JP4076687B2 - Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element - Google Patents

Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element Download PDF

Info

Publication number
JP4076687B2
JP4076687B2 JP32084099A JP32084099A JP4076687B2 JP 4076687 B2 JP4076687 B2 JP 4076687B2 JP 32084099 A JP32084099 A JP 32084099A JP 32084099 A JP32084099 A JP 32084099A JP 4076687 B2 JP4076687 B2 JP 4076687B2
Authority
JP
Japan
Prior art keywords
magneto
effect element
thin film
circuit board
impedance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32084099A
Other languages
Japanese (ja)
Other versions
JP2001141798A (en
Inventor
恒 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP32084099A priority Critical patent/JP4076687B2/en
Publication of JP2001141798A publication Critical patent/JP2001141798A/en
Application granted granted Critical
Publication of JP4076687B2 publication Critical patent/JP4076687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気インピーダンス効果を利用して外部磁界を検出する磁気インピーダンス効果素子に関するものである。
【0002】
【従来の技術】
磁気インピーダンス効果素子は、高い外部磁界検出感度を有しているため、磁気検出素子として自動車用方位センサやモータの回転センサ等に適用され始めている。図16は、このような従来の磁気インピーダンス効果素子の構造を示す斜視図であって、この磁気インピーダンス素子31は、非磁性基板32が一対の配線パターン33,34を形成した絶縁基板35に固定され、非磁性基板32の一端面に形成された高い透磁率を有する磁性薄膜36の長手方向両端部に設けられた電極37,38が上記一対の配線パターン33,34とそれぞれ半田39によって接続されている。そして、非磁性基板32には、絶縁基板35を含めた形で交流バイアス磁界発生用のバイアスコイル40が巻回されて装着され、その巻回部40a内に磁性薄膜36が位置した状態となっている。
【0003】
このように構成された磁気インピーダンス効果素子31は、磁性薄膜36の長手方向が図示せぬ被検出体から発せられる外部磁界Hに沿うように配置され、一対の配線パターン33,34を介して磁性薄膜36にMHz帯域の高周波電流を通電すると、磁性薄膜36の長手方向両端部間のインピーダンスが変化し、この変化を電気信号に変換して外部磁界Hの検出出力が得られるようになっている。
【0004】
この高周波電流の通電時に、この高周波電流よりも低周波の交流電流をバイアスコイル40に通電して磁性薄膜36にバイアス磁界を印加すると、磁性薄膜36の長手方向両端部間のインピーダンスの変化に線形性を持たせることができ、外部磁界Hの方向をも検知することが可能となる。
【0005】
この磁気インピーダンス効果素子31は、非磁性基板32を絶縁基板35に固定し、電極37,38と一対の配線パターン33,34とをそれぞれ半田39によって接続した後、絶縁基板35を含め非磁性基板32にバイアスコイル40を巻回して製造される。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の磁気インピーダンス効果素子31にあっては、磁性薄膜36が非磁性基板32の一端面に露出した状態になっているため、非磁性基板32にバイアスコイル40を巻回して装着する作業の際、バイアスコイル40を巻回しているうちに、作業者の手指が磁性薄膜36に触れ、これに断線等の損傷を与えるという問題があった。
【0007】
本発明は、上述した従来技術の事情に鑑みてなされたもので、その目的は、磁性薄膜に損傷を与えることなく、非磁性基板にバイアスコイルを装着できる磁気インピーダンス効果素子を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の磁気インピーダンス効果素子は、非磁性基板の一面に形成した磁性薄膜の両端部に電極が設けられ、前記非磁性基板がバイアスコイルを巻回した巻枠に嵌合されて取り付けられており、前記バイアスコイルの巻回部内に前記磁性膜が位置し、前記巻枠の両端部から突出した前記電極に絶縁基板の一面に形成した配線パターンがそれぞれ接続されているとともに、前記巻枠に設けられたコイル端子に前記バイアスコイルが接続されていることを最も主要な特徴としている。
【0009】
また、上記構成において、前記巻枠の両端部に一対の鍔部を設け、前記絶縁基板に切欠部を形成し、この切欠部に前記一対の鍔部を嵌合させて、前記絶縁基板を前記巻枠に取り付けた。
【0010】
また、本発明の磁気インピーダンス効果素子搭載回路基板は、上記磁気インピーダンス効果素子の構成における前記非磁性基板及び絶縁基板が嵌合された巻枠は回路基板に搭載されるものであって、前記コイル端子を前記巻枠から突出させ、この突出方向と同一方向に前記配線パターンを延出して設けた上記磁気インピーダンス効果素子を備え、前記配線パターンと前記コイル端子とを前記回路基板に半田付けした。
【0011】
また、上記構成において、前記コイル端子を線状に設けた前記磁性薄膜の長手方向に対し略垂直に突出させるとともに、前記配線パターンを前記磁性薄膜の長手方向に対し略垂直に延出させ、前記磁性薄膜の長手方向に対して前記回路基板を略平行に配置した。
【0012】
また、上記構成において、前記コイル端子を線状に設けた前記磁性薄膜の長手方向に対し略平行に突出させるとともに、前記配線パターンを前記磁性薄膜の長手方向に対し略平行に延出させ、前記磁性薄膜の長手方向に対して前記回路基板を略垂直に配置した。
【0013】
【発明の実施の形態】
以下、本発明の磁気インピーダンス効果素子の一実施形態を図1乃至図12に基づいて説明する。
【0014】
この磁気インピーダンス素子1は、両端部に電極4,5が設けられた磁性薄膜3を有する非磁性基板2が嵌合された巻枠6にバイアスコイル11が巻回され、この巻枠6の両端部から突出した電極4,5に、絶縁基板12に形成された配線パターン15,16がそれぞれ接続されて構成されている。
【0015】
非磁性基板2は、セラミック等の非磁性材料を矩形状に成形してなるもので、図4に示すように、その一面にFeHfCを含みbccFe微結晶粒を主体とする透磁率の高い磁性薄膜3が直線状に形成されており、磁性薄膜の長手方向両端部には、銅製の電極4,5が設けられている。
【0016】
巻枠6は、絶縁合成樹脂材料から筒状に形成され、図5乃至図7に示すように、その両端部に一対の鍔部7,8が設けられており、この鍔部7,8には、各々コイル端子9,10が貫通して固定された端子支持部7a,8aが一体に形成されている。
【0017】
そして、巻枠6の透孔6aには、非磁性基板2が強嵌合で挿入されて取り付けられており、巻枠6の両端部から電極4,5が突出して露出し、透孔6aに磁性薄膜3が位置しているとともに、透孔6aの内壁面と磁性薄膜3との間に若干のクリアランスが設けられている。また、図1乃至図3に示すように、巻枠6には、一対の鍔部7,8間において導電線材からなる交流バイアス磁界発生用のバイアスコイル11が巻回されて装着され、そのバイアスコイル11の一端および他端がコイル端子9,10に各々絡げられて接続されるようになっている。
【0018】
絶縁基板12は、図8に示すように、その一面の両側部にランド13,14が形成され、これらランド13,14から各々配線パターン15,16が絶縁基板12の一端部に至るように延出して設けられており、配線パターン15,16の一端部側は他端部側に比べ幅広の接続部15a,16aとされている。また、絶縁基板12の他端部には矩形状の切欠部12aが形成され、この切欠部12aを挟んでランド13,14が対向しており、ランド13,14には、図9に示すように、表面が半田17aによってメッキされた銅製の突起17bからなる半田バンプ17が複数個設けられている。尚、ランド13,14および配線パターン15,16はいずれも銅箔にて形成され、配線パターン15,16の接続部15a,16bを除く部分およびランド13,14の半田バンプ17を除く部分がポリイミド樹脂等でなる絶縁被膜20によって被覆されている。
【0019】
そして、図1乃至図3に示すように、この絶縁基板12は、切欠部12aに一対の鍔部7,8を嵌合させて巻枠6に取り付けられ、ランド13,14が各々時磁性基板2の電極4,5と半田17aによって接続されている。これにより、ランド13,14と電極4,5との接続部が、絶縁基板12および非磁性基板2で覆われて保護され、配線パターン15,16が、ランド13、電極4、磁性薄膜3、電極5およびランド14を介して導通した状態となっている。
【0020】
次に、このように構成された磁気インピーダンス効果素子1の組立方法について説明すると、先ず、非磁性基板2を巻枠6の透孔6aに挿入し、透孔6aの内壁面に強嵌合させて非磁性基板2を巻枠6に取り付け、巻枠6の両端部から電極4,5が突出した状態にする。次に、巻枠6の一対の鍔部7,8間にバイアスコイル11を巻回し、バイアスコイル11の一端および他端をコイル端子9,10に各々絡げて接続する。このとき、透孔6a内に磁性薄膜3が位置して巻枠6で覆われているため、バイアスコイル11を巻回する作業者の手指が磁性薄膜3に触れることがなく、手指の接触に起因する磁性薄膜3の断線等の損傷を防ぐことができる。
【0021】
次に、図10に示すように、巻枠6の側方に絶縁基板12を位置させて、切欠部12aに一対の鍔部7,8を嵌合させることにより、絶縁基板12を巻枠6に取り付ける。しかる後、ランド13,14に対応する絶縁基板12の他面を図示せぬチップヒーターで加熱・加圧すると、半田11aが融解してランド13と電極4およびランド14と電極5とが接続される。
【0022】
このようにして、磁気インピーダンス効果素子1の組立は完了するが、組立後においては、バイアスコイル11の巻回部11a内に磁性薄膜3が位置し、磁性薄膜3の長手方向に対しコイル端子9,10が巻枠6から略垂直に突出しているとともに、この突出方向と同一方向に配線パターン15,16がランド13,14から延出して設けられ、磁性薄膜3の長手方向に対し配線パターン15,16が略垂直に延出された状態となっている。
【0023】
このように構成・組み立てられた磁気インピーダンス効果素子1は、図11乃至図12に示すように、磁性薄膜3の長手方向に対して平行に配置された回路基板18に搭載され、その裏面側で配線パターン15,16の接続部15a,16aおよびコイル端子9,10が半田付けにより回路基板18と電気的に接続される。
【0024】
そして、この磁気インピーダンス効果素子1は、磁性薄膜3の長手方向が図示せぬ被検出体から発せられる外部磁界Hに沿うように配置された状態で、回路基板18から配線パターン15,16を介して磁性薄膜3にMHz帯域の高周波電流を通電すると、磁性薄膜3の長手方向両端部間のインピーダンスが変化し、この変化を回路基板18が電気信号に変換して外部磁界Hの検出出力が得られるようになっている。
【0025】
この高周波電流の通電時に、この高周波電流よりも低周波の交流電流を回路基板18からコイル端子9,10を介してバイアスコイル11に通電して磁性薄膜3にバイアス磁界を印加すると、磁性薄膜3の長手方向両端部間のインピーダンスの変化に線形性を持たせることができ、外部磁界Hの方向をも検知することが可能となる。
【0026】
しかして、この磁気インピーダンス効果素子1にあっては、コイル端子9,10の突出方向と配線パターン15,16の延出方向とが揃っているため、これらを回路基板18に半田付けする作業を回路基板18の裏面側にて連続して行うことができ、コイル端子9,10および配線パターン15,16と回路基板18とを迅速に接続することができる。また、絶縁基板12の巻枠6への取付は、切欠部12aに一対の鍔部7,8を嵌合させるだけで簡単に行うことができ、また、配線パターン15,16がいずれも絶縁基板12の一面に設けられているため、配線パターン15,16の接続部15a,16aと回路基板18との半田付け作業は、絶縁基板18の一面側にて連続して行うことができる。
【0027】
図13乃至図15は本発明の他の応用例を示す図であって、この磁気インピーダンス効果素子19が上述した磁気インピーダンス効果素子1と異なる点は、コイル端子9,10を両端子支持部7a,8aに貫通させて固定し、これらコイル端子9,10を巻枠6から磁性薄膜3の長手方向に略平行に突出させた点と、絶縁基板12の形状を若干変更し、磁性薄膜3の長手方向に対し略平行に配線パターン15,16を絶縁基板12の一側部に至るように延出させて設けた点の2点が異なるのみで、他は磁気インピーダンス効果素子1と同様である。
【0028】
この磁気インピーダンス効果素子19は、磁性薄膜3の長手方向に対して略垂直に配置された回路基板18に搭載され、その裏面側で配線パターン15,16の接続部15a,16aおよびコイル端子9,10が半田付けされて回路基板18と電気的に接続される。そして、この磁気インピーダンス効果素子19は、磁性薄膜3の長手方向が図示せぬ被検出体から発せられる外部磁界Hに沿うように配置され、上記磁気インピーダンス効果素子1と同様に動作する。
【0029】
このように構成された磁気インピーダンス効果素子19にあっては、上記磁気インピーダンス効果素子1よりも回路基板18の表裏面方向(矢印A方向)に背丈が高くなるものの、回路基板18上に占める実装面積を小さくすることができるため、回路基板18の小型化を図る上で有効である。
【0030】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0031】
非磁性基板の一面に形成した磁性薄膜の両端部に電極が設けられ、前記非磁性基板がバイアスコイルを巻回した巻枠に嵌合されて取り付けられており、前記バイアスコイルの巻回部内に前記磁性膜が位置し、前記巻枠の両端部から突出した前記電極に絶縁基板の一面に形成した配線パターンがそれぞれ接続されているとともに、前記巻枠に設けられたコイル端子に前記バイアスコイルが接続されているので、前記磁性薄膜を前記巻枠で覆うことができ、前記巻枠に前記バイアスコイルを巻回する作業者の手指が前記磁性薄膜に触れる心配を解消することができるため、これに起因する断線等の損傷を前記磁性薄膜に与えることなく前記非磁性基板に前記バイアスコイルを装着できる。
【0032】
前記巻枠の両端部に一対の鍔部を設け、前記絶縁基板に切欠部を形成し、この切欠部に前記一対の鍔部を嵌合させて、前記絶縁基板を前記巻枠に取り付けたので、前記切欠部に前記一対の鍔部を嵌合させるだけで前記絶縁基板を前記巻枠に簡単に取り付けることができ、素子の組立の簡素化を図ることができる。
【0033】
前記非磁性基板及び絶縁基板が嵌合された巻枠は回路基板に搭載されるものであり、前記コイル端子を前記巻枠から突出させ、この突出方向と同一方向に前記配線パターンを延出して設け、前記配線パターンと前記コイル端子とを前記回路基板に半田付けした前記コイル端子の突出方向と前記配線パターンの延出方向とが揃っているため、これらを回路基板等に半田付けする作業を連続して行うことができ、前記コイル端子および前記配線パターンを回路基板等に迅速に接続することができる。
【0034】
前記コイル端子を線状に設けた前記磁性薄膜の長手方向に対し略垂直に突出させるとともに、前記配線パターンを前記磁性薄膜の長手方向に対し略垂直に延出させ、前記磁性薄膜の長手方向に対して前記回路基板を略平行に配置したので、前記回路基板の表裏面方向における素子の背丈を小さくすることができる。
【0035】
前記コイル端子を線状に設けた前記磁性薄膜の長手方向に対し略平行に突出させるとともに、前記配線パターンを前記磁性薄膜の長手方向に対し略平行に延出させ、前記磁性薄膜の長手方向に対して前記回路基板を略垂直に配置したので、前記回路基板上に占める素子の実装面積を小さくすることができるため、前記回路基板の小型化を図ることができる。
【図面の簡単な説明】
【図1】本発明の磁気インピーダンス効果素子の平面図。
【図2】本発明の磁気インピーダンス効果素子の正面図。
【図3】本発明の磁気インピーダンス効果素子の側面図。
【図4】本発明の磁気インピーダンス効果素子に係る非磁性基板の平面図。
【図5】本発明の磁気インピーダンス効果素子に係る巻枠に非磁性基板が取り付けられた状態を示す平面図。
【図6】本発明の磁気インピーダンス効果素子に係る巻枠に非磁性基板が取り付けられた状態を示す正面図。
【図7】図5の7−7線に沿う断面図。
【図8】本発明の磁気インピーダンス効果素子に係る絶縁基板の平面図。
【図9】本発明の磁気インピーダンス効果素子に係る絶縁基板に設けられた半田バンプを示す説明図。
【図10】本発明の磁気インピーダンス効果素子の組立を示す説明図。
【図11】本発明の磁気インピーダンス効果素子が回路基板に取り付けられた状態を示す正面図。
【図12】本発明の磁気インピーダンス効果素子が回路基板に取り付けられた状態を示す側面図。
【図13】本発明の応用例を説明する平面図。
【図14】本発明の応用例を説明する正面図。
【図15】本発明の応用例を説明する側面図。
【図16】従来の磁気インピーダンス効果素子の斜視図。
【符号の説明】
1 磁気インピーダンス効果素子
2 非磁性基板
3 磁性薄膜
4 電極
5 電極
6 巻枠
6a 透孔
7 鍔部
7a端子支持部
8 鍔部
8a端子支持部
9 コイル端子
10 コイル端子
11 バイアスコイル
11a 巻回部
12 絶縁基板
12a 切欠部
13 ランド
14 ランド
15 配線パターン
15a 接続部
16 配線パターン
16a 接続部
17 半田バンプ
17a 半田
17b 突起
18 回路基板
19 磁気インピーダンス効果素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magneto-impedance effect element that detects an external magnetic field using the magneto-impedance effect.
[0002]
[Prior art]
Since the magneto-impedance effect element has high external magnetic field detection sensitivity, it has begun to be applied as a magnetic detection element to an automobile orientation sensor, a motor rotation sensor, or the like. FIG. 16 is a perspective view showing the structure of such a conventional magneto-impedance effect element. The magneto-impedance element 31 is fixed to an insulating substrate 35 on which a non-magnetic substrate 32 has a pair of wiring patterns 33 and 34 formed thereon. The electrodes 37 and 38 provided at both ends in the longitudinal direction of the magnetic thin film 36 having a high magnetic permeability formed on one end surface of the nonmagnetic substrate 32 are connected to the pair of wiring patterns 33 and 34 by the solder 39, respectively. ing. A bias coil 40 for generating an AC bias magnetic field is wound and mounted on the nonmagnetic substrate 32 in a form including the insulating substrate 35, and the magnetic thin film 36 is located in the wound portion 40a. ing.
[0003]
The magneto-impedance effect element 31 configured as described above is arranged so that the longitudinal direction of the magnetic thin film 36 is along an external magnetic field H emitted from a detection object (not shown), and magnetically passes through a pair of wiring patterns 33 and 34. When a high-frequency current in the MHz band is passed through the thin film 36, the impedance between both ends in the longitudinal direction of the magnetic thin film 36 changes, and this change is converted into an electric signal so that a detection output of the external magnetic field H can be obtained. .
[0004]
When a high-frequency current is applied, an alternating current having a frequency lower than the high-frequency current is applied to the bias coil 40 to apply a bias magnetic field to the magnetic thin film 36, and linearly changes in impedance between both longitudinal ends of the magnetic thin film 36. The direction of the external magnetic field H can be detected.
[0005]
In this magneto-impedance effect element 31, a nonmagnetic substrate 32 is fixed to an insulating substrate 35, electrodes 37 and 38 and a pair of wiring patterns 33 and 34 are connected to each other by solder 39, and then the nonmagnetic substrate including the insulating substrate 35 is included. It is manufactured by winding the bias coil 40 around 32.
[0006]
[Problems to be solved by the invention]
However, in the conventional magneto-impedance effect element 31 described above, since the magnetic thin film 36 is exposed on one end surface of the nonmagnetic substrate 32, the bias coil 40 is wound around the nonmagnetic substrate 32 and attached. During the operation, the operator's finger touches the magnetic thin film 36 while the bias coil 40 is being wound, causing damage such as disconnection.
[0007]
The present invention has been made in view of the above-described prior art, and an object thereof is to provide a magneto-impedance effect element capable of mounting a bias coil on a nonmagnetic substrate without damaging a magnetic thin film. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the magneto-impedance effect element of the present invention has electrodes provided on both ends of a magnetic thin film formed on one surface of a non-magnetic substrate, and the non-magnetic substrate is formed on a winding frame around which a bias coil is wound. The magnetic film is positioned in the winding portion of the bias coil, and the wiring patterns formed on one surface of the insulating substrate are connected to the electrodes protruding from both ends of the winding frame, respectively. The main feature is that the bias coil is connected to a coil terminal provided on the winding frame.
[0009]
Further, in the above configuration, a pair of flanges are provided at both ends of the winding frame, a notch is formed in the insulating substrate, the pair of flanges are fitted into the notch, and the insulating substrate is Attached to the reel.
[0010]
In the magneto-impedance effect element mounting circuit board according to the present invention, the winding frame in which the non-magnetic substrate and the insulating substrate in the configuration of the magneto-impedance effect element are fitted is mounted on the circuit board, and the coil A terminal is projected from the winding frame, and the magneto-impedance effect element provided by extending the wiring pattern in the same direction as the projecting direction is provided , and the wiring pattern and the coil terminal are soldered to the circuit board.
[0011]
Further, in the above configuration, the coil terminal protrudes substantially perpendicular to the longitudinal direction of the magnetic thin film provided in a line, and the wiring pattern extends substantially perpendicular to the longitudinal direction of the magnetic thin film, The circuit board was arranged substantially parallel to the longitudinal direction of the magnetic thin film.
[0012]
In the above configuration, the coil terminal protrudes substantially parallel to the longitudinal direction of the magnetic thin film provided in a line, and the wiring pattern extends substantially parallel to the longitudinal direction of the magnetic thin film. The circuit board was arranged substantially perpendicular to the longitudinal direction of the magnetic thin film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a magneto-impedance effect element according to the present invention will be described with reference to FIGS.
[0014]
In this magneto-impedance element 1, a bias coil 11 is wound around a winding frame 6 fitted with a nonmagnetic substrate 2 having a magnetic thin film 3 provided with electrodes 4 and 5 at both ends. The wiring patterns 15 and 16 formed on the insulating substrate 12 are connected to the electrodes 4 and 5 protruding from the portion, respectively.
[0015]
The non-magnetic substrate 2 is formed by molding a non-magnetic material such as ceramic into a rectangular shape. As shown in FIG. 4, a magnetic thin film having a high magnetic permeability mainly including bccFe fine crystal grains including FeHfC on one surface thereof. 3 is formed in a straight line, and copper electrodes 4 and 5 are provided at both ends in the longitudinal direction of the magnetic thin film.
[0016]
The winding frame 6 is formed in a cylindrical shape from an insulating synthetic resin material, and as shown in FIGS. 5 to 7, a pair of flange portions 7 and 8 are provided at both ends thereof. Are integrally formed with terminal support portions 7a and 8a to which the coil terminals 9 and 10 are respectively fixed.
[0017]
The nonmagnetic substrate 2 is inserted into the through-hole 6a of the winding frame 6 with a strong fit, and the electrodes 4 and 5 protrude from both end portions of the winding frame 6 and are exposed to the through-hole 6a. While the magnetic thin film 3 is located, a slight clearance is provided between the inner wall surface of the through hole 6 a and the magnetic thin film 3. Further, as shown in FIGS. 1 to 3, a bias coil 11 for generating an AC bias magnetic field made of a conductive wire is wound around the winding frame 6 between the pair of flanges 7 and 8, and the bias is applied. One end and the other end of the coil 11 are connected to the coil terminals 9 and 10 respectively.
[0018]
As shown in FIG. 8, lands 13 and 14 are formed on both sides of one surface of the insulating substrate 12, and the wiring patterns 15 and 16 extend from the lands 13 and 14 to one end of the insulating substrate 12. One end portion side of the wiring patterns 15 and 16 is formed as connection portions 15a and 16a which are wider than the other end portion side. Further, a rectangular cutout portion 12a is formed at the other end portion of the insulating substrate 12, and the lands 13 and 14 are opposed to each other with the cutout portion 12a interposed therebetween, as shown in FIG. In addition, a plurality of solder bumps 17 each having a copper protrusion 17b whose surface is plated with solder 17a are provided. The lands 13 and 14 and the wiring patterns 15 and 16 are all formed of copper foil, and the portions other than the connection portions 15a and 16b of the wiring patterns 15 and 16 and the portions other than the solder bumps 17 of the lands 13 and 14 are polyimide. It is covered with an insulating film 20 made of resin or the like.
[0019]
As shown in FIGS. 1 to 3, the insulating substrate 12 is attached to the winding frame 6 by fitting a pair of flanges 7 and 8 into the notch 12a, and the lands 13 and 14 are respectively magnetic substrates. The second electrodes 4 and 5 are connected to the solder 17a. As a result, the connecting portions between the lands 13 and 14 and the electrodes 4 and 5 are covered and protected by the insulating substrate 12 and the nonmagnetic substrate 2, and the wiring patterns 15 and 16 are connected to the lands 13, the electrodes 4, the magnetic thin film 3, It is in a conductive state via the electrode 5 and the land 14.
[0020]
Next, a method for assembling the magneto-impedance effect element 1 configured as described above will be described. First, the non-magnetic substrate 2 is inserted into the through hole 6a of the winding frame 6 and is strongly fitted to the inner wall surface of the through hole 6a. Then, the nonmagnetic substrate 2 is attached to the winding frame 6 so that the electrodes 4 and 5 protrude from both ends of the winding frame 6. Next, the bias coil 11 is wound between the pair of flange portions 7 and 8 of the winding frame 6, and one end and the other end of the bias coil 11 are connected to the coil terminals 9 and 10, respectively. At this time, since the magnetic thin film 3 is positioned in the through hole 6a and covered with the winding frame 6, the finger of the operator who winds the bias coil 11 does not touch the magnetic thin film 3, and the finger touches the finger. The resulting damage such as disconnection of the magnetic thin film 3 can be prevented.
[0021]
Next, as shown in FIG. 10, the insulating substrate 12 is positioned on the side of the winding frame 6, and the pair of flange portions 7 and 8 are fitted into the notch portion 12 a, whereby the insulating substrate 12 is attached to the winding frame 6. Attach to. Thereafter, when the other surface of the insulating substrate 12 corresponding to the lands 13 and 14 is heated and pressurized with a chip heater (not shown), the solder 11a is melted and the lands 13 and the electrodes 4 and the lands 14 and the electrodes 5 are connected. The
[0022]
Thus, although the assembly of the magneto-impedance effect element 1 is completed, after the assembly, the magnetic thin film 3 is located in the winding portion 11a of the bias coil 11, and the coil terminal 9 is arranged with respect to the longitudinal direction of the magnetic thin film 3. , 10 protrudes substantially perpendicularly from the winding frame 6, and wiring patterns 15, 16 extend from the lands 13, 14 in the same direction as the protruding direction, and the wiring pattern 15 extends in the longitudinal direction of the magnetic thin film 3. 16 are extended substantially vertically.
[0023]
The magneto-impedance effect element 1 constructed and assembled as described above is mounted on a circuit board 18 arranged in parallel to the longitudinal direction of the magnetic thin film 3 as shown in FIGS. The connection portions 15a and 16a of the wiring patterns 15 and 16 and the coil terminals 9 and 10 are electrically connected to the circuit board 18 by soldering.
[0024]
The magneto-impedance effect element 1 is arranged from the circuit board 18 via the wiring patterns 15 and 16 in a state where the longitudinal direction of the magnetic thin film 3 is arranged along the external magnetic field H emitted from a detection object (not shown). When a high-frequency current in the MHz band is applied to the magnetic thin film 3, the impedance between both ends in the longitudinal direction of the magnetic thin film 3 changes, and this change is converted into an electric signal by the circuit board 18 to obtain a detection output of the external magnetic field H. It is supposed to be.
[0025]
When the high frequency current is applied, an alternating current having a frequency lower than the high frequency current is applied from the circuit board 18 to the bias coil 11 via the coil terminals 9 and 10 to apply a bias magnetic field to the magnetic thin film 3. The change in impedance between both ends in the longitudinal direction can be made linear, and the direction of the external magnetic field H can be detected.
[0026]
In the magneto-impedance effect element 1, the projecting direction of the coil terminals 9 and 10 and the extending direction of the wiring patterns 15 and 16 are aligned. Therefore, an operation of soldering these to the circuit board 18 is performed. This can be performed continuously on the back side of the circuit board 18, and the coil terminals 9, 10 and the wiring patterns 15, 16 can be quickly connected to the circuit board 18. Further, the insulating substrate 12 can be attached to the winding frame 6 simply by fitting the pair of flange portions 7 and 8 into the notch portion 12a, and the wiring patterns 15 and 16 are both insulated substrates. 12 is provided on one surface, the soldering operation between the connection portions 15a and 16a of the wiring patterns 15 and 16 and the circuit board 18 can be continuously performed on the one surface side of the insulating substrate 18.
[0027]
FIGS. 13 to 15 are views showing other application examples of the present invention. The magneto-impedance effect element 19 is different from the above-described magneto-impedance effect element 1 in that the coil terminals 9 and 10 are connected to both terminal support portions 7a. 8a and 8a, the coil terminals 9 and 10 are protruded substantially parallel to the longitudinal direction of the magnetic thin film 3 from the winding frame 6, and the shape of the insulating substrate 12 is slightly changed. The other points are the same as those of the magneto-impedance effect element 1 except that the wiring patterns 15 and 16 are provided so as to extend to one side of the insulating substrate 12 substantially parallel to the longitudinal direction. .
[0028]
The magneto-impedance effect element 19 is mounted on a circuit board 18 disposed substantially perpendicular to the longitudinal direction of the magnetic thin film 3, and the connection portions 15 a, 16 a of the wiring patterns 15, 16 and the coil terminals 9, 10 is soldered and electrically connected to the circuit board 18. The magneto-impedance effect element 19 is arranged so that the longitudinal direction of the magnetic thin film 3 is along an external magnetic field H emitted from a detection object (not shown), and operates in the same manner as the magneto-impedance effect element 1.
[0029]
In the magneto-impedance effect element 19 configured as described above, the height is higher in the front and back direction (arrow A direction) of the circuit board 18 than the magneto-impedance effect element 1, but the mounting on the circuit board 18 is increased. Since the area can be reduced, it is effective in reducing the size of the circuit board 18.
[0030]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0031]
Electrodes are provided on both ends of the magnetic thin film formed on one surface of the non-magnetic substrate, and the non-magnetic substrate is fitted and attached to a winding frame around which the bias coil is wound. A wiring pattern formed on one surface of an insulating substrate is connected to the electrodes protruding from both ends of the winding frame, the magnetic film is located, and the bias coil is connected to a coil terminal provided on the winding frame. Since it is connected, the magnetic thin film can be covered with the winding frame, and it is possible to eliminate the worry that the finger of the operator who winds the bias coil around the winding frame touches the magnetic thin film. The bias coil can be mounted on the nonmagnetic substrate without causing damage to the magnetic thin film due to disconnection or the like caused by the above.
[0032]
Since a pair of flanges are provided at both ends of the winding frame, a notch is formed in the insulating substrate, and the pair of flanges are fitted into the notch, and the insulating substrate is attached to the winding frame. The insulating substrate can be easily attached to the winding frame simply by fitting the pair of flanges to the notch, and the assembly of the element can be simplified.
[0033]
A winding frame in which the non-magnetic substrate and the insulating substrate are fitted is mounted on a circuit board. The coil terminal protrudes from the winding frame, and the wiring pattern extends in the same direction as the protruding direction. Provided, the projecting direction of the coil terminal and the extending direction of the wiring pattern are soldered to the circuit board, and the wiring pattern and the coil terminal are soldered to the circuit board. The coil terminals and the wiring pattern can be quickly connected to a circuit board or the like.
[0034]
The coil terminal is protruded substantially perpendicular to the longitudinal direction of the magnetic thin film provided in a line, and the wiring pattern is extended substantially perpendicular to the longitudinal direction of the magnetic thin film so that the coil terminal extends in the longitudinal direction of the magnetic thin film. On the other hand, since the circuit board is arranged substantially in parallel, the height of the element in the front and back direction of the circuit board can be reduced.
[0035]
The coil terminals are protruded substantially parallel to the longitudinal direction of the magnetic thin film provided linearly, and the wiring pattern is extended substantially parallel to the longitudinal direction of the magnetic thin film so as to extend in the longitudinal direction of the magnetic thin film. On the other hand, since the circuit board is arranged substantially vertically, the mounting area of the elements occupying the circuit board can be reduced, so that the circuit board can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a plan view of a magneto-impedance effect element of the present invention.
FIG. 2 is a front view of the magneto-impedance effect element of the present invention.
FIG. 3 is a side view of the magneto-impedance effect element of the present invention.
FIG. 4 is a plan view of a nonmagnetic substrate according to the magnetoimpedance effect element of the present invention.
FIG. 5 is a plan view showing a state in which a nonmagnetic substrate is attached to a winding frame according to the magneto-impedance effect element of the present invention.
FIG. 6 is a front view showing a state in which a nonmagnetic substrate is attached to a winding frame according to the magneto-impedance effect element of the present invention.
7 is a cross-sectional view taken along line 7-7 in FIG.
FIG. 8 is a plan view of an insulating substrate according to the magneto-impedance effect element of the present invention.
FIG. 9 is an explanatory diagram showing solder bumps provided on an insulating substrate according to the magneto-impedance effect element of the present invention.
FIG. 10 is an explanatory view showing assembly of the magneto-impedance effect element of the present invention.
FIG. 11 is a front view showing a state in which the magneto-impedance effect element of the present invention is attached to a circuit board.
FIG. 12 is a side view showing a state where the magneto-impedance effect element of the present invention is attached to a circuit board.
FIG. 13 is a plan view illustrating an application example of the present invention.
FIG. 14 is a front view illustrating an application example of the present invention.
FIG. 15 is a side view illustrating an application example of the present invention.
FIG. 16 is a perspective view of a conventional magneto-impedance effect element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 Nonmagnetic board | substrate 3 Magnetic thin film 4 Electrode 5 Electrode 6 Winding frame 6a Through-hole 7 ridge part 7a terminal support part 8 ridge part 8a terminal support part 9 coil terminal 10 coil terminal 11 bias coil 11a winding part 12 Insulating substrate 12a Notch 13 Land 14 Land 15 Wiring pattern 15a Connection 16 Wiring pattern 16a Connection 17 Solder bump 17a Solder 17b Protrusion 18 Circuit board 19 Magneto-impedance effect element

Claims (5)

非磁性基板の一面に形成した磁性薄膜の両端部に電極が設けられ、前記非磁性基板がバイアスコイルを巻回した巻枠に嵌合されて取り付けられており、前記バイアスコイルの巻回部内に前記磁性膜が位置し、前記巻枠の両端部から突出した前記電極に絶縁基板の一面に形成した配線パターンがそれぞれ接続されているとともに、前記巻枠に設けられたコイル端子に前記バイアスコイルが接続されていることを特徴とする磁気インピーダンス効果素子。  Electrodes are provided on both ends of the magnetic thin film formed on one surface of the non-magnetic substrate, and the non-magnetic substrate is fitted and attached to a winding frame around which the bias coil is wound. A wiring pattern formed on one surface of an insulating substrate is connected to the electrodes protruding from both ends of the winding frame, the magnetic film is located, and the bias coil is connected to a coil terminal provided on the winding frame. A magneto-impedance effect element characterized by being connected. 前記巻枠の両端部に一対の鍔部を設け、前記絶縁基板に切欠部を形成し、この切欠部に前記一対の鍔部を嵌合させて、前記絶縁基板を前記巻枠に取り付けたことを特徴とする請求項1に記載の磁気インピーダンス効果素子。  A pair of flanges are provided at both ends of the winding frame, a notch is formed in the insulating substrate, and the pair of flanges are fitted into the notch, and the insulating substrate is attached to the winding frame. The magneto-impedance effect element according to claim 1. 前記非磁性基板及び絶縁基板が嵌合された巻枠は回路基板に搭載されるものであって、前記コイル端子を前記巻枠から突出させ、この突出方向と同一方向に前記配線パターンを延出して設けた請求項2記載の磁気インピーダンス効果素子を備え、前記配線パターンと前記コイル端子とを前記回路基板に半田付けしたことを特徴とする磁気インピーダンス効果素子搭載回路基板A winding frame in which the nonmagnetic substrate and the insulating substrate are fitted is mounted on a circuit board, and the coil terminal protrudes from the winding frame, and the wiring pattern extends in the same direction as the protruding direction. 3. A magnetic impedance effect element-mounted circuit board comprising the magneto-impedance effect element according to claim 2 , wherein the wiring pattern and the coil terminal are soldered to the circuit board . 前記コイル端子を線状に設けた前記磁性薄膜の長手方向に対し略垂直に突出させるとともに、前記配線パターンを前記磁性薄膜の長手方向に対し略垂直に延出させ、前記磁性薄膜の長手方向に対して前記回路基板を略平行に配置したことを特徴とする請求項3に記載の磁気インピーダンス効果素子搭載回路基板The coil terminal is protruded substantially perpendicular to the longitudinal direction of the magnetic thin film provided in a line, and the wiring pattern is extended substantially perpendicular to the longitudinal direction of the magnetic thin film so that the coil terminal extends in the longitudinal direction of the magnetic thin film. 4. The magneto-impedance effect element-mounted circuit board according to claim 3, wherein the circuit board is arranged substantially in parallel. 前記コイル端子を線状に設けた前記磁性薄膜の長手方向に対し略平行に突出させるとともに、前記配線パターンを前記磁性薄膜の長手方向に対し略平行に延出させ、前記磁性薄膜の長手方向に対して前記回路基板を略垂直に配置したことを特徴とする請求項3に記載の磁気インピーダンス効果素子搭載回路基板The coil terminals are protruded substantially parallel to the longitudinal direction of the magnetic thin film provided linearly, and the wiring pattern is extended substantially parallel to the longitudinal direction of the magnetic thin film so as to extend in the longitudinal direction of the magnetic thin film. 4. The magneto-impedance effect element-mounted circuit board according to claim 3, wherein the circuit board is arranged substantially vertically.
JP32084099A 1999-11-11 1999-11-11 Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element Expired - Fee Related JP4076687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32084099A JP4076687B2 (en) 1999-11-11 1999-11-11 Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32084099A JP4076687B2 (en) 1999-11-11 1999-11-11 Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element

Publications (2)

Publication Number Publication Date
JP2001141798A JP2001141798A (en) 2001-05-25
JP4076687B2 true JP4076687B2 (en) 2008-04-16

Family

ID=18125838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32084099A Expired - Fee Related JP4076687B2 (en) 1999-11-11 1999-11-11 Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element

Country Status (1)

Country Link
JP (1) JP4076687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048250A (en) * 2015-11-06 2016-04-07 日本電産サンキョー株式会社 Magnetic sensor element
WO2024047726A1 (en) * 2022-08-30 2024-03-07 Tdk株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JP2001141798A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP3007553B2 (en) Current sensor
JP2000249725A (en) Manufacture of current sensor
JP4076687B2 (en) Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element
JP3634281B2 (en) Magneto-impedance effect sensor
JP4260312B2 (en) Circuit board mounted with magneto-impedance effect element and manufacturing method thereof
JPH0936513A (en) Printed circuit device
JP3917848B2 (en) Resonant circuit shield structure
JPS61203606A (en) Chip inductor
JP4204303B2 (en) Magnetic impedance sensor chip and magnetic sensor element using the same
JP4103466B2 (en) High-frequency connector surface mounting method, high-frequency connector mounting printed circuit board, and printed circuit board
JPH0897036A (en) Electronic circuit board
JP2703862B2 (en) Connection structure of surface mount type coil
JPH0963864A (en) Chip coil
JP2852689B2 (en) Dielectric resonator
JP3934295B2 (en) Magneto-impedance effect element
JP2002368303A (en) Fixing device for both-surface magneto-resistance element
JPH066613Y2 (en) Chip type LC filter
JPH05326295A (en) Flat transformer
JP2533277Y2 (en) Chip capacitor grounding structure
JPH0354432Y2 (en)
JP2516849Y2 (en) Common mode choke coil
JP2602925Y2 (en) Chip inductor
JPH045883A (en) Installing device for component
JPH102945A (en) Attaching structure of magnetic sensor
JPH06163272A (en) Impedance element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees