミナ、活性炭、ゼオライト、グラファイト等が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。 The inorganic filler is a compounding component for adjusting the specific gravity for the purpose of, for example, allowing the flexible polyurethane foam to quickly settle in water. Examples thereof include barium sulfate, calcium carbonate, talc, silica, alumina, activated carbon, zeolite, and graphite. etc. These may be used individually by 1 type, or may use 2 or more types together.
(2液型組成物)
 軟質ポリウレタンフォーム組成物は、全配合成分を含む1液型の組成物でもよいが、好ましくは、A液及びB液の2液型組成物である。そして、A液は、ウレタンプレポリマー及びポリイソシアネート化合物(a)を含み、B液は、硬化剤及び発泡剤を含むことが好ましい。
 A液及びB液の2液の原料液を別個に調製して、2液を混合して発泡させる2液型組成物は、軟質ポリウレタンフォームの安定的かつ効率的な製造に好適である。
(Two-component composition)
The flexible polyurethane foam composition may be a one-component composition containing all of the ingredients, but is preferably a two-component composition of A and B components. Liquid A preferably contains a urethane prepolymer and a polyisocyanate compound (a), and liquid B preferably contains a curing agent and a foaming agent.
A two-component composition in which two component liquids, A component and B component, are separately prepared and then mixed and foamed, is suitable for stable and efficient production of flexible polyurethane foam.
 A液は、上述したウレタンプレポリマー及びポリイソシアネート化合物(a)を含み、また、軟質ポリウレタンフォーム組成物中の前記他の配合成分を含んでいてもよい。
 A液中のウレタンプレポリマー及びポリイソシアネート化合物(a)の合計含有量は、軟質ポリウレタンフォームの製造効率の観点から、A液100質量部中、好ましくは30質量部以上、より好ましくは35~100質量部、さらに好ましくは40~100質量部である。
Liquid A contains the above-described urethane prepolymer and polyisocyanate compound (a), and may contain the other ingredients in the flexible polyurethane foam composition.
The total content of the urethane prepolymer and the polyisocyanate compound (a) in liquid A is preferably 30 parts by mass or more, more preferably 35 to 100 parts by mass in 100 parts by mass of liquid A, from the viewpoint of production efficiency of flexible polyurethane foam. parts by mass, more preferably 40 to 100 parts by mass.
 B液は、硬化剤及び発泡剤を含み、また、軟質ポリウレタンフォーム組成物中の前記他の配合成分を含んでいてもよい。
 B液中の硬化剤及び発泡剤の合計含有量は、良好なセル構造を有する軟質ポリウレタンフォームを効率的に製造する観点から、B液100質量部中、好ましくは45質量部以上、より好ましくは60~100質量部、さらに好ましくは65~100質量部である。
Liquid B contains a curing agent and a foaming agent, and may contain the above-mentioned other compounding ingredients in the flexible polyurethane foam composition.
From the viewpoint of efficiently producing a flexible polyurethane foam having a good cell structure, the total content of the curing agent and foaming agent in liquid B is preferably 45 parts by mass or more, more preferably 60 to 100 parts by mass, more preferably 65 to 100 parts by mass.
 A液及びB液の2液型軟質ポリウレタンフォーム組成物を用いた軟質ポリウレタンフォームの製造方法としては、2液型の軟質ポリウレタンフォームの公知の製造方法を適用することができる。例えば、A液及びB液を、ミキシングヘッドを用いて混合して注入発泡する等の方法により、軟質ポリウレタンフォームが得られる。
 A液とB液との質量混合比は、所望のセル構造の均質な軟質ポリウレタンフォームを効率的に得る観点から、好ましくは45/55~80/20、より好ましくは50/50~77/23、さらに好ましくは55/45~75/25である。
As a method for producing a flexible polyurethane foam using a two-component flexible polyurethane foam composition of liquids A and B, a known production method for a two-component flexible polyurethane foam can be applied. For example, a flexible polyurethane foam can be obtained by a method such as mixing liquid A and liquid B using a mixing head and performing injection foaming.
The mass mixing ratio of liquid A and liquid B is preferably 45/55 to 80/20, more preferably 50/50 to 77/23, from the viewpoint of efficiently obtaining a homogeneous flexible polyurethane foam with a desired cell structure. , more preferably 55/45 to 75/25.
 以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited by these.
[試料担体の準備]
<試料担体(1)>
 外径22mm、肉厚2mmのポリカーボネート製の円筒状透明樹脂パイプに、長さ方向に幅約10mmのスリット加工を行い、C字型筒状体を得た。
 C字型筒状体の中空部に、下記のA液及びB液を質量混合比71/29で混合した軟質ポリウレタンフォーム組成物を、スリットから注入発泡した。C字型筒状体からはみ出した軟質ポリウレタンフォームを切除した後、22mmの長さに切断し、軟質ポリウレタンフォームの円柱体がC字型筒状体で被覆された担体(試料担体(1))を製造した。
[Preparation of sample carrier]
<Sample carrier (1)>
A cylindrical transparent resin pipe made of polycarbonate having an outer diameter of 22 mm and a wall thickness of 2 mm was slit in the longitudinal direction with a width of about 10 mm to obtain a C-shaped tubular body.
A flexible polyurethane foam composition obtained by mixing the following liquid A and liquid B at a mass mixing ratio of 71/29 was injected into the hollow portion of the C-shaped cylindrical body through a slit and foamed. After removing the soft polyurethane foam protruding from the C-shaped cylindrical body, the carrier was cut into a length of 22 mm, and the cylindrical body of the flexible polyurethane foam was covered with the C-shaped cylindrical body (sample carrier (1)). manufactured.
(軟質ポリウレタンフォーム組成物)
≪A液≫
 ウレタンプレポリマーとしてTDI変性EO-PO共重合体(EO/PO質量比:24/76、EO-PO共重合体の数平均分子量:2700(理論値)、NCO(イソシアネート基)含有量:4.5質量%) 400g、及びTDI(「コロネート(登録商標) T-80」、東ソー株式会社製;2,4-TDI/2,6-TDIのモル比80/20)88.3gを撹拌混合して調製した。
≪B液≫
 水 350g、整泡剤(アニオン界面活性剤、「ビューライト(登録商標) LCA」、三洋化成工業株式会社製) 10g、及びアミン触媒(「カオーライザー(登録商標) No.26」、花王株式会社製;N,N-ジメチルアミノエトキシエタノール) 8.78gを撹拌混合して調製した。
(Flexible polyurethane foam composition)
≪Liquid A≫
TDI-modified EO-PO copolymer as urethane prepolymer (EO/PO mass ratio: 24/76, number average molecular weight of EO-PO copolymer: 2700 (theoretical value), NCO (isocyanate group) content: 4. 5% by mass)) and 88.3 g of TDI ("Coronate (registered trademark) T-80" manufactured by Tosoh Corporation; 2,4-TDI/2,6-TDI molar ratio 80/20) were stirred and mixed. was prepared.
≪Liquid B≫
Water 350 g, foam stabilizer (anionic surfactant, "Beaulite (registered trademark) LCA", manufactured by Sanyo Chemical Industries, Ltd.) 10 g, and amine catalyst ("Kaorizer (registered trademark) No. 26", Kao Corporation manufactured by N,N-dimethylaminoethoxyethanol) was stirred and mixed.
<比較試料担体(1)>
 試料担体(1)におけるC字型筒状体を、そのまま22mmの長さに切断したものを比較試料担体(1)とした。
<Comparative sample carrier (1)>
A comparison sample carrier (1) was obtained by cutting the C-shaped tubular body of the sample carrier (1) as it was into a length of 22 mm.
<試料担体(2)>
 上記の試料担体(1)の製造において、ポリカーボネート製の円筒状透明樹脂パイプに代えて、同一形状のABS樹脂製の円筒状樹脂パイプを用い、それ以外は、試料担体(1)と同様にして、試料担体(2)を製造した。
<Sample carrier (2)>
In the manufacture of the above sample carrier (1), instead of the cylindrical transparent resin pipe made of polycarbonate, a cylindrical resin pipe made of ABS resin having the same shape is used, and the rest is the same as the sample carrier (1). , to prepare the sample carrier (2).
<試料担体(3)>
 上記の試料担体(2)の製造において、ABS樹脂製の円筒状樹脂パイプにスリット加工を行わずに、それ以外は、試料担体(2)と同様にして、軟質ポリウレタンフォームの円柱体の周面全体が筒状体(スリットなし)で被覆された担体(試料担体(3))を製造した。
<Sample carrier (3)>
In the manufacture of the sample carrier (2), the cylindrical resin pipe made of ABS resin was not subjected to slit processing, but in the same manner as the sample carrier (2), the peripheral surface of the cylindrical body of flexible polyurethane foam was prepared. A carrier (sample carrier (3)) entirely covered with a cylindrical body (without slits) was produced.
<比較試料担体(2)>
 試料担体(2)におけるC字型筒状体を、そのまま22mmの長さに切断したものを比較試料担体(2)とした。
<Comparative sample carrier (2)>
A comparison sample carrier (2) was obtained by cutting the C-shaped tubular body of the sample carrier (2) as it was into a length of 22 mm.
<比較試料担体(3)>
 試料担体(1)からくり抜いた軟質ポリウレタンフォーム(被覆部材なし)を、比較試料担体(3)とした。
<Comparative sample carrier (3)>
A flexible polyurethane foam (without a covering member) hollowed out from the sample carrier (1) was used as a comparative sample carrier (3).
[軟質ポリウレタンフォームの評価]
 試料担体(1)~(3)から軟質ポリウレタンフォームをくり抜き、得られた各軟質ポリウレタンフォームの中心部から評価用の試験片を切り出して、下記の各種項目の評価を行った。評価結果を表1に示す。
[Evaluation of flexible polyurethane foam]
Flexible polyurethane foams were hollowed out from sample carriers (1) to (3), and test pieces for evaluation were cut out from the center of each of the obtained flexible polyurethane foams, and the following various items were evaluated. Table 1 shows the evaluation results.
<絶乾密度>
 試験片(約5mm×約5mm、水膨潤時の厚さ約5mm)を電子天秤で秤量し、110℃の乾燥器内で乾燥させ、絶乾状態の質量Mを測定した。
 また、絶乾状態における試験片の各辺の長さをノギス(分解能0.05mm;以下、同様。)で測定し、各辺の長さの積を、試験片の絶乾状態の体積Vとした。
 M/Vの値を絶乾密度とした。
<Absolute dry density>
A test piece (approximately 5 mm×approximately 5 mm, thickness of approximately 5 mm when swollen with water) was weighed with an electronic balance, dried in a drier at 110° C., and the absolute dry mass M d was measured.
In addition, the length of each side of the test piece in the absolute dry state is measured with a vernier caliper (resolution 0.05 mm; hereinafter the same), and the product of the length of each side is the volume of the test piece in the absolute dry state V d and
The value of M d /V d was taken as the absolute dry density.
<膨潤密度>
 前記試験片を25℃の純水に1時間浸漬させ、平置きで純水に浸漬させた状態で、試験片の各辺の長さをノギスで測定し、各辺の長さの積を、水膨潤時の体積Vとした。
 M/Vの値を膨潤密度とした。
<Swelling density>
The test piece was immersed in pure water at 25 ° C. for 1 hour, and the length of each side of the test piece was measured with a vernier caliper in a state of being immersed in pure water in a flat state. The volume when swollen with water was taken as Vw .
The value of M d /V w was taken as the swelling density.
<体積膨潤率>
 体積膨潤率は、水膨潤時の体積Vと絶乾状態の体積Vの比(V/V)であり、100%超であれば、水膨潤性が良好であると判定した。
<Volume swelling rate>
The volume swelling ratio is the ratio (V w /V d ) of the volume V w when swollen with water and the volume V d in the absolute dry state (V w /V d ).
<平均気孔数>
 水膨潤時の体積Vを測定した後の試験片の平板面中央部分を赤色インキで着色した。着色部分に直尺を当てて、該着色部分及び直尺の目盛が含まれるように写真撮影した。写真の拡大画像において、直尺の任意箇所の目盛の5mmの間隔位置の範囲内で、直尺との任意の平行線上に観察される気孔の個数を数えた。同様の測定を任意の3か所で行い、各測定箇所(測定3回)の気孔数の平均値を、水膨潤時の5mm当たりの平均気孔数とした。
 なお、セル構造は、電子顕微鏡観察により、連通気孔構造であり、かつ、ウォール構造であることが確認された。
<Average number of pores>
After measuring the volume Vw when swollen with water, the central portion of the flat plate surface of the test piece was colored with red ink. A ruler was applied to the colored portion, and a photograph was taken so that the colored portion and the scale of the ruler were included. In the magnified image of the photograph, the number of pores observed on an arbitrary parallel line with the ruler was counted within the range of 5 mm intervals of the scale at an arbitrary location on the ruler. Similar measurements were performed at three arbitrary locations, and the average number of pores at each measurement location (three measurements) was taken as the average number of pores per 5 mm when swollen with water.
Observation with an electron microscope confirmed that the cell structure was a continuous pore structure and a wall structure.
<平均気孔径>
 水膨潤時の体積Vを測定した後の試験片について、面中央部近傍の任意の箇所を顕微鏡で観察し、観察画像における気孔1個の長径及び短径を測定した。気孔形状を、長径及び短径の平均値を直径とする真円とみなし、同様にして、50個の気孔の直径を求めた。これらの直径の平均値を、水膨潤時の平均気孔径とした。
<Average pore diameter>
After measuring the volume Vw when swollen with water, an arbitrary point near the center of the surface of the test piece was observed with a microscope, and the major axis and minor axis of one pore in the observed image were measured. The pore shape was regarded as a perfect circle whose diameter was the average value of the major and minor axes, and the diameters of 50 pores were obtained in the same manner. The average value of these diameters was taken as the average pore diameter when swollen with water.
<水中沈降時間>
 試験片(1辺の長さが5mmの立方体)1個を、1Lポリプロピレン製ディスポーサブルカップに入れて静置した25℃の蒸留水600mLの水面に落下させて投入してから、試験片全体が水面下(水中)に沈降するまでの時間を測定した。試験片10個について測定した。沈降するまでの時間(水中沈降時間)が、1時間以下であれば、親水性が良好であると判定した。
<Underwater sedimentation time>
One test piece (a cube with a length of 5 mm on each side) is placed in a 1 L polypropylene disposable cup and placed on the water surface of 600 mL of distilled water at 25 ° C. After dropping and putting it, the entire test piece is on the water surface. The time until it settled down (under water) was measured. Ten test pieces were measured. If the time until sedimentation (sedimentation time in water) was 1 hour or less, it was determined that the hydrophilicity was good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[担体の強度評価]
 試料担体(1)~(3)の両底面を引張破壊強度測定機(株式会社島津製作所製)に接着させて、引張強度測定を行ったところ、いずれも引張強度10N/cmでも破壊せず、軟質ポリウレタンフォームとこれを被覆するC字型筒状体は剥離することなく、一体化状態が維持されていることが認められた。
 なお、試料担体(1)~(3)と同一の形状及び大きさの軟質ポリウレタンフォーム、及び比較試料担体(3)(いずれも軟質ポリウレタンフォームのみ)について、同様に引張強度測定を行ったところ、いずれも引張破壊強度は約3N/cmであった。
 これらの評価結果から、試料担体(1)~(3)は、水処理の使用時にも、軟質ポリウレタンフォームと被覆部材との一体化状態が維持され、被覆部材を有しない場合よりも、強度が高く、耐久性に優れていると言える。
[Strength evaluation of carrier]
Both bottom surfaces of sample carriers (1) to (3) were adhered to a tensile breaking strength tester (manufactured by Shimadzu Corporation), and tensile strength was measured . It was confirmed that the flexible polyurethane foam and the C-shaped cylindrical body covering it did not separate and maintained their integrated state.
The same tensile strength measurement was performed on the flexible polyurethane foams having the same shape and size as the sample carriers (1) to (3) and the comparative sample carrier (3) (both flexible polyurethane foams only). All of them had a tensile breaking strength of about 3 N/cm 2 .
From these evaluation results, sample carriers (1) to (3) maintained the state of integration between the flexible polyurethane foam and the covering member even when used for water treatment, and had greater strength than the case without the covering member. It can be said that it is high and has excellent durability.
[排水処理試験]
 担体による排水処理試験として、下記の試験(1)及び(2)を行った。なお、試験(1)では試料担体(1)及び比較試料担体(1)を用い、試験(2)では試料担体(2)及び(3)、比較試料担体(2)及び(3)を用いた。
[Wastewater treatment test]
The following tests (1) and (2) were conducted as wastewater treatment tests using the carrier. In test (1), sample carrier (1) and comparative sample carrier (1) were used, and in test (2), sample carriers (2) and (3), and comparative sample carriers (2) and (3) were used. .
<試験(1)>
 2L試験水用のプラスチック槽に、水道水2L、種汚泥として好気槽の活性汚泥、及び試験担体0.4Lを投入し、窒素源(硝酸ナトリウム;硝酸態窒素(NO-N) 100mg/L)を追加しつつ、25℃で3日間、プロペラ撹拌機で撹拌し、微生物を試料担体に馴致させた。
 模擬排水として硝酸ナトリウム主体の試験原水を槽内に通水し、槽内から適宜、処理水を採取し、残存NO-N濃度(N)を測定した。通水する試験原水のNO-N濃度(N)の測定も行った。試験原水のNO-N濃度(N)に対するNO-N濃度の減少量(N-N)の割合をNO-N除去率[%]として算出した。
 試験原水のNO-N濃度及び原水通水量を調整し、窒素容積負荷の高い状態に変化させて処理効果の確認を行った。試料担体(1)及び比較試料担体(1)についての試験結果を表2に示す。
 なお、比較試料担体(1)については、No.4でのNO-N除去率が低下したため、No.5以降の試験を中止した。
<Test (1)>
2 L of tap water, activated sludge from an aerobic tank as seed sludge, and 0.4 L of test carrier were added to a plastic tank for 2 L test water, and a nitrogen source (sodium nitrate; nitrate nitrogen (NO 3 —N) 100 mg/ While adding L), the mixture was stirred with a propeller stirrer at 25° C. for 3 days to acclimatize the microorganisms to the sample carrier.
As simulated waste water, test raw water mainly containing sodium nitrate was passed through the tank, and treated water was appropriately sampled from the tank to measure the residual NO 3 —N concentration (N 1 ). The NO 3 —N concentration (N 0 ) of the test raw water passing through was also measured. The ratio of the NO 3 -N concentration decrease (N 0 -N 1 ) to the NO 3 -N concentration (N 0 ) of the test raw water was calculated as the NO 3 -N removal rate [%].
The NO 3 —N concentration and raw water flow rate of the test raw water were adjusted, and the nitrogen volume load was changed to a high state, and the treatment effect was confirmed. Table 2 shows the test results for the sample carrier (1) and the comparative sample carrier (1).
Regarding the comparative sample carrier (1), No. The NO 3 —N removal rate at No. 4 decreased. After 5 trials were discontinued.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<試験(2)>
 5L試験水用のプラスチック槽に、水道水5L、種汚泥として好気槽の活性汚泥、及び試料担体1Lを投入し、COD源(グルコース;COD 400mg/L)を追加しつつ、25℃で3日間、ポンプによる曝気撹拌を行い、微生物を試料担体に馴致させた。
 模擬排水としてグルコース主体の試験原水を槽内に通水し、槽内から適宜、処理水を採取し、残存COD値(C)を測定した。通水する試験原水のCOD値(C)の測定も行った。試験原水のCOD値(C)に対するCOD値の減少量(C-C)の割合をCOD除去率[%]として算出した。
 試験原水のグルコース濃度及び原水通水量を調整し、COD容積負荷の高い状態として処理効果の確認を行った。試料担体(2)及び(3)、比較試料担体(2)及び(3)についての試験結果を表3に示す。
 なお、比較試料担体(2)については、No.5でのCOD除去率が低下したため、No.6以降の試験を中止した。
<Test (2)>
5 L of tap water, activated sludge from an aerobic tank as seed sludge, and 1 L of sample carrier were added to a plastic tank for 5 L test water, and while adding a COD source (glucose; COD 400 mg/L), the mixture was heated at 25°C for 3 hours. Aeration and stirring with a pump were performed for days to acclimatize the microorganisms to the sample carrier.
As simulated waste water, test raw water mainly containing glucose was passed through the tank, treated water was appropriately sampled from the tank, and the residual COD value (C 1 ) was measured. The COD value (C 0 ) of the test raw water passing through was also measured. The ratio of the decrease in COD value (C 0 −C 1 ) to the COD value (C 0 ) of test raw water was calculated as the COD removal rate [%].
The glucose concentration and raw water flow rate of test raw water were adjusted, and the treatment effect was confirmed assuming a state of high COD volume load. Table 3 shows the test results for sample carriers (2) and (3) and comparative sample carriers (2) and (3).
Regarding the comparative sample carrier (2), No. Since the COD removal rate in No. 5 decreased, After 6 trials were discontinued.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に示したように、被覆部材で被覆された試料担体(1)~(3)は、被覆部材のない比較試料担体(3)と同等に、十分に高いNO-N除去率及びCOD除去率を示すことが確認された。
 また、試料担体(1)~(3)はいずれも、試験後も軟質ポリウレタンフォームと被覆部材との一体化状態が維持され、耐久性に優れていることが確認された。
As shown in Tables 2 and 3, the sample carriers (1) to (3) coated with the coating member showed sufficiently high NO 3 —N removal, comparable to the comparative sample carrier (3) without the coating member. and COD removal rate.
In addition, it was confirmed that all of the sample carriers (1) to (3) maintained the integrated state of the flexible polyurethane foam and the covering member even after the test, and were excellent in durability.
 1 (軟質ポリウレタンフォームの)柱状体
 2 被覆部材
 S スリット
REFERENCE SIGNS LIST 1 columnar body (of flexible polyurethane foam) 2 covering member S slit

Claims (5)

  1.  軟質ポリウレタンフォームの柱状体の側周面の少なくとも一部が、前記軟質ポリウレタンフォームよりも硬い被覆部材で被覆されてなる、水処理用微生物固定化担体。 A microorganism-immobilizing carrier for water treatment, wherein at least part of the side peripheral surface of a columnar body of flexible polyurethane foam is coated with a coating member harder than the flexible polyurethane foam.
  2.  前記被覆部材は、一体で形成されており、かつ、前記被覆部材のうち前記柱状体の側周面を被覆している部分に1個以上のスリットを有する、請求項1に記載の水処理用微生物固定化担体。 The water treatment according to claim 1, wherein the covering member is integrally formed, and has one or more slits in a portion of the covering member that covers the side peripheral surface of the columnar body. Microorganism immobilization carrier.
  3.  前記スリットのうちの1個は、前記被覆部材のうち前記柱状体の一方の底面側の端部から他方の底面側の端部にわたって延在している連通スリットである、請求項2に記載の水処理用微生物固定化担体。 3. The slit according to claim 2, wherein one of said slits is a communicating slit extending from one bottom-side end of said columnar body to the other bottom-side end of said covering member. Microorganism immobilization carrier for water treatment.
  4.  前記柱状体は、円柱体である、請求項1~3のいずれか1項に記載の水処理用微生物固定化担体。 The microorganism-immobilizing carrier for water treatment according to any one of claims 1 to 3, wherein the columnar body is a columnar body.
  5.  軟質ポリウレタンフォームの柱状体の側周面が、一体で形成された、スリットを有する被覆部材で被覆されてなる水処理用微生物固定化担体の製造方法であって、
     前記被覆部材として、長さ方向に延設されたスリットを有する中空の長尺材を用い、
     前記長尺材の中空部に、前記スリット又は前記長尺材の長さ方向の端部から、軟質ポリウレタンフォーム組成物を注入発泡し、前記長尺材の中空部に前記軟質ポリウレタンフォームを有する棒状物を得る工程と、
     前記棒状物を所定の長さに切断する工程とを含む、水処理用微生物固定化担体の製造方法。
    A method for producing a microorganism-immobilizing carrier for water treatment, in which the side peripheral surface of a columnar body of flexible polyurethane foam is coated with an integrally formed coating member having slits,
    Using a hollow elongated material having a slit extending in the length direction as the covering member,
    The flexible polyurethane foam composition is injected and foamed into the hollow part of the elongated material from the slit or the end in the length direction of the elongated material, and the hollow part of the elongated material contains the flexible polyurethane foam. the process of obtaining an object;
    and cutting the rod-shaped object into a predetermined length.
PCT/JP2022/034513 2021-09-28 2022-09-15 Microorganism-fixing carrier for water treatment, and method for producing same WO2023053984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158229 2021-09-28
JP2021-158229 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053984A1 true WO2023053984A1 (en) 2023-04-06

Family

ID=85782419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034513 WO2023053984A1 (en) 2021-09-28 2022-09-15 Microorganism-fixing carrier for water treatment, and method for producing same

Country Status (1)

Country Link
WO (1) WO2023053984A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220075A (en) * 2008-03-18 2009-10-01 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, biological nitrification and denitrification apparatus, and method for using the apparatus
JP2013154298A (en) * 2012-01-30 2013-08-15 Kubota Corp Water treatment filter medium, and purification tank
JP2016123957A (en) * 2015-01-07 2016-07-11 三機工業株式会社 Apparatus and method for treating waste water containing dissolved substance and volatile substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220075A (en) * 2008-03-18 2009-10-01 Chugoku Electric Power Co Inc:The Microorganism-immobilized carrier, biological nitrification and denitrification apparatus, and method for using the apparatus
JP2013154298A (en) * 2012-01-30 2013-08-15 Kubota Corp Water treatment filter medium, and purification tank
JP2016123957A (en) * 2015-01-07 2016-07-11 三機工業株式会社 Apparatus and method for treating waste water containing dissolved substance and volatile substance

Similar Documents

Publication Publication Date Title
US6610205B2 (en) Process for nitrifying denitrifying organic waste water
ES2302205T3 (en) LOW DENSITY POLYURETHANE FOAMS AND THEIR USE IN SOILS OF SHOES.
JP6917535B1 (en) Manufacturing method of flexible polyurethane foam
JP4123003B2 (en) Microorganism immobilization carrier, sewage purification method and sewage purification device
JP5490426B2 (en) Polyurethane foam for microbial immobilization support
JP2009220079A (en) Water treatment carrier
WO2023053984A1 (en) Microorganism-fixing carrier for water treatment, and method for producing same
WO2023053985A1 (en) Microorganism-immobilized carrier for water treatment
US6565751B2 (en) Bioreactor carrier, process for producing the carrier and method for using the same
JP7446048B2 (en) Flexible polyurethane foam for microorganism carrier and its manufacturing method
WO2021131934A1 (en) Support for immobilizing microorganisms for water treatment, resin-foamed body and starting material composition thereof
JP6909364B1 (en) Manufacturing method of flexible polyurethane foam
JP2004359950A (en) Water-swelling polyurethane foam furnished with chemical resistance, method for producing the same, and carrier for bioreactor given by using the same
JP4828370B2 (en) Method for producing microbial carrier for water treatment
CN117120381A (en) Microorganism-immobilized carrier for water treatment, flexible polyurethane foam composition, and process for producing flexible polyurethane foam
CN111072909B (en) Hydrophilic polyurethane prepolymer, preparation method thereof and application thereof in flexible foam plastic
JP2020028867A (en) Microorganism-immobilized carrier for water treatment
WO2021045104A1 (en) Method for producing microorganism-immobilized carrier for water treatment use
JP2021181538A (en) Lowly swelling hydrophilic urethane foam
JP5284057B2 (en) Method for producing microbial carrier for water treatment
JP2002052394A (en) Carrier for bioreactor and method for manufacturing and using the same
JPH11207380A (en) Microorganism carrier
JP2001064351A (en) Production of water-absorbing polyurethane foam
JP2004217708A (en) Water-swellable polyurethane foam provided with chemical resistance and carrier for bioreactor using the same
KR100524869B1 (en) Hydrophilic polyurethane media for waste-water treatment and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551304

Country of ref document: JP