JP4073719B2 - Method for driving an internal combustion engine and internal combustion engine - Google Patents

Method for driving an internal combustion engine and internal combustion engine Download PDF

Info

Publication number
JP4073719B2
JP4073719B2 JP2002187614A JP2002187614A JP4073719B2 JP 4073719 B2 JP4073719 B2 JP 4073719B2 JP 2002187614 A JP2002187614 A JP 2002187614A JP 2002187614 A JP2002187614 A JP 2002187614A JP 4073719 B2 JP4073719 B2 JP 4073719B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002187614A
Other languages
Japanese (ja)
Other versions
JP2003065061A (en
JP2003065061A5 (en
Inventor
ハンス・ドランゲル
ハンス・カールソン
アンデルス・ラルセン
ヘンリック・ノルディン
Original Assignee
サーブ オートモービル アクティエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サーブ オートモービル アクティエボラーグ filed Critical サーブ オートモービル アクティエボラーグ
Publication of JP2003065061A publication Critical patent/JP2003065061A/en
Publication of JP2003065061A5 publication Critical patent/JP2003065061A5/ja
Application granted granted Critical
Publication of JP4073719B2 publication Critical patent/JP4073719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/143Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path the shiftable member being a wall, or part thereof of a radial diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Exhaust Silencers (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
技術分野
この発明は第一に特許請求項1の前提文に記載の内燃機関を駆動する方法に関し、第二に特許請求項5の前提文に記載の内燃機関に関する。
【0002】
従来技術
排気ガス駆動ターボコンプレッサーを持つターボエンジンにおいて、エンジンの性能はターボコンプレッサーの作動範囲に大きく依存している。ターボコンプレッサーの排気ガスタービン及びそれに導く排気ガスダクトは通常高回転及び高エンジン負荷で発生される高排気ガス流のための寸法に合わせて作られている。しかし、これは低回転及び少ない排気ガス流では排気ガスエネルギーが排気ガスタービンへの道中で失われることを意味し、それによりターボコンプレッサーの効率を損なう。
【0003】
低回転でのターボコンプレッサーの良好な性能を達成可能とするために、エネルギーロスを減らす観点で小さなタービン及びそれへのパイプの小さな寸法を用いることが望ましい。しかし、これは高排気ガス流に関して不利を引き起こす。なぜなら小さな寸法は空気供給問題を伴って、排気ガス流の絞り及び排気ガスパイプ内の高逆圧をもたらすからである。
【0004】
特に四気筒ターボエンジンにおいて、二つの同じ寸法の入口を持つ排気ガスタービンを用いること及び二つのシリンダーを各入口に連結することが知られており、これらのシリンダーは吸気シリンダーが常に排気ガス送出シリンダーから分離されるような方法で連結されている。四気筒直列エンジンの場合において、二つの外側シリンダーは従って通常同じタービン入口に連結されており、一方二つの中央寄りシリンダーは別のタービン入口に連結されている。必要な調整可能性を得るために、各入口に配置された逃しゲート弁があり、これがタービンの複雑性を増す。排気ガスタービンへの二つの入口ダクトはここでは低回転及び少排気ガス流での効率の損失を伴いながら、大きな排気ガス流のために設計された同じ寸法を持つ。
【0005】
これを考慮すれば、改善された解決策は排気ガスタービンへの排気ガス送出に関して必要である。
【0006】
発明の目的
この発明の目的は排気ガスタービンへの改善された排気ガス送出を完成することである。別の目的は簡単な解決策を完成することである。
【0007】
発明の概要
この発明の目的は第一に特許請求項1に記載の特別な機能を持つ内燃機関を駆動するための方法の使用により達成され、第二に特許請求項5に記載の特別な機能を持つ内燃機関の使用により達成される。
【0008】
各シリンダーにおいて、別々に賦活されることのできる弁の間で排気ガス送出を分けることにより、低回転でも同時に制限された寸法の排気ガスタービンを用いながら、排気ガスタービンへの全送出をそれらのシリンダー内の唯一の弁を介してかつ高回転の場合より狭いパイプを介して行わせることが可能となる。他方で高回転及び大排気ガス流では、全排気ガス弁及び大きなダクトが十分に大きな排気ガスタービンを駆動するのに使用される。
【0009】
排気ガスタービンはこの場合二つの入口(inlets)、すなわち全回転で使用される入口と高回転で補助として使用される別の入口、を便宜上持つことができる。別の可能性は二つの別個の排気ガスタービン、すなわち常に連結されている小さなものと高回転及び大排気ガス流でのみ連結される大きなもの、を用いることである。
【0010】
このようにして排気ガス送出を回転数及び排気ガス流の大きさの関数として制御することにより、特定の運転状況により適した排気ガスタービンの寸法とその入口ダクトを用いることが可能となる。
【0011】
この発明による解決策に関して更なる特別の機能及び利点を説明及び他の特許請求項から知ることができる。
【0012】
この発明が以下に添付図面に示された例示的実施例に関してより詳細に説明される。
【0013】
図面の説明
図面において:
図1は排気ガス駆動スーパーチャージャーを備えた、この発明による内燃機関を示し、
図2−3は種々な作動位置の排気ガスタービンの一実施例を通した断面を示し、
図4は排気ガスタービンの別の実施例を通した断面を示し、そして
図5は図1に示したスーパーチャージャーの変更例を示す。
【0014】
例示的実施例の説明
図1はこの発明により実現されたオットー形式の多気筒内燃機関1を図式表現で示す。エンジンシリンダーはそれぞれ少なくとも二つの排気ガス弁2,3を持ち、そこでは各シリンダーの第一排気ガス弁2は第一排気マニホールド4に連結され、各シリンダーの第二排気ガス弁3は第二排気マニホールド5に連結されている。二つの排気マニホールド4,5はそれぞれ第一排気ガスパイプ6と第二排気ガスパイプ7を介してスーパーチャージャー8中に合体し、それによりチャージ空気は既知態様で空気パイプ9を介してエンジン1に供給される(ここには詳細には示されていない)。エンジンからの排気ガスにより駆動されたスーパーチャージャー8は入口10を介して空気を供給され、排気ガスのためを意図した排気ガス出口11を持ち、排気ガスは触媒12及びエンジンの排気システム内の他の通常の要素(ここでは詳細に示されていない)を介して通常の態様でエンジンから導き出される。
【0015】
スーパーチャージャー8は多数の異なる方法で実現されることができ、その幾つかは以下に説明される。図1に示された実現化の場合、スーパーチャージャー8は排気ガスタービン13とそれにより駆動されるコンプレッサー14を持つシングルターボコンプレッサーにより構成される。二つの排気ガスパイプ6と7はここでは一つのかつ同じ排気ガスタービン13中に合体する。
【0016】
かかる排気ガスタービン13のより詳細な実現化は図2−3から見ることができる。第一排気ガスパイプ6が合体する第一入口15は第一ダクト16に導かれ、そこから排気ガスは排気ガスタービンのタービンホイール17に達することができそれを駆動する。対応して、第二排気ガスパイプ7が合体する第二入口18は第二ダクト19に導かれ、そこから排気ガスはタービンホイール17に達することができる。第二ダクト19からタービンホイール17への排気ガス流の調節のために、弁20があり、そこでは管状弁体21が軸方向に変位可能でありそれにより図2に示された閉鎖位置から図3に示された完全開位置まで弁の開口度を変えることができる。弁20内の半径方向に逃しゲート弁22があり、そこでは管状弁体23が連続線により示された閉鎖位置から破線により図3に示された開位置まで軸方向に変位可能であり、排気ガスの希望の割合がタービンホイール17を駆動することなくそれを素通りすることができ、それによりコンプレッサー14を調節する役目をする。
【0017】
図4に排気ガスタービン13が図2−3より幾らか異なる実現化で示されている。前記の如く、第一排気ガスパイプ6に連結された第一入口15と、第二排気ガスパイプ7に連結された第二入口18がある。通常の形式の逃しゲート弁22がここでは第二の大きな入口18内に置かれ、タービンホイール17への排気ガス流を減らすために開かれることができる。この逃しゲート弁22はそれに代えて第一の小さな入口15内に置かれてもよく、またはかかる逃しゲート弁はまた二つの入口15,18のそれぞれに存在させることもできる。
【0018】
図1−4に記載されたエンジン1は次の如く機能する。第一排気ガス弁2は定常的に作動するように配置され、一方第二排気ガス弁3は高回転及び大きな排気ガス流でのみ作動するように配置される。これは第二排気ガス弁3が弁が賦活され希望により奪活されることができる機構により駆動されることにより達成される。多数のかかる機構が今や当業者にとって商業的に入手可能であり、従ってこれに関して実現化のより詳細な説明は提供されない。低回転及び少排気ガス流では、第一排気ガス弁2のみが従って作動される。第一排気ガス弁2を介して放出された排気ガスのエネルギーロスを制限するために、これらの弁から第一入口15を介して排気ガスタービン13まで及びその中へのパイプ寸法は比較的小さい。一旦回転数及び負荷が予め規定されたレベルに上ったら、第二排気ガス弁3及び弁20がまた排気ガスタービン13により多くの排気ガスを供給するために賦活される。この増加した排気ガス流を取扱うために、第二排気ガス弁3から第二入口18を介して排気ガスタービン13まで及びその中へのパイプ寸法は第一排気ガス弁2からより大きくすることができる。必要なときは、コンプレッサー14のチャージ圧力は逃しゲート弁22を操作して調整されることができ、それにより排気ガスの希望の量をガスタービンを駆動することなくそれを通過させて導かせることができる。
【0019】
第二排気ガス弁3の調整可能性はまたこれらの弁に対し第一排気ガス弁2のそれより異なる開放の長さを持たせることを可能とする。第二排気ガス弁3に第一排気ガス弁2より長くて、できるだけ大きな保持された開口を持たせることにより、高負荷及び高回転での非常に効果的な排気ガス送出が可能となる。
【0020】
スーパーチャージャー8の変更例が図5に示されている。第一排気ガスパイプ6はここでは専用のターボコンプレッサー25に連結され、また第二排気ガスパイプ7は大きな排気ガス流を取扱うことができるようにターボコンプレッサー25より大きいものであることができる専用のターボコンプレッサー26に連結されている。第一ターボコンプレッサー25の排気ガスタービン27及び第二ターボコンプレッサー26の排気ガスタービン28から、排気ガスは排気ガス出口11に放出される。同様に、空気はコンプレッサー29と30から(そこでは後者は前者より大きいものであることができる)空気パイプ9に、そしてそこからエンジンに供給される。二つのターボコンプレッサー25と26はここでは便宜的に標準的に実現化されているが、明らかにされた如く、恐らく異なる寸法のものである。一方または両者が通常の態様でチャージ圧力を調節するための逃しゲート弁を持つことができる。
【0021】
図1−4に示された形式のスーパーチャージャー8であって排気ガスタービン13が二つの入口を持つものが四気筒エンジンと組み合わされるとき、低回転及び高負荷でシリンダーの有利なブロークリーニングを得るためにかかるエンジンの特別の特性を利用することが可能となる。これは第一排気ガス弁2を賦活及び奪活することができるようにすることにより、そして低回転では、二つの外側シリンダーをそれらのそれぞれの第一排気ガス弁2を介して第一入口15に連結させ、一方二つの中間シリンダーはその代わりにこれらのシリンダーの第一排気ガス弁2の閉鎖及び第二排気ガス弁3の開放を通して第二入口18に連結されることにより達成される。他の運転状態への変更の場合に、二つの中間シリンダーの排気ガス弁2と3の保持された開放が二つの外側シリンダーに対するのと同じになるように続いて変えられることができる。
【0022】
異なる方法で異なる排気ガス弁を賦活し奪活する可能性の結果として、エンジンの運転状態は従って要求と希望に応じて種々様々な方法で影響されることができる。
【図面の簡単な説明】
【図1】排気ガス駆動スーパーチャージャーを備えた、この発明による内燃機関を示す。
【図2】種々な作動位置の排気ガスタービンの一実施例を通した断面を示す。
【図3】種々な作動位置の排気ガスタービンの一実施例を通した断面を示す。
【図4】排気ガスタービンの別の実施例を通した断面を示す。
【図5】図1に示したスーパーチャージャーの変更例を示す。
[0001]
TECHNICAL FIELD The present invention relates firstly to a method for driving an internal combustion engine according to the preamble of claim 1 and secondly to an internal combustion engine according to the preamble of claim 5.
[0002]
Prior art In a turbo engine having an exhaust gas driven turbo compressor, the performance of the engine greatly depends on the operating range of the turbo compressor. Turbocompressor exhaust gas turbines and exhaust gas ducts leading to them are usually sized for high exhaust gas flows generated at high speeds and high engine loads. However, this means that at low rpm and low exhaust gas flow, exhaust gas energy is lost on the way to the exhaust gas turbine, thereby compromising the efficiency of the turbo compressor.
[0003]
In order to be able to achieve good performance of a turbo compressor at low revolutions, it is desirable to use small turbines and small pipe dimensions to reduce energy loss. However, this causes disadvantages with respect to high exhaust gas flows. This is because small dimensions, with air supply problems, result in exhaust gas flow restriction and high back pressure in the exhaust gas pipe.
[0004]
It is known to use an exhaust gas turbine with two identically sized inlets, especially in a four-cylinder turbo engine, and to connect two cylinders to each inlet, where the intake cylinder is always an exhaust gas delivery cylinder. Are connected in such a way that they are separated from each other. In the case of a four-cylinder in-line engine, the two outer cylinders are therefore usually connected to the same turbine inlet, while the two central cylinders are connected to another turbine inlet. In order to obtain the necessary adjustability, there is a relief gate valve located at each inlet, which increases the complexity of the turbine. The two inlet ducts to the exhaust gas turbine have the same dimensions designed for a large exhaust gas flow, here with a loss of efficiency at low rotation and low exhaust gas flow.
[0005]
In view of this, an improved solution is necessary for exhaust gas delivery to the exhaust gas turbine.
[0006]
Object of the invention The object of the invention is to complete an improved exhaust gas delivery to an exhaust gas turbine. Another purpose is to complete a simple solution.
[0007]
Summary of the invention The object of the invention is achieved firstly by the use of a method for driving an internal combustion engine with special functions as claimed in claim 1 and secondly as claimed in claim 5. This is achieved through the use of an internal combustion engine with special functions.
[0008]
By separating the exhaust gas delivery between the valves that can be activated separately in each cylinder, the total delivery to the exhaust gas turbines can be reduced while using an exhaust gas turbine of limited size at the same time even at low revolutions. It is possible to do this through a single valve in the cylinder and through a narrower pipe than at high speeds. On the other hand, at high rpm and large exhaust gas flow, all exhaust gas valves and large ducts are used to drive a sufficiently large exhaust gas turbine.
[0009]
The exhaust gas turbine can in this case conveniently have two inlets: an inlet used at full speed and another inlet used as an auxiliary at high speed. Another possibility is to use two separate exhaust gas turbines, a small one that is always connected and a large one that is connected only at high rpm and large exhaust gas flow.
[0010]
By controlling the exhaust gas delivery as a function of the rotational speed and the exhaust gas flow in this manner, it becomes possible to use the dimensions of the exhaust gas turbine and its inlet duct that are more suitable for a particular operating situation.
[0011]
Further special features and advantages of the solution according to the invention can be taken from the description and the other claims.
[0012]
The invention will now be described in more detail with reference to the exemplary embodiments shown in the accompanying drawings.
[0013]
Description of the drawings <br/> In the drawings:
FIG. 1 shows an internal combustion engine according to the invention with an exhaust gas driven supercharger,
2-3 shows cross sections through one embodiment of an exhaust gas turbine in various operating positions;
FIG. 4 shows a cross section through another embodiment of the exhaust gas turbine, and FIG. 5 shows a modification of the supercharger shown in FIG.
[0014]
DESCRIPTION OF EXEMPLARY EMBODIMENTS FIG. 1 shows in schematic representation an Otto-type multi-cylinder internal combustion engine 1 realized according to the invention. Each engine cylinder has at least two exhaust gas valves 2, 3 in which the first exhaust gas valve 2 of each cylinder is connected to a first exhaust manifold 4 and the second exhaust gas valve 3 of each cylinder is a second exhaust gas. It is connected to the manifold 5. The two exhaust manifolds 4, 5 are combined into the supercharger 8 via the first exhaust gas pipe 6 and the second exhaust gas pipe 7, respectively, so that the charge air is supplied to the engine 1 via the air pipe 9 in a known manner. (Not shown in detail here). The supercharger 8 driven by the exhaust gas from the engine is supplied with air through the inlet 10 and has an exhaust gas outlet 11 intended for the exhaust gas, which is the catalyst 12 and the other in the engine exhaust system. Derived from the engine in the usual manner via the usual elements (not shown in detail here).
[0015]
The supercharger 8 can be implemented in a number of different ways, some of which are described below. In the realization shown in FIG. 1, the supercharger 8 is constituted by a single turbo compressor having an exhaust gas turbine 13 and a compressor 14 driven thereby. The two exhaust gas pipes 6 and 7 are here combined into one and the same exhaust gas turbine 13.
[0016]
A more detailed realization of such an exhaust gas turbine 13 can be seen from FIGS. The first inlet 15 with which the first exhaust gas pipe 6 is joined is led to a first duct 16 from which the exhaust gas can reach the turbine wheel 17 of the exhaust gas turbine and drive it. Correspondingly, the second inlet 18 where the second exhaust gas pipe 7 is joined is led to the second duct 19 from which the exhaust gas can reach the turbine wheel 17. For adjusting the exhaust gas flow from the second duct 19 to the turbine wheel 17 there is a valve 20 in which the tubular valve body 21 is axially displaceable so that from the closed position shown in FIG. The opening degree of the valve can be changed to the fully open position shown in FIG. There is a radial relief gate valve 22 in the valve 20, in which the tubular valve body 23 is axially displaceable from a closed position indicated by a continuous line to an open position indicated by a broken line in FIG. The desired proportion of gas can pass through the turbine wheel 17 without driving it, thereby serving to regulate the compressor 14.
[0017]
FIG. 4 shows the exhaust gas turbine 13 with a somewhat different realization from FIG. 2-3. As described above, there are the first inlet 15 connected to the first exhaust gas pipe 6 and the second inlet 18 connected to the second exhaust gas pipe 7. A conventional type of relief gate valve 22 is now placed in the second large inlet 18 and can be opened to reduce the exhaust gas flow to the turbine wheel 17. This relief gate valve 22 may alternatively be placed in the first small inlet 15, or such a relief gate valve can also be present in each of the two inlets 15, 18.
[0018]
The engine 1 described in FIGS. 1-4 functions as follows. The first exhaust gas valve 2 is arranged to operate steadily, while the second exhaust gas valve 3 is arranged to operate only at high speeds and a large exhaust gas flow. This is achieved by the second exhaust gas valve 3 being driven by a mechanism that can be activated and deactivated if desired. A number of such mechanisms are now commercially available to those skilled in the art and thus no more detailed description of the implementation is provided in this regard. At low rpm and low exhaust gas flow, only the first exhaust gas valve 2 is actuated accordingly. In order to limit the energy loss of the exhaust gas discharged through the first exhaust gas valve 2, the pipe size from these valves to the exhaust gas turbine 13 through the first inlet 15 and into it is relatively small. . Once the rotational speed and load have risen to predefined levels, the second exhaust gas valve 3 and valve 20 are also activated to supply more exhaust gas to the exhaust gas turbine 13. In order to handle this increased exhaust gas flow, the pipe size from the second exhaust gas valve 3 to the exhaust gas turbine 13 through the second inlet 18 and into it can be made larger from the first exhaust gas valve 2. it can. When necessary, the charge pressure of the compressor 14 can be adjusted by operating the relief gate valve 22, thereby directing the desired amount of exhaust gas through it without driving the gas turbine. Can do.
[0019]
The adjustability of the second exhaust gas valve 3 also allows these valves to have a different opening length than that of the first exhaust gas valve 2. By providing the second exhaust gas valve 3 with an opening that is longer than the first exhaust gas valve 2 and held as large as possible, it is possible to deliver exhaust gas very effectively at high loads and high rotations.
[0020]
A modification of the supercharger 8 is shown in FIG. The first exhaust gas pipe 6 is here connected to a dedicated turbo compressor 25, and the second exhaust gas pipe 7 is a dedicated turbo compressor which can be larger than the turbo compressor 25 so that it can handle a large exhaust gas flow. 26. Exhaust gas is discharged from the exhaust gas turbine 27 of the first turbo compressor 25 and the exhaust gas turbine 28 of the second turbo compressor 26 to the exhaust gas outlet 11. Similarly, air is fed from compressors 29 and 30 (where the latter can be larger than the former) to air pipe 9 and from there to the engine. The two turbocompressors 25 and 26 are here standardized for convenience, but are probably of different dimensions, as will become apparent. One or both can have a relief gate valve for adjusting the charge pressure in the normal manner.
[0021]
When a supercharger 8 of the type shown in FIGS. 1-4, in which the exhaust gas turbine 13 has two inlets, is combined with a four-cylinder engine, an advantageous blow cleaning of the cylinder is obtained at low speed and high load. This makes it possible to take advantage of the special characteristics of such an engine. This allows the first exhaust gas valve 2 to be activated and deactivated, and at low revolutions, the two outer cylinders are connected via their respective first exhaust gas valves 2 to the first inlet 15. While the two intermediate cylinders are instead connected to the second inlet 18 through the closing of the first exhaust gas valve 2 and the opening of the second exhaust gas valve 3 of these cylinders. In the case of changes to other operating conditions, the maintained opening of the exhaust gas valves 2 and 3 of the two intermediate cylinders can subsequently be changed to be the same as for the two outer cylinders.
[0022]
As a result of the possibility of activating and deactivating different exhaust gas valves in different ways, the operating conditions of the engine can thus be influenced in a variety of ways depending on demand and desire.
[Brief description of the drawings]
FIG. 1 shows an internal combustion engine according to the invention with an exhaust gas driven supercharger.
FIG. 2 shows cross sections through one embodiment of an exhaust gas turbine in various operating positions.
FIG. 3 shows cross sections through one embodiment of an exhaust gas turbine in various operating positions.
FIG. 4 shows a cross section through another embodiment of an exhaust gas turbine.
FIG. 5 shows a modification of the supercharger shown in FIG.

Claims (4)

排気ガス駆動スーパーチャージャー(8)を持ちかつシリンダー当たり少なくとも二つの排気ガス弁(2,3)を持つ多気筒内燃機関を駆動する方法であって、排気ガスが一方では各シリンダーの第一排気ガス弁(2)を介して第一排気マニホールド(4)に、他方では各シリンダーの第二排気ガス弁(3)を介して第二排気マニホールド(5)に送出されるものにおいて、低回転では第一排気ガス弁(2)のみが開かれ、一方高回転では第一排気ガス弁(2)と第二排気ガス弁(3)の両方が開かれること、及び第一排気マニホールド(4)及び第二排気マニホールド(5)からの排気ガスが二つの異なるターボコンプレッサー(25,26)の二つの異なる排気ガスタービン(27,28)に導かれることを特徴とする方法。A method of driving a multi-cylinder internal combustion engine having an exhaust gas driven supercharger (8) and having at least two exhaust gas valves (2, 3) per cylinder, the exhaust gas on the one hand being the first exhaust gas of each cylinder In the other, it is sent to the first exhaust manifold (4) via the valve (2) and on the other hand to the second exhaust manifold (5) via the second exhaust gas valve (3) of each cylinder. Only one exhaust gas valve (2) is opened, while at high speed both the first exhaust gas valve (2) and the second exhaust gas valve (3) are opened, and the first exhaust manifold (4) and A method, characterized in that the exhaust gas from the two exhaust manifolds (5) is directed to two different exhaust gas turbines (27, 28) of two different turbo compressors (25, 26) . より大きな排気ガス流が第一排気マニホールド(4)を通してより第二排気マニホールド(5)を通して導かれることを特徴とする請求項1に記載の方法。The method of claim 1, wherein more that a large exhaust gas flow is directed through the second exhaust manifold (5) than through the first exhaust manifold (4). 排気ガス駆動スーパーチャージャー(8)を持ちかつシリンダー当たり少なくとも二つの排気ガス弁(2,3)を持つ内燃機関であって、各シリンダーの第一排気ガス弁(2)が第一排気マニホールド(4)に連結されておりかつ各シリンダーの第二排気ガス弁(3)が第二排気マニホールド(5)に連結されているものにおいて、第一排気マニホールド(4)及び第二排気マニホールド(5)が二つの別個のターボコンプレッサー(25,26)のそれらのそれぞれの排気ガスタービン(27,28)に供給すること及び第一排気ガス弁(2)が全回転数で開かれるように配置され、一方第二排気ガス弁(3)がより高い回転数でのみ開かれるように配置されていることを特徴とする内燃機関。An internal combustion engine having an exhaust gas driven supercharger (8) and having at least two exhaust gas valves (2, 3) per cylinder, wherein the first exhaust gas valve (2) of each cylinder is a first exhaust manifold (4 ) And the second exhaust gas valve (3) of each cylinder is connected to the second exhaust manifold (5), the first exhaust manifold (4) and the second exhaust manifold (5) Two separate turbo compressors (25, 26) are arranged to feed their respective exhaust gas turbines (27, 28) and the first exhaust gas valve (2) to be opened at full speed, An internal combustion engine characterized in that the second exhaust gas valve (3) is arranged to be opened only at a higher rotational speed. 第二排気マニホールド(5)が第一排気マニホールドより大きな排気ガス流のために第一排気マニホールド(4)より大きな断面積を持つことを特徴とする請求項に記載の内燃機関。The internal combustion engine according to claim 3 , characterized in that the second exhaust manifold (5) has a larger cross-sectional area than the first exhaust manifold (4) for a larger exhaust gas flow than the first exhaust manifold.
JP2002187614A 2001-06-29 2002-06-27 Method for driving an internal combustion engine and internal combustion engine Expired - Fee Related JP4073719B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0102338-1 2001-06-29
SE0102338A SE519321C2 (en) 2001-06-29 2001-06-29 Ways to operate an internal combustion engine and internal combustion engine

Publications (3)

Publication Number Publication Date
JP2003065061A JP2003065061A (en) 2003-03-05
JP2003065061A5 JP2003065061A5 (en) 2005-10-06
JP4073719B2 true JP4073719B2 (en) 2008-04-09

Family

ID=20284686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187614A Expired - Fee Related JP4073719B2 (en) 2001-06-29 2002-06-27 Method for driving an internal combustion engine and internal combustion engine

Country Status (4)

Country Link
US (1) US20030000211A1 (en)
JP (1) JP4073719B2 (en)
DE (1) DE10229116A1 (en)
SE (1) SE519321C2 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884866B1 (en) * 2005-04-22 2011-06-10 Renault Sas MOTOR WITH SEQUENTIAL SUPERVISION AND VARIABLE DISTRIBUTION
DE502007002957D1 (en) * 2006-09-08 2010-04-08 Borgwarner Inc Method and device for operating a combustion engine
FR2916226A3 (en) * 2007-05-18 2008-11-21 Renault Sas Variable exhaust gas distribution system for supercharged internal combustion engine of motor vehicle, has control units controlling valves and manifolds with pipes connected to inlets of turbines, where dimension of one manifold is reduced
DE102007046658A1 (en) 2007-09-28 2009-04-09 Audi Ag Internal combustion engine operating method for vehicle i.e. motor vehicle, involves operating exhaust valves in phase-delayed manner with respect to one another for balancing different exhaust gas counter-pressure levels
DE102007046655B4 (en) 2007-09-28 2019-01-17 Audi Ag Method for operating an internal combustion engine
DE102007046656B4 (en) 2007-09-28 2018-09-13 Audi Ag Method for operating an internal combustion engine, internal combustion engine
DE102007046657A1 (en) 2007-09-28 2009-04-09 Audi Ag Internal combustion engine for use in motor vehicle, has two exhaust duct arrangements for connecting two sets of exhaust valves of cylinder with exhaust inlet of two exhaust gas turbochargers, respectively
US8065878B2 (en) 2008-03-10 2011-11-29 Deere & Company Two phase exhaust for internal combustion engine
US8000878B2 (en) * 2008-05-15 2011-08-16 Honeywell International Inc. Parallel sequential turbocharger architecture using engine cylinder variable valve lift system
DE102009013040A1 (en) * 2009-03-13 2010-09-16 Volkswagen Ag Internal combustion engine with register charging
DE102009015046B4 (en) 2009-03-26 2018-11-15 Audi Ag Multi-cylinder internal combustion engine and method for operating such
DE102009027203A1 (en) * 2009-06-25 2011-01-27 Ford Global Technologies, LLC, Dearborn Supercharged internal combustion engine with at least four cylinders and a twin-flow turbine and method for operating such an internal combustion engine
US20110173973A1 (en) * 2010-01-20 2011-07-21 International Engine Intellectrual Property Company, LLC Turbine inlet flow modulator
US8944018B2 (en) 2010-07-14 2015-02-03 Ford Global Technologies, Llc Cooling strategy for engine head with integrated exhaust manifold
US8839759B2 (en) 2010-08-16 2014-09-23 Ford Global Technologies, Llc Integrated exhaust manifold
US8100117B2 (en) * 2010-08-16 2012-01-24 Ford Global Technologies, Llc Method and system for controlling engine exhaust
DE102010060106B4 (en) * 2010-10-21 2018-05-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine
US8134469B2 (en) * 2010-10-27 2012-03-13 Ford Global Technologies, Llc Wireless fuel level sensor for a vehicle fuel tank
US8627659B2 (en) * 2011-11-09 2014-01-14 GM Global Technology Operations LLC Engine assembly including exhaust port separation for turbine feed
US9797301B2 (en) * 2012-11-14 2017-10-24 Borgwarner Inc. Valve assembly with cylinder having through holes
EP2770169B1 (en) * 2013-02-20 2019-08-14 Ford Global Technologies, LLC Charged combustion engine with a double-flow turbine and method for operating such a combustion engine
US9359939B2 (en) * 2013-02-20 2016-06-07 Ford Global Technologies, Llc Supercharged internal combustion engine with two-channel turbine and method
DE112014002185T5 (en) * 2013-05-31 2016-01-21 Borgwarner Inc. Impulse energy assisted turbine for turbocharger in automotive applications
GB2514789B (en) * 2013-06-04 2017-03-29 Jaguar Land Rover Ltd Exhaust turbocharger having different turbine geometries for separate exhaust streams
US10094339B2 (en) * 2013-08-26 2018-10-09 Westport Power Inc. Direct exhaust gas recirculation system
DE102014216814A1 (en) 2013-09-11 2015-03-12 Ford Global Technologies, Llc Exhaust Turbo-charged internal combustion engine and method for operating such an internal combustion engine
DE102013016568B4 (en) * 2013-10-04 2016-03-24 Audi Ag Internal combustion engine and method for assembling an internal combustion engine
DE102014200572A1 (en) * 2014-01-15 2015-07-16 Ford Global Technologies, Llc Supercharged internal combustion engine with at least one exhaust gas turbocharger and method for operating such an internal combustion engine
US9874161B2 (en) 2014-05-09 2018-01-23 Ford Global Technologies, Llc Exhaust-gas-turbocharged applied-ignition internal combustion engine having at least two turbines, and method for operating an internal combustion engine of said type
DE102014015526B4 (en) 2014-10-20 2020-07-16 Audi Ag Method for operating an internal combustion engine
US9810143B2 (en) * 2015-01-16 2017-11-07 Ford Global Technologies, Llc Exhaust control valve branch communication and wastegate
US9896991B2 (en) * 2015-03-31 2018-02-20 Ford Global Technologies, Llc Exhaust-gas-turbocharged internal combustion engine having at least two turbines and switchable outlet openings, and method for operating an internal combustion engine of said type
US20180216540A1 (en) * 2015-06-02 2018-08-02 Psa Automobiles S.A. Turbocharged Engine Assembly Having Two Exhaust Ducts Provided With A Control Valve
FR3037104B1 (en) * 2015-06-02 2018-12-07 Psa Automobiles Sa. TURBOCOMPRESSED ENGINE ASSEMBLY WITH TWO EXHAUST PIPES WITH REGULATION VALVE
FR3037102B1 (en) * 2015-06-02 2019-11-22 Psa Automobiles Sa. TURBOCOMPRESSED ENGINE ASSEMBLY WITH TWO EXHAUST DUCTS AND CONTROL VALVE
FR3037103B1 (en) * 2015-06-02 2018-12-07 Psa Automobiles Sa. TURBOCOMPRESSED ENGINE ASSEMBLY WITH TWO EXHAUST DUCTS JOINING THE TURBINE
DE102016106306B4 (en) * 2016-04-06 2023-08-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method of operating a supercharged internal combustion engine
US10364757B2 (en) * 2016-05-03 2019-07-30 Ford Global Technologies, Llc Systems and methods for control of turbine-generator in a split exhaust engine system
DE102016217265A1 (en) * 2016-09-09 2018-03-15 Volkswagen Aktiengesellschaft Internal combustion engine and method for operating an internal combustion engine
US10060371B2 (en) * 2016-12-16 2018-08-28 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
DE102017125575B4 (en) * 2017-11-02 2022-02-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Internal combustion engine with cylinder scavenging and scavenging air recirculation
WO2019158211A1 (en) 2018-02-16 2019-08-22 Volvo Truck Corporation Internal combustion engine arrangement
GB2585084B (en) * 2019-06-28 2023-09-20 Cummins Ltd Turbine

Also Published As

Publication number Publication date
DE10229116A1 (en) 2003-01-09
SE519321C2 (en) 2003-02-11
SE0102338D0 (en) 2001-06-29
US20030000211A1 (en) 2003-01-02
JP2003065061A (en) 2003-03-05
SE0102338L (en) 2002-12-30

Similar Documents

Publication Publication Date Title
JP4073719B2 (en) Method for driving an internal combustion engine and internal combustion engine
JP4829232B2 (en) Internal combustion engine having an exhaust turbocharger and an exhaust gas recirculation device
CN101849089B (en) Multi-stage turbocharger system
US20090120087A1 (en) Exhaust gas turbocharger in an internal combustion engine
US20070074513A1 (en) Turbo charging in a variable displacement engine
US20030230085A1 (en) Exhaust gas turbocharger, supercharged internal combustion engine and method of operation
JP2003065061A5 (en)
JP2001520346A (en) Turbocharged internal combustion engine
JP2004092646A (en) Supercharging device for internal-combustion engine
JP5433534B2 (en) Internal combustion engine with a supercharger
JP2001065377A (en) Method for returning exhaust gas of multi-cylinder reciprocation piston internal combustion engine supercharged by using exhaust gas turbo supercharger
US20060137343A1 (en) Turbine flow regulating valve system
JP5375151B2 (en) Exhaust passage structure of multi-cylinder engine
JP5664595B2 (en) Turbocharger
JPS5982526A (en) Supercharger for internal-combustion engine
US20060137342A1 (en) Turbine flow regulating valve system
JP4760598B2 (en) Turbocharged engine
JP5326630B2 (en) Exhaust passage structure of multi-cylinder engine
JP2005155356A (en) Engine supercharging device by parallel double turbocharger
JPS591332B2 (en) Turbine compartment for turbocharger
JPS62131923A (en) Engine with exhaust turbo-supercharger
JPH09222024A (en) Exhaust bypass device of turbo supercharged engine
JP4499961B2 (en) Multi-cylinder supercharged engine
JPH01187320A (en) Exhaust for engine with turbo supercharger
JPS5847227Y2 (en) Turbine compartment for turbocharger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees