JP5375151B2 - Exhaust passage structure of multi-cylinder engine - Google Patents

Exhaust passage structure of multi-cylinder engine Download PDF

Info

Publication number
JP5375151B2
JP5375151B2 JP2009030902A JP2009030902A JP5375151B2 JP 5375151 B2 JP5375151 B2 JP 5375151B2 JP 2009030902 A JP2009030902 A JP 2009030902A JP 2009030902 A JP2009030902 A JP 2009030902A JP 5375151 B2 JP5375151 B2 JP 5375151B2
Authority
JP
Japan
Prior art keywords
exhaust
independent
independent branch
cylinder
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009030902A
Other languages
Japanese (ja)
Other versions
JP2010185403A (en
Inventor
直之 山形
将 増山
理 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009030902A priority Critical patent/JP5375151B2/en
Publication of JP2010185403A publication Critical patent/JP2010185403A/en
Application granted granted Critical
Publication of JP5375151B2 publication Critical patent/JP5375151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Description

本発明は、多気筒エンジンの排気通路構造に関するものである。 The present invention relates to an exhaust passage structure for a multi-cylinder engine.

排気ターボ式過給機を備えたエンジンにおいては、複数気筒からの排気ガスが排気マニホールドを介して集合部に集合されて、この集合部の下流側に排気ターボ式過給機が配設される。排気ターボ式過給機を効率よく作動させるためには、排気ポートから排出された直後の勢いの強い排気ガスつまりブローダウンガスを、その勢いを極力弱めることなく排気ターボ式過給機に供給することが好ましいものとなる。 In an engine equipped with an exhaust turbocharger, exhaust gases from a plurality of cylinders are gathered in a collecting part via an exhaust manifold, and the exhaust turbocharger is disposed downstream of the collecting part. . In order to operate the exhaust turbocharger efficiently, the exhaust gas immediately after being discharged from the exhaust port, that is, blowdown gas, is supplied to the exhaust turbocharger without reducing the force as much as possible. Is preferable.

特許文献1には、中央の2つの気筒の点火順序(排気行程)が連続しないように設定して、排気通路の一部を構成する独立分岐通路を、中央の2つの気筒に連なる独立分岐通路と、各端の2つの独立分岐通路との3本として、中央の独立分岐通路の長さを長くすることによって、3本の独立分岐通路の下流側部分同士を互いに浅い角度でもって集合させるものが開示されている。なお、特許文献1の排気マニホールドの構造では、中央の独立分岐通路が長くかつ2つの気筒用として兼用されているため、中央の気筒と端部の気筒とでは、排気の集合部に至るまでの通路容積が大きく相違するものとなる。
特開2003−262120号公報
In Patent Document 1, an independent branch passage that is part of an exhaust passage is set so that the ignition order (exhaust stroke) of the two central cylinders is not continuous, and an independent branch passage that is connected to the two central cylinders. And the two independent branch passages at each end, the lengths of the central independent branch passages are increased, and the downstream portions of the three independent branch passages are assembled at a shallow angle with each other. Is disclosed. In the structure of the exhaust manifold of Patent Document 1, the central independent branch passage is long and is also used for two cylinders. Therefore, the central cylinder and the end cylinders reach the exhaust collection part. The passage volume is greatly different.
JP 2003-262120 A

ところで、排気ターボ式過給機の上流側の排気通路は、互いに異なる気筒に連なる複数の独立分岐通路に分岐されているが、ある独立分岐通路に排出された排気ガスが、他の独立分岐通路に向けて流れることにより膨張されてしまって、排気ターボ式過給機へ供給される排気ガスの勢いが低減されてしまい、この分排気ターボ式過給機を効率よく作動させることが難しくなる。 By the way, the exhaust passage on the upstream side of the exhaust turbocharger is branched into a plurality of independent branch passages connected to different cylinders, but the exhaust gas discharged to a certain independent branch passage becomes another independent branch passage. As a result, the momentum of the exhaust gas supplied to the exhaust turbocharger is reduced, making it difficult to operate the exhaust turbocharger efficiently.

本発明は以上のような事情を勘案してなされたもので、その目的は、排気ターボ式過給機へ効率よく排気ガスを供給できるようにした多気筒エンジンの排気通路構造を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an exhaust passage structure for a multi-cylinder engine that can efficiently supply exhaust gas to an exhaust turbocharger. is there.

前記目的を達成するため、本発明にあっては次のような第1の解決手法を採択してある。すなわち、特許請求の範囲における請求項1に記載のように、
互いに異なる気筒に連なると共に互いに独立した3本以上の独立分岐通路と、前記各独立分岐通路の下流側同士が集合される集合部と、前記集合部の下流側に配設された排気ターボ式過給機と、を備えた多気筒エンジンの排気通路構造において、
前記各独立分岐通路に、前記集合部の上流側において絞り部が形成され、
前記各独立分岐通路は、前記集合部付近において、該集合部の中心を取り巻くようにして該集合部に連なっており、
互いに隣り合うと共に排気行程が互いに連続しない2つの気筒の排気ポートが集合されて1つの前記独立分岐通路に連なっており、
1つの前記独立分岐通路の容積と該1つの独立分岐通路が連通された排気ポートの容積との合計値を合計容積としたとき、各独立分岐通路についての該合計容積が互いに等しくなるように設定されている、
ようにしてある。
In order to achieve the above object, the following first solution is adopted in the present invention. That is, as described in claim 1 in the claims,
Three or more independent branch passages connected to different cylinders and independent from each other, a collecting portion where the downstream sides of the independent branch passages are gathered together, and an exhaust turbo-type turbocharger disposed downstream of the gathering portion An exhaust passage structure of a multi-cylinder engine having a feeder,
In each of the independent branch passages, a throttle portion is formed on the upstream side of the collecting portion,
Each of the independent branch passages is connected to the collective part so as to surround the center of the collective part in the vicinity of the collective part,
The exhaust ports of two cylinders that are adjacent to each other and whose exhaust strokes are not continuous with each other are gathered and connected to one independent branch passage,
When the total value of the volume of one independent branch passage and the volume of the exhaust port connected to the one independent branch passage is defined as the total volume, the total volume for each independent branch passage is set equal to each other. Being
It is like that.

上記解決手法によれば、絞り部を排気ガスが流れることによって、排気のエゼクタ効果(吸い出し効果)を得ることができる。すなわち、ある独立分岐通路に排出された排気ガスは、その絞り部を通過することによって流速が速められて、勢いよく排気ターボ式過給機側へ向けて流れることになる。そして、絞り部を排気ガスが通過する際に、他の独立分岐通路内を吸引する吸い出し効果が発揮されて、ある独立分岐通路からの排気ガスが他の独立分岐通路へ膨張されることなく排気ターボ式過給機へダイレクトに供給されることになる。特に、排気ポートが開いた直後の勢いの強い排気ガスつまりブローダウンガスによって上記吸い出し効果が高められることになる。また、上記吸い出し効果によって、ある気筒から排出される排気ガスによって、他の気筒の掃気が良好となって当該他の気筒の充填効率も高められることになる(10〜20%の充填効率向上)。さらに、排気の脈動を利用した動圧過給を得る場合に、ある独立分岐通路を流れる排気ガスが他の独立分岐通路へ流れる(膨張する)ことが防止されるので、排気通路容積が小さくしたのと同様の効果を得て、動圧過給の効果を高めることができる(勢いの強いブローダウンガスによる瞬時流量を排気ターボ式過給機に効果的に供給できる)。以上のことから、総合して、エンジントルク特に低速時でのエンジントルクを大きく向上させることができる。 According to the above-described solution technique, exhaust gas flows through the throttle portion, whereby an exhaust ejector effect (suction effect) can be obtained. That is, the exhaust gas discharged to a certain independent branch passage has its flow velocity increased by passing through the throttle portion, and flows vigorously toward the exhaust turbocharger side. When the exhaust gas passes through the throttle portion, the suction effect of sucking in the other independent branch passage is exhibited, and the exhaust gas from one independent branch passage is exhausted without being expanded to the other independent branch passage. It will be supplied directly to the turbocharger. Particularly, the suction effect is enhanced by vigorous exhaust gas, that is, blowdown gas immediately after the exhaust port is opened. Also, due to the suction effect, the exhaust gas discharged from a certain cylinder improves the scavenging of the other cylinders and increases the charging efficiency of the other cylinders (improvement of charging efficiency by 10 to 20%). . Furthermore, when dynamic pressure supercharging utilizing exhaust pulsation is obtained, exhaust gas flowing through one independent branch passage is prevented from flowing (expanding) to another independent branch passage, so the exhaust passage volume is reduced. As a result, the effect of dynamic pressure supercharging can be enhanced (the instantaneous flow rate due to the strong blowdown gas can be effectively supplied to the exhaust turbocharger). In summary, the engine torque, particularly the engine torque at low speeds, can be greatly improved.

以上に加えて、各独立分岐通路同士は、集合部の中心を取り巻くように配設されているので、前述した吸い出し効果を十分に高めることができる。すなわち、吸い出し効果を高めるためには、各独立分岐通路の下流端側部分同士のなす角度が極力浅い(理想的には平行)方が好ましいが、各独立分岐通路の下流端部分同士を集合部の中心を取り巻くように配設することによって、各独立分岐通路の下流端部分同士のなす角度を十分に浅くすることができて、上記吸い出し効果を十分に高めることができる。また、各独立分岐通路の下流端部分同士を集合部の中心を取り巻くように配設することによって、各独立分岐通路同士の間隔を極力短くすることが可能となって、上記吸い出し効果をより高めることができ、また各独立分岐通路を流れる排気ガスによる吸い出し効果が、互いに同程度となるように設定する(各独立分岐通路での吸い出し効果に相違を生じさせないように設定する)上でも好ましいものとなる。 In addition to the above, each of the independent branch passages is disposed so as to surround the center of the gathering portion, so that the above-described suction effect can be sufficiently enhanced. That is, in order to enhance the suction effect, it is preferable that the angle formed between the downstream end portions of each independent branch passage is as shallow as possible (ideally parallel), but the downstream end portions of each independent branch passage are joined together. By arranging so as to surround the center of each, the angle formed by the downstream end portions of each independent branch passage can be made sufficiently shallow, and the suction effect can be sufficiently enhanced. Further, by arranging the downstream end portions of the independent branch passages so as to surround the center of the gathering portion, it becomes possible to shorten the interval between the independent branch passages as much as possible, and further enhance the suction effect. Also, it is preferable to set so that the suction effect by the exhaust gas flowing through each independent branch passage is the same level (set so as not to make a difference in the suction effect in each independent branch passage) It becomes.

さらに、1つの前記独立分岐通路の容積と該1つの独立分岐通路が連通された排気ポートの容積との合計値を合計容積としたとき、各独立分岐通路についての該合計容積が互いに等しくなるように設定されているので、各独立分岐通路を流れる排気ガスによる吸い出し効果等を、各独立分岐通路間で等しく設定する上で好ましいものとなる。さらに又、独立分岐通路の数を極力少なくしつつ、各独立分岐通路の集合部付近でなす角度を浅く設定する上で好ましいものとなる。 Furthermore, when the total value of the volume of one independent branch passage and the volume of the exhaust port connected to the one independent branch passage is defined as the total volume, the total volume for each independent branch passage is equal to each other. Therefore, it is preferable to set the suction effect by the exhaust gas flowing through each independent branch passage equally among the independent branch passages. Furthermore, it is preferable to set the angle formed in the vicinity of the gathering portion of each independent branch passage as shallow as possible while minimizing the number of independent branch passages.

前記目的を達成するため、本発明にあっては次のような第2の解決手法を採択してある。すなわち、特許請求の範囲における請求項2に記載のように、
互いに異なる気筒に連なると共に互いに独立した3本以上の独立分岐通路と、前記各独立分岐通路の下流側同士が集合される集合部と、前記集合部の下流側に配設された排気ターボ式過給機と、を備えた多気筒エンジンの排気通路構造において、
前記各独立分岐通路に、前記集合部の上流側において絞り部が形成され、
前記各独立分岐通路は、前記集合部付近において、該集合部の中心を取り巻くようにして該集合部に連なっており、
エンジンが1番気筒、2番気筒、3番気筒、4番気筒が互いに直列に配設された直列4気筒エンジンとされて、中央の2つの気筒となる2番気筒と3番気筒との排気行程が互いに連続しないように設定され、
前記独立分岐通路が、前記1番気筒の排気ポートに連なる第1独立分岐通路と、前記2番気筒および3番気筒の排気ポートに連なる第2独立分岐通路と、前記4番気筒の排気ポートに連なる第3独立分岐通路と、の3本とされ、
排気ポートを除いた各独立分岐通路の長さにおいて、前記第2独立分岐通路の長さが、前記第1独立分岐通路および前記第3独立分岐通路の長さよりも短くされている、
ようにしてある。この場合、各独立分岐通路を流れる排気ガスによる吸い出し効果等を各独立分岐通路間で等しく設定するという点を除いて、請求項1に対応した効果を得つつ、独立分岐通路の数を極力少なくしつつ、各独立分岐通路の集合部付近でなす角度を浅く設定する上で好ましいものとなる。
In order to achieve the above object, the following second solution is adopted in the present invention. That is, as described in claim 2 in the scope of claims,
Three or more independent branch passages connected to different cylinders and independent from each other, a collecting portion where the downstream sides of the independent branch passages are gathered together, and an exhaust turbo-type turbocharger disposed downstream of the gathering portion An exhaust passage structure of a multi-cylinder engine having a feeder,
In each of the independent branch passages, a throttle portion is formed on the upstream side of the collecting portion,
Each of the independent branch passages is connected to the collective part so as to surround the center of the collective part in the vicinity of the collective part,
The engine is an in-line four-cylinder engine in which the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder are arranged in series with each other. The processes are set not to be continuous with each other,
The independent branch passage includes a first independent branch passage connected to the exhaust port of the first cylinder, a second independent branch passage connected to the exhaust ports of the second and third cylinders, and an exhaust port of the fourth cylinder. The third independent branch passage and the three,
In the length of each independent branch passage excluding the exhaust port, the length of the second independent branch passage is shorter than the length of the first independent branch passage and the third independent branch passage.
It is like that. In this case, the number of independent branch passages is reduced as much as possible while obtaining the effect corresponding to claim 1 except that the suction effect by the exhaust gas flowing through each independent branch passage is set equally between the independent branch passages. However, it is preferable in setting the shallow angle formed near the gathering portion of each independent branch passage.

上記各解決手法を前提とした好ましい態様は、請求項3以下に記載のとおりである。
前記各独立分岐通路にそれぞれ、該独立分岐通路の開口断面積を変更可能な絞り弁が配設され、
前記絞り弁を閉じることによって前記絞り部が形成される、
ようにしてある(請求項3対応)。この場合、排気通路構造をコンパクトにしつつ絞り部の形成が容易となると共に、エンジンの運転状態に応じて絞り弁を開度を変更することが可能になり、例えば、高負荷、高回転時のように多量の排気ガスを排出する際には絞り弁を開いて、多量の排気ガスを効率よく排出する等の上で好ましいものとなる。
A preferred mode based on the above-described solutions is as described in claim 3 and the following.
Each of the independent branch passages is provided with a throttle valve capable of changing the opening cross-sectional area of the independent branch passage,
The throttle part is formed by closing the throttle valve,
(Corresponding to claim 3). In this case, it becomes easy to form the throttle portion while making the exhaust passage structure compact, and the opening degree of the throttle valve can be changed according to the operating state of the engine. For example, at the time of high load and high rotation Thus, when discharging a large amount of exhaust gas, it is preferable to open the throttle valve to efficiently discharge a large amount of exhaust gas.

前記絞り弁がバタフライ弁とされている、ようにしてある(請求項4対応)。この場合、バタフライ弁という簡単な弁構造とすることができる。   The throttle valve is a butterfly valve (corresponding to claim 4). In this case, a simple valve structure called a butterfly valve can be obtained.

1つの排気マニホールド内に前記各独立分岐通路が構成され、
前記排気マニホールドと前記排気ターボ式過給機との間に、中間部材が配設され、
前記中間部材内に、前記集合部と前記各独立分岐通路の各下流側部分と前記絞り部とが形成され、
前記中間部材内に形成された前記各独立分岐通路の下流側部分が互いに平行とされている、
ようにしてある(請求項5対応)。この場合、中間部材を利用することにより、排気マニホールドや排気ターボ式過給機部分は従来とほぼ同様の構造を採択しつつ、本発明を実現することができ、実用化の上で好ましいものとなる。
Each independent branch passage is configured in one exhaust manifold,
An intermediate member is disposed between the exhaust manifold and the exhaust turbocharger,
In the intermediate member, the collecting portion, each downstream portion of each independent branch passage, and the throttle portion are formed,
The downstream portions of the independent branch passages formed in the intermediate member are parallel to each other;
(Corresponding to claim 5). In this case, by using an intermediate member, the exhaust manifold and the turbocharger turbocharger can adopt the same structure as the conventional one while realizing the present invention, which is preferable for practical use. Become.

本発明によれば、排気ターボ式過給機へ効率よく排気ガスを供給して、エンジントルク特に低速時のエンジントルクを向上させることができる。 According to the present invention, the exhaust gas can be efficiently supplied to the exhaust turbocharger to improve the engine torque, particularly the engine torque at a low speed.

図1において、1はエンジン(エンジン本体)で、実施形態では直列4気筒の火花点火式エンジンとされている。2はシリンダブロック、3はシリンダヘッド、4はピストンで、これらシリンダブロック2とシリンダヘッド3とピストン4とによって燃焼室5が形成されている。燃焼室5には、シリンダヘッド3に形成された吸気ポート6および排気ポート7が開口され、燃焼室5の略中心部には点火プラグ8が配設されている。上記吸気ポート6は吸気弁9により開閉され、排気ポート7は排気弁10により開閉される。 In FIG. 1, reference numeral 1 denotes an engine (engine body), which is an in-line four-cylinder spark ignition engine in the embodiment. 2 is a cylinder block, 3 is a cylinder head, and 4 is a piston. The cylinder block 2, the cylinder head 3, and the piston 4 form a combustion chamber 5. An intake port 6 and an exhaust port 7 formed in the cylinder head 3 are opened in the combustion chamber 5, and a spark plug 8 is disposed at a substantially central portion of the combustion chamber 5. The intake port 6 is opened and closed by an intake valve 9, and the exhaust port 7 is opened and closed by an exhaust valve 10.

吸気ポート6は、吸気マニホールドによって形成される独立分岐吸気通路21を介してサージタンク22に接続されている。サージタンク22には、1本の共通吸気通路23が接続されている。この共通吸気通路23には、その上流側から下流側へ順次、エアクリーナ24,スロットル弁25,排気ターボ式過給機26のコンプレッサホイール26A、インタークーラ27が配設されている。 The intake port 6 is connected to a surge tank 22 via an independent branch intake passage 21 formed by an intake manifold. One common intake passage 23 is connected to the surge tank 22. In this common intake passage 23, an air cleaner 24, a throttle valve 25, a compressor wheel 26 </ b> A of an exhaust turbocharger 26 and an intercooler 27 are sequentially arranged from the upstream side to the downstream side.

排気ポート7には、後述する排気通路30が接続され、この排気通路30には、排気ターボ式過給機26のタービンホイール26Bが配設されている。タービンホイール26Bは、コンプレッサホイール26Aに対して連結軸26Cによって連結されており、排気ガスのエネルギを受けてタービンホイール26Bが回転駆動されることによって、コンプレッサホイール26Aが回転駆動されて、過給が行われることになる。なお、過給圧が所定値以上になると、図示を略すウエストゲートバルブが開かれて、過給圧が所定値以上になることが規制される。 An exhaust passage 30 described later is connected to the exhaust port 7, and a turbine wheel 26 </ b> B of the exhaust turbocharger 26 is disposed in the exhaust passage 30. The turbine wheel 26B is connected to the compressor wheel 26A by a connecting shaft 26C. When the turbine wheel 26B is driven to rotate by receiving the energy of the exhaust gas, the compressor wheel 26A is driven to rotate, and supercharging is performed. Will be done. When the supercharging pressure exceeds a predetermined value, a waste gate valve (not shown) is opened, and the supercharging pressure is restricted from exceeding a predetermined value.

図2において、エンジン1における互いに直列な4つの気筒が、符合C1、C2、C3、C4で示される。C1は1番気筒であり、C2は2番気筒であり、C3は3番気筒であり、C4は4番気筒である。各気筒C1、C2、C3、C4の点火順序(排気行程の順序ともいえる)は、実施形態では、1番気筒C1、3番気筒C3、4番気筒C4、2番気筒C2の順とされている。つまり、中央の2番気筒C2と3番気筒C3とは、点火順序(排気行程の順序)が互いに隣り合わない設定とされている。そして、各気筒において、吸気弁9の開弁時期が吸気上死点前とされる一方、排気弁10の閉弁時期が吸気上死点後とされて、吸気弁9と排気弁10とが共に開弁されるオーバラップ期間を有するように設定されている。なお、以下の説明において、各気筒を区別する必要のないときは、気筒を単に符合Cを用いて示す場合もある。 In FIG. 2, the four cylinders in series in the engine 1 are denoted by reference numerals C1, C2, C3, and C4. C1 is the first cylinder, C2 is the second cylinder, C3 is the third cylinder, and C4 is the fourth cylinder. In the embodiment, the firing order of the cylinders C1, C2, C3, and C4 (also referred to as the order of the exhaust stroke) is the order of the first cylinder C1, the third cylinder C3, the fourth cylinder C4, and the second cylinder C2. Yes. That is, the second cylinder C2 and the third cylinder C3 in the center are set so that the ignition order (exhaust stroke order) is not adjacent to each other. In each cylinder, the opening timing of the intake valve 9 is set before the intake top dead center, while the closing timing of the exhaust valve 10 is set after the intake top dead center, and the intake valve 9 and the exhaust valve 10 are It is set to have an overlap period in which both are opened. In the following description, when it is not necessary to distinguish between the cylinders, the cylinders may be simply indicated by a symbol C.

各気筒Cは、それぞれ、2つの吸気ポート6(2つの吸気弁9)、2つの排気ポート7(2つの排気弁10)を有する。各気筒Cにおいて、吸気ポート6は、2つの吸気弁9付近では互いに独立して2つに分岐されているが、シリンダヘッド3内で集合された状態で、エンジン1の一側面1a側に開口されている。同様に、各気筒Cにおいて、排気ポート7は、2つの排気弁10付近では互いに独立しているが、シリンダヘッド3内で集合された状態で、エンジン1の他側面1b側に開口されている。そして、2番気筒C2と3番気筒C3の排気ポート9は、互いにシリンダヘッド3内で集合された状態で、エンジン1の他側面1bに開口されている。 Each cylinder C has two intake ports 6 (two intake valves 9) and two exhaust ports 7 (two exhaust valves 10). In each cylinder C, the intake port 6 is branched into two independently in the vicinity of the two intake valves 9, but opens to one side 1 a side of the engine 1 in a state where the intake ports 6 are assembled in the cylinder head 3. Has been. Similarly, in each cylinder C, the exhaust ports 7 are independent from each other in the vicinity of the two exhaust valves 10, but are opened to the other side surface 1 b side of the engine 1 in a state of being assembled in the cylinder head 3. . The exhaust ports 9 of the second cylinder C2 and the third cylinder C3 are opened to the other side surface 1b of the engine 1 in a state where they are gathered together in the cylinder head 3.

図2,図3において、排気通路30の一部を構成する排気マニホールドが符合31で示される。この排気マニホールド31は、互いに独立した第1〜第3の3本の分岐管(分岐独立通路)31A、31B、31Cを有している。一端側の第1分岐管31Aが1番気筒C1の排気ポート7に連なり、中央の第2分岐管31Bが、2番気筒C2と3番気筒C3の排気ポート7に連なり、他端側の第3分岐管31Cが、4C番気筒C4の排気ポート7に連なっている。 2 and 3, the exhaust manifold constituting a part of the exhaust passage 30 is indicated by reference numeral 31. The exhaust manifold 31 includes first to third three branch pipes (branch independent passages) 31A, 31B, and 31C that are independent from each other. The first branch pipe 31A at one end is connected to the exhaust port 7 of the first cylinder C1, the second branch pipe 31B at the center is connected to the exhaust ports 7 of the second cylinder C2 and the third cylinder C3, and the second branch pipe 31B at the other end is connected. A 3-branch pipe 31C is connected to the exhaust port 7 of the 4C-th cylinder C4.

前述した排気ターボ式過給機26は、中間部材40を介して、排気マニホールド31に接続されている。中間部材40内には、その上流側端部において、隔壁40aによって画成された3つの独立通路41A、41B、41Cを有する。各独立通路41A、41B、41Cは、互いに平行とされている。勿論、独立通路41Aが排気マニホールド31の分岐管31Aに接続され、独立通路41Bが排気マニホールド31の分岐管31Bに接続され、独立通路41Cが排気マニホールド31の分岐管31Cに接続される。 The exhaust turbo supercharger 26 described above is connected to the exhaust manifold 31 via an intermediate member 40. The intermediate member 40 has three independent passages 41A, 41B, and 41C defined by the partition wall 40a at the upstream end thereof. The independent passages 41A, 41B, 41C are parallel to each other. Of course, the independent passage 41A is connected to the branch pipe 31A of the exhaust manifold 31, the independent passage 41B is connected to the branch pipe 31B of the exhaust manifold 31, and the independent passage 41C is connected to the branch pipe 31C of the exhaust manifold 31.

中間部材40内には、その下流側端部において、集合部42が形成されている。この集合部42に対して、各独立通路41A、41B、41Cの下流側端が集合されている。中間部材40は、その上流側フランジ部43によって、排気マニホールド31の下流側端部に一体化される。また、中間部材40は、その下流側フランジ部44によって、排気ターボ式過給機26の流入口側端部に固定される。中間部材40は、各独立通路41A、41B、41Cから集合部42に至るまでの部分が徐々に開口面積が小さくなるようにされて、最終的に集合部42の下流端側部分は円形(略円形)に開口されている。なお、集合部42の下流側開口端形状は、排気ターボ式過給機26の流入口形状と同一形状、同一の大きさとされている。 A collecting portion 42 is formed in the intermediate member 40 at its downstream end. The downstream end of each independent passage 41A, 41B, 41C is gathered with respect to this gathering portion 42. The intermediate member 40 is integrated with the downstream end portion of the exhaust manifold 31 by the upstream flange portion 43. The intermediate member 40 is fixed to the inlet side end of the exhaust turbocharger 26 by the downstream flange portion 44. In the intermediate member 40, the opening area is gradually reduced in the portion from each of the independent passages 41A, 41B, 41C to the collecting portion 42, and the downstream end portion of the collecting portion 42 is finally circular (substantially). Open in a circular shape. The downstream opening end shape of the collecting portion 42 has the same shape and the same size as the inlet shape of the exhaust turbocharger 26.

中間部材40内の各独立通路41A、41B、41Cは、集合部42の中心(略中心)を取り巻くように配設されている。すなわち、2つの独立通路41Aと41Cが気筒配列方向と平行となるようにして互いに隣り合うように配設され、この2つの独立通路41Aと41Cとの間において中央の独立通路41Bが位置するように配設されている。つまり、独立通路41A、41B、41Cは、気筒配列方向において互いに千鳥配置とされている。各独立通路41A、41B、41Cは、断面円形とされると共に、その外周縁部を径方向外方側(集合部42の中心側)に拡大させた凸部45を有する形状に設定されている。換言すれば、各独立通路41A、41B、41Cは、集合部42の中心(略中心)を中心とする円軌跡上にその中心(略中心)が位置するように配設されて、集合部42の中心回りに略等間隔に配設されている。 Each independent passage 41 </ b> A, 41 </ b> B, 41 </ b> C in the intermediate member 40 is disposed so as to surround the center (substantially center) of the gathering portion 42. That is, the two independent passages 41A and 41C are arranged adjacent to each other so as to be parallel to the cylinder arrangement direction, and the central independent passage 41B is located between the two independent passages 41A and 41C. It is arranged. That is, the independent passages 41A, 41B, and 41C are staggered with respect to each other in the cylinder arrangement direction. Each of the independent passages 41A, 41B, and 41C has a circular cross section, and is configured to have a convex portion 45 in which the outer peripheral edge thereof is enlarged radially outward (center side of the collecting portion 42). . In other words, each independent passage 41A, 41B, 41C is arranged such that its center (substantially center) is positioned on a circular locus centered on the center (substantially center) of the assembly part 42, and the assembly part 42 Are arranged at substantially equal intervals around the center.

中間部材40内の各独立通路41A、41B、41C内には、絞り弁としてのバタフライ弁51A、51Bあるいは51Cが配設されている。各バタフライ弁51A、51B、51Cは、その外周縁部に、円弧状の切欠部52が形成されている。この切欠部52は、バタフライ弁51A〜51Cが図7、図8,図10に示す閉弁状態のときに、独立通路41A、41B、41Cの円弧状の凸部45と共同して、略円形の小開口部つまり絞り部53を構成する。また、閉弁状態にあるバタフライ弁51A、51B、51Cが略90度回動されることにより、図11に示すように開弁されて(全開)、独立通路41A、41B、41Cの開口面積が大きくされる。 In each of the independent passages 41A, 41B, 41C in the intermediate member 40, a butterfly valve 51A, 51B or 51C as a throttle valve is disposed. Each butterfly valve 51 </ b> A, 51 </ b> B, 51 </ b> C has an arcuate cutout 52 formed at the outer peripheral edge thereof. The notch 52 is substantially circular in cooperation with the arcuate convex portions 45 of the independent passages 41A, 41B, and 41C when the butterfly valves 51A to 51C are in the closed state shown in FIGS. The small opening portion, that is, the aperture portion 53 is configured. Further, when the butterfly valves 51A, 51B, 51C in the closed state are rotated by approximately 90 degrees, they are opened as shown in FIG. 11 (fully opened), and the opening areas of the independent passages 41A, 41B, 41C are increased. Increased.

各バタフライ弁51A、51B、51Cは、電磁式モータ等のアクチュエータ55によって開閉駆動される。すなわち、バタフライ弁51Bは、中間部材40に回動自在に保持された回動軸56に固定され、残る2つのバタフライ弁51Aと51Cとは、中間部材40に回動自在に保持された共通の回動軸57に固定されている。各回動軸56,57の一端部は、中間部材40の外部に延出されて、この延出端部に固定されたギア58,59(図7参照)によって互いに連動されている。そして、回動軸56に上記アクチュエータ55が連結されている。これにより、アクチュエータ55によって一方の回動軸56を駆動することによって、各バタフライ弁51A、51B、51Cが、互いに同一開度をとりつつ、その開度が調整される(全閉または全開とされる他、中間の開度も段階的あるいは連続可変的にとり得る)。 Each butterfly valve 51A, 51B, 51C is driven to open and close by an actuator 55 such as an electromagnetic motor. That is, the butterfly valve 51B is fixed to a rotation shaft 56 that is rotatably held by the intermediate member 40, and the remaining two butterfly valves 51A and 51C are a common that is rotatably held by the intermediate member 40. The rotating shaft 57 is fixed. One end of each of the rotating shafts 56 and 57 extends to the outside of the intermediate member 40 and is interlocked with each other by gears 58 and 59 (see FIG. 7) fixed to the extending end. The actuator 55 is connected to the rotation shaft 56. Thus, by driving one rotating shaft 56 by the actuator 55, the respective butterfly valves 51A, 51B, 51C are adjusted to have the same opening degree (fully closed or fully opened). In addition, the intermediate opening can be stepwise or continuously variable).

図12は、バタフライ弁51A、51B、51Cの開度変更例を示すものである。この図12は、エンジン回転数とエンジントルク(過給圧あるいはエンジン負荷とみることもできる)とをパラメータとして設定されている。まず、実線で示すX1線が、排気ターボ式過給機26によって過給されたときのエンジントルクを示し、図中α点がインターセプトポイントである(ウエストゲートバルブが開弁される時点)。X1線よりも高トルクとなる破線で示すX2線は、ウエストゲートバルブを開弁させなかったときのエンジントルクを示す。そして、一点鎖線で示すY1線は、排気ターボ式過給機26による過給を行わない自然吸気のときに対応したエンジントルクを示す。 FIG. 12 shows an example of changing the opening degree of the butterfly valves 51A, 51B, 51C. In FIG. 12, the engine speed and the engine torque (which can be regarded as a boost pressure or an engine load) are set as parameters. First, the X1 line indicated by the solid line indicates the engine torque when the turbocharger 26 is supercharged, and the α point in the figure is the intercept point (when the wastegate valve is opened). The X2 line indicated by a broken line having a higher torque than the X1 line indicates the engine torque when the waste gate valve is not opened. A Y1 line indicated by a one-dot chain line indicates an engine torque corresponding to natural intake without supercharging by the exhaust turbo supercharger 26.

Z1線は、前記α点を通る略等馬力曲線であり、Z2線は、Z1線よりもやや高回転側に設定された略等馬力線である。バタフライ弁51A、51B、51Cは、Z1線よりも低回転域では全閉とされ、Z2線よりも高回転域では全開とされる。また、バタフライ弁51A、51B、51Cは、Z1線とZ2線との間の回転域では、全閉と全開との間の開度であって、エンジン回転数が高くなるほど連続可変的に開度が大きくなるようにされる。 The Z1 line is a substantially equal horsepower curve passing through the α point, and the Z2 line is a substantially equal horsepower line set slightly higher than the Z1 line. The butterfly valves 51A, 51B, and 51C are fully closed in the low rotation range than the Z1 line, and are fully opened in the high rotation range than the Z2 line. Further, the butterfly valves 51A, 51B, 51C are open between the fully closed and fully open positions in the rotational range between the Z1 line and the Z2 line, and continuously open as the engine speed increases. Is made larger.

ここで、各気筒Cについて、集合部42に至るまでの分岐独立通路の構成は、排気ポート7より、排気マニホールド31の分岐管31A〜31C(内の独立通路)を経て、中間部材40内の独立通路41A〜41Cまである。そして、排気ポート7を経て集合部42に至るまでの分岐独立通路の合計の容積を合計容積としたとき、各気筒C1〜C4についてその合計容積が互いに等しくなるように設定されている。より具体的には、例えば1番気筒C1についての合計容積は、その排気ポート7と、排気マニホールド31の第1分岐管31Aと、中間部材40内の独立通路41Aとの各容積を合計した容積となる。同様に、4番気筒C4についての合計容積は、その排気ポート7と、排気マニホールド31の第3分岐管31Cと、中間部材40内の独立通路41Cとの各容積を合計した容積となる。これに対して、排気ポート7が互いに集合された2番気筒C2と3番気筒C3についての合計容積は、量気筒C2とC3との各排気ポート7と、排気マニホールド31の第2分岐管31Bと、中間部材40内の独立通路41Bとの各容積を合計した容積となる。 Here, for each cylinder C, the configuration of the branch independent passages leading to the collecting portion 42 is from the exhaust port 7 through the branch pipes 31 </ b> A to 31 </ b> C (internal passages) of the exhaust manifold 31. There are independent passages 41A to 41C. When the total volume of the branch independent passages from the exhaust port 7 to the collecting portion 42 is defined as the total volume, the total volumes of the cylinders C1 to C4 are set to be equal to each other. More specifically, for example, the total volume of the first cylinder C1 is the total volume of the exhaust port 7, the first branch pipe 31A of the exhaust manifold 31, and the independent passage 41A in the intermediate member 40. It becomes. Similarly, the total volume of the fourth cylinder C4 is the total volume of the exhaust port 7, the third branch pipe 31C of the exhaust manifold 31, and the independent passage 41C in the intermediate member 40. On the other hand, the total volume of the second cylinder C2 and the third cylinder C3 in which the exhaust ports 7 are gathered together is the exhaust ports 7 of the quantity cylinders C2 and C3 and the second branch pipe 31B of the exhaust manifold 31. And the total volume of the independent passage 41B in the intermediate member 40.

各気筒C1〜C4についての分岐独立通路の合計容積が互いに等しくされる一方、2番気筒C2と3番気筒C3については2気筒分の排気ポート容積を有することから、2番気筒C2と3番気筒C3に対応した排気マニホールド31の第2分岐管31Bの容積が他の分岐管31A、31Cの容積よりも小さくされている。そして、各分岐管31Aと31Bと31Cとの断面積はほぼ等しくされているため、第2分岐管31Bの長さが、他の分岐管31A、31Cの長さよりも短くされている(31Aと31Cとは同一長さに設定されている)。そして、各分岐管31A〜31Cの下流側端部は、中間部材40の上流側フランジ部43に対してほぼ直交するように延びていて、集合部42付近では、極力浅い角度でもって合流するようにされており、これに加えて、中間部材40内の独立通路41A〜41Cが平行とされていて、もっとも浅い角度になる設定とされている。 The total volume of the branch independent passages for each of the cylinders C1 to C4 is made equal to each other, while the second cylinder C2 and the third cylinder C3 have the exhaust port capacity of two cylinders, so that the second cylinder C2 and the third cylinder The volume of the second branch pipe 31B of the exhaust manifold 31 corresponding to the cylinder C3 is smaller than the volumes of the other branch pipes 31A and 31C. Since the sectional areas of the branch pipes 31A, 31B, and 31C are substantially equal, the length of the second branch pipe 31B is shorter than the lengths of the other branch pipes 31A and 31C (31A and 31A). 31C is set to the same length). And the downstream end part of each branch pipe 31A-31C is extended so that it may cross substantially orthogonally with respect to the upstream flange part 43 of the intermediate member 40, and it merges by the shallow angle as much as possible near the gathering part 42. In addition to this, the independent passages 41A to 41C in the intermediate member 40 are set parallel to each other and set to the shallowest angle.

以上のような構成において、低回転域(図12のZ1線よりも低回転域)では、バタフライ弁51A、51B、51Cが全閉とされて、各独立通路41A〜41Cは、その開口面積が小さくされた絞り状態される。この絞り状態での開口面積(絞り部53の開口面積)は、凸部45と切欠部52とから構成される開口面積となる。 In the above configuration, in the low rotation range (lower rotation range than the Z1 line in FIG. 12), the butterfly valves 51A, 51B, and 51C are fully closed, and the open areas of the individual passages 41A to 41C are the same. The aperture is reduced. The aperture area in this aperture state (the aperture area of the aperture portion 53) is an aperture area composed of the convex portion 45 and the cutout portion 52.

排気行程にある気筒から、排気ポート7を経て集合部42へ向かう排気ガスは、上記絞り部53(凸部45と切欠部52)で流速が速められて、集合部42を経て排気ターボ式過給機26へ供給される。これにより、排気ターボ式過給機26が効率良く作動される。特に、排気ポート7(排気弁10)が開弁された直後に発生する勢いの強い排気ガス(ブローダウンガス)が、より流速が速められた状態で排気ターボ式過給機26に供給されて、エンジントルクが向上される。 The exhaust gas traveling from the cylinder in the exhaust stroke to the collecting portion 42 through the exhaust port 7 is accelerated in the flow rate by the throttle portion 53 (the convex portion 45 and the notch portion 52), and passes through the collecting portion 42 and is exhausted by the turbocharger. Supplied to the feeder 26. As a result, the exhaust turbocharger 26 is efficiently operated. In particular, exhaust gas (blowdown gas) having a high momentum generated immediately after the exhaust port 7 (exhaust valve 10) is opened is supplied to the exhaust turbocharger 26 in a state where the flow velocity is further increased. The engine torque is improved.

上記絞り部でもって排気ガスの流速が速められることによって、エゼクタ効果(吸い出し効果)が発揮されて、ある独立吸気通路を流れる排気ガスが、他の独立通路へ向かって流れる(膨張される)ような事態が防止されると共に、吸い出し効果によって他の独立通路中の残留排気ガスも合わせて排気ターボ式過給機26へ供給されて、この分よりエンジントルクが向上されることになる。 By increasing the flow rate of the exhaust gas with the throttle, the ejector effect (suction effect) is exerted so that the exhaust gas flowing through one independent intake passage flows (expands) toward another independent passage. As a result, the residual exhaust gas in the other independent passage is also supplied to the exhaust turbocharger 26 by the suction effect, and the engine torque is improved accordingly.

さらに、上記吸い出し効果によって、吸気行程にある気筒の掃気効果が高まって、この分、充填効率が向上されて(10〜20%程度の向上)、エンジントルクがさらに向上されることになる。なお、排気行程と吸気行程との関係が成立する気筒関係は、次のようになる。すなわち、1番気筒C1(排気行程)と2番気筒C2(吸気行程)、2番気筒C2(排気行程)4番気筒C4(吸気行程)、3番気筒C3(排気行程)と1番気筒C1(吸気行程)、4番気筒C4(排気行程)と3番気筒C3(吸気行程)である。 Furthermore, the scavenging effect of the cylinder in the intake stroke is enhanced by the suction effect, and the charging efficiency is improved by this amount (an improvement of about 10 to 20%), and the engine torque is further improved. The cylinder relationship in which the relationship between the exhaust stroke and the intake stroke is established is as follows. That is, the first cylinder C1 (exhaust stroke), the second cylinder C2 (intake stroke), the second cylinder C2 (exhaust stroke), the fourth cylinder C4 (intake stroke), the third cylinder C3 (exhaust stroke) and the first cylinder C1. (Intake stroke) No. 4 cylinder C4 (exhaust stroke) and No. 3 cylinder C3 (intake stroke).

排気マニホールド31における各分岐管31A〜31Cの下流側端部は互いにほぼ平行とされると共に、集合部42の直上流側に構成される独立通路41A〜41C同士は互いに平行(完全に平行)とされているので、上記吸い出し効果が十分高められることになる。また、各独立通路41A〜41Cは、互いに近接されているので、各独立通路での吸い出し効果を十分高めることができる。特に、凸部45切欠部52とで構成される絞り部53は、集合部41の中心付近に位置されているので、極めて近接した関係となり、吸い出し効果を高める上で極めて好ましいもののとなる。 The downstream end portions of the branch pipes 31A to 31C in the exhaust manifold 31 are substantially parallel to each other, and the independent passages 41A to 41C configured immediately upstream of the collecting portion 42 are parallel to each other (completely parallel). Thus, the suction effect is sufficiently enhanced. Moreover, since each independent path | route 41A-41C is mutually adjoining, the suction effect in each independent path | route can fully be improved. In particular, since the narrowed portion 53 formed by the convex portion 45 notch portion 52 is positioned near the center of the collective portion 41, it is in a very close relationship, and is extremely preferable for enhancing the suction effect.

さらに、各独立通路41A〜41Cは、互いの相対位置関係がほぼ同一となるように設定されており、しかも各気筒C1〜C4についての独立通路の合計容積が互いに等しくされているので、各独立通路での吸い出し効果を同じように得ることができる。 Further, the independent passages 41A to 41C are set so that their relative positional relations are substantially the same, and the total volumes of the independent passages for the cylinders C1 to C4 are equal to each other. The suction effect in the passage can be obtained in the same way.

動圧過給を行う場合、その効果を高めるには排気ガスの流れる通路容積を極力小さくすることが望まれるが、吸い出し効果によってある独立通路からの排気ガスが他の独立通路へと流れてしまう(膨張してしまう)事態が防止されて、実質的に通路容積を小さくしたのと同様の効果を得ることができる。ちなみに、吸い出し効果の無い場合は、ある独立通路を流れる排気ガスの一部が、他の独立通路へと流れるために、通路容積が実質的に大きくなってしまって、動圧過給の効果が低減されてしまうことになる。 When dynamic pressure supercharging is performed, it is desirable to reduce the volume of the passage of exhaust gas as much as possible in order to increase the effect, but exhaust gas from one independent passage flows to another independent passage due to the suction effect. The situation (expanded) is prevented, and the same effect as that of substantially reducing the passage volume can be obtained. By the way, when there is no suction effect, part of the exhaust gas flowing through one independent passage flows to another independent passage, so the passage volume becomes substantially large, and the effect of dynamic pressure supercharging is It will be reduced.

ここで、回動軸56,57回りの隙間からの排気ガスの漏れが吸い出し効果を低減させる原因ともなるが、共通回動軸とされる回動軸57は、互いに排気行程の隣り合わない1番気筒C1と4番気筒用とされているので、この回動軸57回りからの漏れは問題にならないものである。なお、吸い出し効果に対してはバタフライ弁51A、51B、51Cの開度変化は比較的鈍感であって、ある開度範囲にあればほぼ同様の吸い出し効果を得ることができる。 Here, although leakage of exhaust gas from the gaps around the rotation shafts 56 and 57 may cause a reduction in the suction effect, the rotation shafts 57 that are common rotation shafts are not adjacent to each other in the exhaust stroke 1. Since it is used for the No. cylinder C1 and No. 4 cylinder, the leakage around the rotation shaft 57 is not a problem. It should be noted that the opening change of the butterfly valves 51A, 51B, 51C is relatively insensitive to the suction effect, and a substantially similar suction effect can be obtained within a certain opening range.

エンジン回転数が高くなって、図12のZ2線よりも高回転域になると、バタフライ弁51A〜51Cが全開とされて、多量の排気ガスを効率よく排出することができる。図12のZ1線とZ2線との間の回転域では、エンジン回転数が高いほどバタフライ弁51A〜51Cの開度が大きくされて、排気ガスの排出効率と吸い出し効果とがバランスよく両立されることになる。 When the engine speed increases and becomes a higher rotation range than the Z2 line in FIG. 12, butterfly valves 51A to 51C are fully opened, and a large amount of exhaust gas can be discharged efficiently. In the rotation range between the Z1 line and the Z2 line in FIG. 12, the opening degree of the butterfly valves 51A to 51C is increased as the engine speed is higher, so that the exhaust gas discharge efficiency and the suction effect are balanced. It will be.

図13は、本発明の第2の実施形態を示すもので、前記実施形態と同一構成要素には同一符合を付してその重複した説明は省略する。本実施形態では、直列4気筒エンジンにおいて、各気筒毎に分岐独立通路を設けたものである。すなわち、排気マニホールドが気筒数に応じた4つの分岐管を有するようにされて、中間部材40内に独立した4つの独立通路47A〜47D(前記実施形態における41A〜41Cに対応)を設けるようにしてある。そして、各独立通路47A〜47Dは、集合部42の略中心を取り巻くように配設、つまり集合部42(の略中心)の周方向に略等間隔となるように各独立通路47A〜47Dを配設してある。 FIG. 13 shows a second embodiment of the present invention. The same components as those in the above-described embodiment are given the same reference numerals, and redundant description thereof is omitted. In this embodiment, in an in-line four-cylinder engine, a branch independent passage is provided for each cylinder. That is, the exhaust manifold has four branch pipes corresponding to the number of cylinders, and four independent passages 47A to 47D (corresponding to 41A to 41C in the above embodiment) are provided in the intermediate member 40. It is. The independent passages 47A to 47D are arranged so as to surround substantially the center of the collecting portion 42, that is, the independent passages 47A to 47D are arranged at substantially equal intervals in the circumferential direction of the collecting portion 42 (substantially the center thereof). It is arranged.

上記独立通路47A〜47Dには、集合部42の中心側へ向けて拡大された凸部45が形成されている。独立通路47A〜47Dには、バタフライ弁49A〜49D(前記実施形態におけるバタフライ弁51A〜51Cに対応)が配設されている。そして、バタフライ弁49A〜49Dには、切欠部52が形成されて、前記実施形態と同様に、凸部45と切欠部52とによって絞り部53が構成されている。 The independent passages 47 </ b> A to 47 </ b> D are formed with convex portions 45 that are enlarged toward the center side of the collecting portion 42. In the independent passages 47A to 47D, butterfly valves 49A to 49D (corresponding to the butterfly valves 51A to 51C in the above embodiment) are arranged. The butterfly valves 49 </ b> A to 49 </ b> D are each formed with a cutout portion 52, and the throttle portion 53 is configured by the convex portion 45 and the cutout portion 52 as in the above embodiment.

独立通路47Aが1番気筒C1用であり、独立通路47Bが2番気筒C2用であり、独立通路47Cが3番気筒C3用であり、独立通路47Dが1番気筒C4用である。そして、共通の回動軸56は、互いに排気行程の隣り合わない1番気筒C1と4番気筒C4用とされ、同様に、共通の回動軸57も排気行程の隣り合わない2番気筒C2と3番気筒C3用とされている。なお、各独立通路47A〜47Dの配置は、独立通路47Aの中心と47Cの中心とを結ぶ連結線に対して、独立通路4BAの中心と47Dの中心とを結ぶ連結線が直交するように設定されている。 The independent passage 47A is for the first cylinder C1, the independent passage 47B is for the second cylinder C2, the independent passage 47C is for the third cylinder C3, and the independent passage 47D is for the first cylinder C4. The common rotation shaft 56 is used for the first cylinder C1 and the fourth cylinder C4 that are not adjacent to each other in the exhaust stroke. Similarly, the common rotation shaft 57 is also the second cylinder C2 that is not adjacent to the exhaust stroke. And for the third cylinder C3. The arrangement of the independent passages 47A to 47D is set so that the connecting line connecting the center of the independent passage 4BA and the center of 47D is orthogonal to the connecting line connecting the center of the independent passage 47A and the center of 47C. Has been.

以上実施形態について説明したが、本発明は、実施形態に限定されるものではなく、特許請求の範囲の記載された範囲において適宜の変更が可能であり、例えば次のような場合をも含むものである。4気筒以外の多気筒エンジンにおいても同様に適用し得る。例えば、3気筒エンジンの場合は、各分岐管31A〜31Cが、それぞれ異なる1つの気筒のみに連通されるようにすればよい(実施形態において、中央の分岐管31Bを、中央の1つの気筒用とすればよい)。又、例えば6気筒エンジン(直列6気筒、V型6気筒)においては、排気ターボ式過給機26を3気筒毎に1つづつ設けて、合計2個の排気ターボ式過給機26を設けることによって対応することができる(排気通路構造は、3気筒エンジン用のものが2組構成される)。8気筒エンジン、特にV型8気筒エンジンにおいては、排気ターボ式過給機26を1つのバンク毎(4気筒毎)に1つづつ設けて、合計2個の排気ターボ式過給機26を設けることによって対応することができる(排気通路構造は、4気筒エンジン用のものが2組構成される)。 Although the embodiment has been described above, the present invention is not limited to the embodiment, and can be appropriately changed within the scope described in the scope of claims. For example, the invention includes the following cases. . The same applies to multi-cylinder engines other than four cylinders. For example, in the case of a three-cylinder engine, each branch pipe 31A to 31C may be communicated with only one different cylinder (in the embodiment, the central branch pipe 31B is used for one central cylinder). And it is sufficient). Further, for example, in a six-cylinder engine (in-line six cylinders, V-type six cylinders), one exhaust turbo supercharger 26 is provided for every three cylinders, and a total of two exhaust turbo superchargers 26 are provided. (2 sets of exhaust passage structures are configured for a three-cylinder engine). In an eight-cylinder engine, particularly a V-type eight-cylinder engine, one exhaust turbocharger 26 is provided for each bank (every four cylinders), and a total of two exhaust turbochargers 26 are provided. (2 sets of exhaust passage structures are configured for a four-cylinder engine).

絞り弁としては、例えば、一端部を中心にして揺動される揺動式のもの等、適宜の種類のものを用いることができる。また、絞り弁の回動軸は、各絞り弁毎に個々独立して設けるようにしてもよい。凸部45と切欠部52とのいずれか一方のみを設けて絞り部53を構成するようにしてもよい。絞り弁を用いることなく絞り部を構成するようにしてもよい(この場合は、例えば各独立通路について、開閉弁によって開閉される開口面積の小さな絞り用通路と、該絞り用通路をバイパスする大きな開口面積を有するバイパス通路とを設けて、このバイパス通路を開閉弁によって開閉するようにしてもよい)。中間部材40部分の構造を、排気マニホールド31の下流側端部に構成するようにしてもよい。エンジンとしては、火花点火式エンジンに限らず、ディーゼルエンジンで代表される圧縮着火式エンジンであってもよく、また往復動式に限らずロータリピストンエンジンであってもよい。勿論、本発明の目的は、明記されたものに限らず、実質的に好ましいあるいは利点として表現されたものを提供することをも暗黙的に含むものである。 As the throttle valve, for example, an appropriate type such as a swinging type swinging around one end can be used. Further, the rotation shaft of the throttle valve may be provided independently for each throttle valve. Only one of the convex part 45 and the notch part 52 may be provided to constitute the throttle part 53. The throttle portion may be configured without using a throttle valve (in this case, for example, for each independent passage, a throttle passage having a small opening area that is opened and closed by an on-off valve, and a large bypass passage for the throttle passage). A bypass passage having an opening area may be provided, and the bypass passage may be opened and closed by an open / close valve). You may make it comprise the structure of the intermediate member 40 part in the downstream end part of the exhaust manifold 31. FIG. The engine is not limited to a spark ignition type engine, but may be a compression ignition type engine typified by a diesel engine, or a reciprocating type rotary engine. Of course, the object of the present invention is not limited to what is explicitly stated, but also implicitly includes providing what is substantially preferred or expressed as an advantage.

本発明が適用されたエンジンの一例を示す系統図。The system diagram which shows an example of the engine to which this invention was applied. 図1に示すエンジンのうち排気経路を詳細に示す平面図。The top view which shows an exhaust path in detail among the engines shown in FIG. 図2に示す排気経路の分解斜視図。FIG. 3 is an exploded perspective view of the exhaust path shown in FIG. 2. 中間部材の側面図。The side view of an intermediate member. 図4の左側面図。The left view of FIG. 中間部材の上方斜視図。The upper perspective view of an intermediate member. 中間部材を排気マニホールドの取付面側から見た平面図。The top view which looked at the intermediate member from the attachment surface side of the exhaust manifold. 中間部材を排気ターボ式過給機の取付面側から見た平面図。The top view which looked at the intermediate member from the attachment surface side of the exhaust turbo supercharger. 絞り弁としてのバタフライ弁の一例を示す平面図。The top view which shows an example of the butterfly valve as a throttle valve. バタフライ弁が全閉状態のときを示すもので、図7のA−A線相当断面図。FIG. 8 is a cross-sectional view corresponding to the line AA in FIG. バタフライ弁が全開状態のときを示す図10に対応した断面図。Sectional drawing corresponding to FIG. 10 which shows the time of a butterfly valve being a full open state. バタフライ弁の開閉制御に用いるマップを示す図。The figure which shows the map used for the opening / closing control of a butterfly valve. 本発明の第2の実施形態を示すもので、図7に対応した要部平面図。The principal part top view corresponding to FIG. 7 shows the 2nd Embodiment of this invention.

1:エンジン
7:排気ポート
10:排気弁
26:排気ターボ式過給機
31:排気マニホールド
31A〜31C:分岐管(独立分岐通路)
40:中間部材
40a:隔壁
41A、41B、41C:独立分岐通路
42:集合部
45:凸部(絞り部形成用)
47A〜47D:独立分岐通路(図13)
48:凸部(図13で、絞り部形成用)
48A〜48D:バタフライ弁(図13)
51A、51B、51C:バタフライ弁
52:切欠部(絞り部形成用)
53:絞り部
55:アクチュエータ
56、57:回動軸
1: Engine 7: Exhaust port 10: Exhaust valve 26: Exhaust turbo type turbocharger 31: Exhaust manifolds 31A to 31C: Branch pipe (independent branch passage)
40: Intermediate member 40a: Partition walls 41A, 41B, 41C: Independent branch passage 42: Collecting portion 45: Convex portion (for forming a throttle portion)
47A-47D: Independent branch passage (FIG. 13)
48: Convex part (in FIG. 13, for forming the narrowed part)
48A-48D: Butterfly valve (FIG. 13)
51A, 51B, 51C: butterfly valve 52: notch (for restricting part formation)
53: Aperture part 55: Actuator 56, 57: Rotating shaft

Claims (5)

互いに異なる気筒に連なると共に互いに独立した3本以上の独立分岐通路と、前記各独立分岐通路の下流側同士が集合される集合部と、前記集合部の下流側に配設された排気ターボ式過給機と、を備えた多気筒エンジンの排気通路構造において、
前記各独立分岐通路に、前記集合部の上流側において絞り部が形成され、
前記各独立分岐通路は、前記集合部付近において、該集合部の中心を取り巻くようにして該集合部に連なっており、
互いに隣り合うと共に排気行程が互いに連続しない2つの気筒の排気ポートが集合されて1つの前記独立分岐通路に連なっており、
1つの前記独立分岐通路の容積と該1つの独立分岐通路が連通された排気ポートの容積との合計値を合計容積としたとき、各独立分岐通路についての該合計容積が互いに等しくなるように設定されている、
ことを特徴とする多気筒エンジンの排気通路構造。
Three or more independent branch passages connected to different cylinders and independent from each other, a collecting portion where the downstream sides of the independent branch passages are gathered together, and an exhaust turbo-type turbocharger disposed downstream of the gathering portion An exhaust passage structure of a multi-cylinder engine having a feeder,
In each of the independent branch passages, a throttle portion is formed on the upstream side of the collecting portion,
Each of the independent branch passages is connected to the collective part so as to surround the center of the collective part in the vicinity of the collective part,
The exhaust ports of two cylinders that are adjacent to each other and whose exhaust strokes are not continuous with each other are gathered and connected to one independent branch passage,
When the total value of the volume of one independent branch passage and the volume of the exhaust port connected to the one independent branch passage is defined as the total volume, the total volume for each independent branch passage is set equal to each other. Being
An exhaust passage structure for a multi-cylinder engine.
互いに異なる気筒に連なると共に互いに独立した3本以上の独立分岐通路と、前記各独立分岐通路の下流側同士が集合される集合部と、前記集合部の下流側に配設された排気ターボ式過給機と、を備えた多気筒エンジンの排気通路構造において、
前記各独立分岐通路に、前記集合部の上流側において絞り部が形成され、
前記各独立分岐通路は、前記集合部付近において、該集合部の中心を取り巻くようにして該集合部に連なっており、
エンジンが1番気筒、2番気筒、3番気筒、4番気筒が互いに直列に配設された直列4気筒エンジンとされて、中央の2つの気筒となる2番気筒と3番気筒との排気行程が互いに連続しないように設定され、
前記独立分岐通路が、前記1番気筒の排気ポートに連なる第1独立分岐通路と、前記2番気筒および3番気筒の排気ポートに連なる第2独立分岐通路と、前記4番気筒の排気ポートに連なる第3独立分岐通路と、の3本とされ、
排気ポートを除いた各独立分岐通路の長さにおいて、前記第2独立分岐通路の長さが、前記第1独立分岐通路および前記第3独立分岐通路の長さよりも短くされている、
ことを特徴とする多気筒エンジンの排気通路構造。
Three or more independent branch passages connected to different cylinders and independent from each other, a collecting portion where the downstream sides of the independent branch passages are gathered together, and an exhaust turbo-type turbocharger disposed downstream of the gathering portion An exhaust passage structure of a multi-cylinder engine having a feeder,
In each of the independent branch passages, a throttle portion is formed on the upstream side of the collecting portion,
Each of the independent branch passages is connected to the collective part so as to surround the center of the collective part in the vicinity of the collective part,
The engine is an in-line four-cylinder engine in which the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder are arranged in series with each other. The processes are set not to be continuous with each other,
The independent branch passage includes a first independent branch passage connected to the exhaust port of the first cylinder, a second independent branch passage connected to the exhaust ports of the second and third cylinders, and an exhaust port of the fourth cylinder. The third independent branch passage and the three,
In the length of each independent branch passage excluding the exhaust port, the length of the second independent branch passage is shorter than the length of the first independent branch passage and the third independent branch passage.
An exhaust passage structure for a multi-cylinder engine.
請求項1または請求項2おいて、
前記各独立分岐通路にそれぞれ、該独立分岐通路の開口断面積を変更可能な絞り弁が配設され、
前記絞り弁を閉じることによって前記絞り部が形成される、
ことを特徴とする多気筒エンジンの排気通路構造。
In claim 1 or claim 2,
Each of the independent branch passages is provided with a throttle valve capable of changing the opening cross-sectional area of the independent branch passage,
The throttle part is formed by closing the throttle valve,
An exhaust passage structure for a multi-cylinder engine.
請求項3において、
前記絞り弁がバタフライ弁とされている、ことを特徴とする多気筒エンジンの排気通路構造。
In claim 3,
An exhaust passage structure for a multi-cylinder engine, wherein the throttle valve is a butterfly valve.
請求項1ないし請求項4のいずれか1項において、
1つの排気マニホールド内に前記各独立分岐通路が構成され、
前記排気マニホールドと前記排気ターボ式過給機との間に、中間部材が配設され、
前記中間部材内に、前記集合部と前記各独立分岐通路の各下流側部分と前記絞り部とが形成され、
前記中間部材内に形成された前記各独立分岐通路の下流側部分が互いに平行とされている、
ことを特徴とする多気筒エンジンの排気通路構造。

In any one of Claims 1 thru | or 4,
Each independent branch passage is configured in one exhaust manifold,
An intermediate member is disposed between the exhaust manifold and the exhaust turbocharger,
In the intermediate member, the collecting portion, each downstream portion of each independent branch passage, and the throttle portion are formed,
The downstream portions of the independent branch passages formed in the intermediate member are parallel to each other;
An exhaust passage structure for a multi-cylinder engine.

JP2009030902A 2009-02-13 2009-02-13 Exhaust passage structure of multi-cylinder engine Expired - Fee Related JP5375151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030902A JP5375151B2 (en) 2009-02-13 2009-02-13 Exhaust passage structure of multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030902A JP5375151B2 (en) 2009-02-13 2009-02-13 Exhaust passage structure of multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2010185403A JP2010185403A (en) 2010-08-26
JP5375151B2 true JP5375151B2 (en) 2013-12-25

Family

ID=42766201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030902A Expired - Fee Related JP5375151B2 (en) 2009-02-13 2009-02-13 Exhaust passage structure of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP5375151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697377B2 (en) 2015-03-30 2020-06-30 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine supercharger and two-stage supercharging system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794045B2 (en) * 2011-09-05 2015-10-14 マツダ株式会社 Multi-cylinder engine
JP5794046B2 (en) * 2011-09-05 2015-10-14 マツダ株式会社 Multi-cylinder engine
US9188089B2 (en) 2011-12-27 2015-11-17 Yanmar Co., Ltd. Engine apparatus
JP2013148009A (en) * 2012-01-19 2013-08-01 Yanmar Co Ltd Engine device
WO2013108879A1 (en) * 2012-01-19 2013-07-25 ヤンマー株式会社 Engine device
JP5906784B2 (en) * 2012-02-15 2016-04-20 マツダ株式会社 Control device for turbocharged engine
JP5891943B2 (en) * 2012-05-21 2016-03-23 マツダ株式会社 Exhaust system for multi-cylinder engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673325U (en) * 1993-03-25 1994-10-18 日産ディーゼル工業株式会社 Exhaust manifold of internal combustion engine
JP2000248932A (en) * 1999-03-01 2000-09-12 Toyota Motor Corp Exhaust manifold for internal combustion engine
JP2004301012A (en) * 2003-03-31 2004-10-28 Hitachi Metals Ltd Exhaust system component with supercharger
JP4594128B2 (en) * 2005-02-17 2010-12-08 アイシン高丘株式会社 Exhaust manifold
JP4548323B2 (en) * 2005-12-01 2010-09-22 マツダ株式会社 Intake control device for turbocharged engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697377B2 (en) 2015-03-30 2020-06-30 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine supercharger and two-stage supercharging system

Also Published As

Publication number Publication date
JP2010185403A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4725656B2 (en) Exhaust passage structure of multi-cylinder engine
JP5375151B2 (en) Exhaust passage structure of multi-cylinder engine
US10132252B2 (en) Engine system
JP2003065061A5 (en)
JP5326630B2 (en) Exhaust passage structure of multi-cylinder engine
JP2007231906A (en) Multi-cylinder engine
US8763395B2 (en) Engine with supercharger
JPH03151519A (en) Multiple cylinder engine with turbo charger
JP4760598B2 (en) Turbocharged engine
JP5262863B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
JP5262862B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
JP4978525B2 (en) Exhaust system for turbocharged engine
JP5251658B2 (en) Turbocharged engine
JP2019015262A (en) engine
JP5257193B2 (en) Turbocharged engine
JP2014167259A (en) Multi-cylinder internal combustion engine
JP6274181B2 (en) Exhaust system for turbocharged engine
JP2014080898A (en) Multi-cylinder engine with turbo supercharger
JP2007211606A (en) Engine with supercharger
JP2005330836A (en) Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve
JP2010084580A (en) Exhaust system for engine
JP2787157B2 (en) Intake and exhaust system for turbocharged engines
WO2014091565A1 (en) Exhaust device for internal combustion engine, internal combustion engine unit, and vehicle equipped with multi-cylinder internal combustion engine
JP2016102411A (en) Internal combustion engine
JP6482113B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees