JP2005330836A - Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve - Google Patents

Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve Download PDF

Info

Publication number
JP2005330836A
JP2005330836A JP2004147963A JP2004147963A JP2005330836A JP 2005330836 A JP2005330836 A JP 2005330836A JP 2004147963 A JP2004147963 A JP 2004147963A JP 2004147963 A JP2004147963 A JP 2004147963A JP 2005330836 A JP2005330836 A JP 2005330836A
Authority
JP
Japan
Prior art keywords
communication control
control valve
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004147963A
Other languages
Japanese (ja)
Inventor
Akihide Okuyama
晃英 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004147963A priority Critical patent/JP2005330836A/en
Publication of JP2005330836A publication Critical patent/JP2005330836A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To enhance supercharging efficiency during high-load operation to enable higher engine output also by a smaller supercharger, and to increase internal exhaust gas recirculation amount during low-load operation to suppress NOx emission, in a multi-cylinder internal combustion engine operated with a twin entry turbosupercharger into which exhaust gas from cylinders having different exhaust strokes mutually is introduced via parallel exhaust passages. <P>SOLUTION: The multi-cylinder internal combustion engine is provided with a passage communication control valve selectively communicating middles of the parallel exhaust passages for introducing exhaust gas to the twin entry turbosupercharger with each other, and the passage communication control valve is opened during low output torque operation of the engine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、過給式内燃機関に係り、特に内燃機関が多気筒内燃機関であることに関連して過給制御を行う過給式多気筒内燃機関に係る。   The present invention relates to a supercharged internal combustion engine, and more particularly to a supercharged multicylinder internal combustion engine that performs supercharging control in connection with the internal combustion engine being a multi-cylinder internal combustion engine.

内燃機関に於ける過給は、排気によりタービンを回し、それによって圧縮機を回して吸気を加圧するものであり、内燃機関が多気筒内燃機関である場合には、各気筒からの排気をマニホールドにより一つに集めて排気タービンへ導くことが従来より行われている。この場合、多気筒内燃機関に於いては、各気筒の作動位相が相互にずらされており、例えば直列配列の4気筒内燃機関では、作動位相は一般に第1気筒、第3気筒、第4気筒、第2気筒の順になっていることから、各気筒からの排気をマニホールドにより一つに集めて排気タービンへ送るに当たっては、各気筒からの排気の干渉を避けるため、第1気筒と第4気筒からの排気を一つにまとめて一つの合流排気通路とし、第2気筒と第3気筒からの排気を一つにまとめて他の一つの合流排気通路とし、更にこれら両者を一つにまとめることが行われているが、更に、内燃機関が高負荷運転されるときには、排気温度が高くなることに対処して、その温度を下げるべく、上記の二つの合流排気通路の途中を連通弁により選択的に連通するようにし、機関の高負荷運転時にはかかる連通弁を開き、各気筒に対し有効に作用する排気通路を拡大することにより排気タービンに流入する排気温度の低減を図ることが、下記の特許文献1に記載されている。
特開平3-172535
Supercharging in an internal combustion engine is to rotate a turbine by exhaust and thereby rotate a compressor to pressurize intake air. When the internal combustion engine is a multi-cylinder internal combustion engine, the exhaust from each cylinder is manifolded. It is conventionally performed to collect them together and lead them to the exhaust turbine. In this case, in a multi-cylinder internal combustion engine, the operation phases of the cylinders are shifted from each other. For example, in a 4-cylinder internal combustion engine arranged in series, the operation phases are generally the first cylinder, the third cylinder, and the fourth cylinder. Since the cylinders are arranged in the order of the second cylinder, when the exhaust from each cylinder is collected together by the manifold and sent to the exhaust turbine, the first cylinder and the fourth cylinder are avoided in order to avoid interference of the exhaust from each cylinder. The exhaust from the engine is combined into one merged exhaust passage, the exhaust from the second and third cylinders are combined into one other combined exhaust passage, and both are combined into one. Furthermore, when the internal combustion engine is operated at a high load, the communication valve is used to select the middle of the two combined exhaust passages in order to reduce the temperature in response to the exhaust temperature becoming higher. Communicate with each other The following Patent Document 1 describes that the temperature of the exhaust gas flowing into the exhaust turbine is reduced by opening the communication valve during the high load operation of the engine and expanding the exhaust passage that effectively acts on each cylinder. Yes.
JP-A-3-172535

また、内燃機関に於ける吸気弁の開閉タイミング(位相)を機関の回転速度等に応じて進めたり遅らせたりするように調節する可変バルブタイミングの技術がVVT(Variable Valve Timing)として知られているが、上記の特許文献1には、機関回転数を上昇させていく際、機関回転数が上記の連通弁を開くような回転数に達する以前に吸気弁の開閉タイミングを遅れ側に切り換え、ノッキングの発生を抑制することが記載されている。   A variable valve timing technique for adjusting the opening / closing timing (phase) of an intake valve in an internal combustion engine so as to be advanced or delayed in accordance with the rotational speed of the engine is known as VVT (Variable Valve Timing). However, in the above-mentioned Patent Document 1, when the engine speed is increased, the intake valve opening / closing timing is switched to the delay side before the engine speed reaches such a speed that opens the communication valve, and knocking is performed. It is described to suppress the occurrence of.

内燃機関の排気は、機関の爆発行程に於ける燃料の爆燃の余波を伴って機関の排気ポートより勢いよく噴出されてくるので、かなりの運動エネルギを有しており、過給用排気タービンは、それを有効に利用できるよう、一般に動圧型タービンとして構成されるのが有利である。タービンが動圧型であるときには、多気筒内燃機関に対してはタービンがツインエントリ型とされ、排気行程が相互にずれた気筒からの排気が並列の排気通路を経てタービンのツインノズルへ供給されるようになっているのが、タービンの作動効率を高め、できるだけ小型の過給機により高い過給効果を得て機関出力を高めるには好ましい。   The exhaust of the internal combustion engine is ejected vigorously from the exhaust port of the engine with the aftermath of fuel deflagration in the engine explosion stroke, so it has considerable kinetic energy, and the supercharged exhaust turbine In general, it is advantageous to configure it as a dynamic pressure turbine so that it can be used effectively. When the turbine is a dynamic pressure type, the turbine is a twin entry type for a multi-cylinder internal combustion engine, and the exhaust from the cylinders whose exhaust strokes are shifted from each other is supplied to the twin nozzles of the turbine via parallel exhaust passages. This is preferable in order to increase the operation efficiency of the turbine and increase the engine output by obtaining a high supercharging effect with a supercharger as small as possible.

一方、内燃機関については、NOxの排出による大気汚染の問題があるが、NOxの排出は新気に排気ガスを混ぜて燃焼温度を下げることにより抑制されるので、特に高出力を要しない機関の低負荷運転時には新気に十分な量の排気ガスを混ぜて運転することが望まれる。新気に排気ガスを混ぜるには、排気系より排気の一部をガス管により導いて吸気系に導入する外部排気ガス再循環のほかに、排気行程より吸気行程に移る際、排気の一部を気筒内に残留させて新気に混入させる内部排気ガス再循環がある。内部排気ガス再循環は、排気系の背圧が上昇すると増大する。   On the other hand, the internal combustion engine has a problem of air pollution due to NOx emission. However, NOx emission is suppressed by mixing the exhaust gas with fresh air and lowering the combustion temperature. During low-load operation, it is desirable to operate with a sufficient amount of exhaust gas mixed with fresh air. In order to mix exhaust gas with fresh air, in addition to external exhaust gas recirculation that introduces part of the exhaust gas from the exhaust system through the gas pipe and introduces it into the intake system, when moving from the exhaust stroke to the intake stroke, There is an internal exhaust gas recirculation that leaves the air in the cylinder and mixes it with fresh air. Internal exhaust gas recirculation increases as the back pressure of the exhaust system increases.

上記の通り機関が高い過給効果を得て高い機関出力を出す運転状態にあるときには、ツインエントリターボ型過給機は排気行程が相互にずれた気筒からの排気のそれぞれを並列の排気通路を経て整然と供給されるようになっていることにより高いタービン作動効率にて作動し、より小型の過給機にてもより高い機関出力を出すことができるが、低負荷運転時には、タービン作動効率はさして問題とはならない。それよりも低負荷運転時にはNOxの排出を可及的に抑制しておくことの方がより有効である。   As described above, when the engine is in an operating state in which a high supercharging effect is obtained and a high engine power is output, the twin entry turbocharger uses a parallel exhaust passage for each exhaust from the cylinders whose exhaust strokes are shifted from each other. Since it is supplied in an orderly manner, it operates at a high turbine operating efficiency, and even a smaller supercharger can produce a higher engine output, but at low load operation, the turbine operating efficiency is Now it doesn't matter. It is more effective to suppress NOx emission as much as possible during low load operation.

本発明は、上記の事情に着目し、排気行程が相互にずれた気筒からの排気が並列の排気通路を経て導入されるツインエントリターボ過給装置を伴って作動する多気筒内燃機関について、高負荷運転時には過給効率を高め、より小型の過給機にてもより高い機関出力を出すことができるようにすると共に、低負荷運転時には内部排気ガス再循量を増大させ、NOxの排出を抑制させること課題としている。   The present invention pays attention to the above circumstances, and relates to a multi-cylinder internal combustion engine that operates with a twin entry turbocharger in which exhaust from cylinders whose exhaust strokes are shifted from each other is introduced through parallel exhaust passages. Increases supercharging efficiency during load operation and enables higher engine output even with a smaller supercharger, and increases internal exhaust gas recirculation during low load operation to reduce NOx emissions. It is a problem to suppress.

上記の主たる課題を解決するものとして、本発明は、ツインエントリターボ過給装置を伴って作動する多気筒内燃機関にして、排気行程が相互にずれた気筒からの排気が並列の排気通路を経て前記ツインエントリターボ過給装置へ並列に導入されると共に、前記並列の排気通路の途中を互いに選択的に連通させる通路連通制御弁が設けられ、機関の低出力トルク運転時に前記通路連通制御弁が開かれるようになっていることを特徴とする多気筒内燃機関を提案するものである。   In order to solve the above main problems, the present invention is a multi-cylinder internal combustion engine that operates with a twin entry turbocharger, and exhausts from cylinders whose exhaust strokes deviate from each other pass through parallel exhaust passages. A passage communication control valve that is introduced in parallel to the twin entry turbocharger and selectively communicates with each other in the middle of the parallel exhaust passages is provided, and the passage communication control valve is provided during low-output torque operation of the engine. The present invention proposes a multi-cylinder internal combustion engine characterized by being opened.

前記通路連通制御弁は過給過剰を生ずる高回転速度運転状態に於いても開かれるようになっていてよい。   The passage communication control valve may be opened even in a high rotational speed operation state in which overcharging occurs.

また前記通路連通制御弁は機関が低出力トルク且つ低回転速度運転状態より高出力トルク且つ低回転速度運転状態を経て高回転速度運転状態へ移行するとき途中で一旦閉じられるようになっていてよい。   The passage communication control valve may be temporarily closed during the transition from the low output torque and low rotational speed operating state to the high output torque and low rotational speed operating state to the high rotational speed operating state. .

更に、機関には吸気弁開閉位相変更手段が設けられており、前記通路連通制御弁が閉じられることに伴って前記吸気弁開閉位相変更手段により吸気弁開閉位相が進められるとき、前記吸気弁開閉位相変更手段による吸気弁開閉位相の進めは、前記通路連通制御弁が閉じ終わる時点に合わせて行われるようになっていてよい。   Further, the engine is provided with intake valve opening / closing phase changing means, and when the intake valve opening / closing phase is advanced by the intake valve opening / closing phase changing means as the passage communication control valve is closed, the intake valve opening / closing phase is changed. The advancement of the intake valve opening / closing phase by the phase changing means may be performed at the time when the passage communication control valve is closed.

前記並列の排気通路は両者に共通の通路壁にて隔てられた部分を有し、前記通路連通制御弁は前記共通通路壁に開けられた孔を弁板にて開閉するようになっていてよい。   The parallel exhaust passages may have a portion separated by a common passage wall, and the passage communication control valve may be configured to open and close a hole opened in the common passage wall with a valve plate. .

上記の如く、ツインエントリターボ過給装置を伴って作動する多気筒内燃機関に於いて、排気行程が相互にずれた気筒からの排気が並列の排気通路を経て前記ツインエントリターボ過給装置へ並列に導入されると共に、前記並列の排気通路の途中を互いに選択的に連通させる通路連通制御弁が設けられ、機関の低出力トルク運転時に前記通路連通制御弁が開かれるようになっていれば、機関の低出力トルク運転時には、並列の排気通路を経て動圧型タービンへ並列に排気を送るいずれの気筒に対しても、タービンに至る排気通路は排気ガス流量に対する流路断面積の比が途中から倍化され、通路連通制御弁より下流側に於ける並列の排気通路内には排気ガスの停滞が生じ、いずれの気筒にとっても排気行程時の背圧が上昇し、それに応じて内部排気ガス再循環量が増大する。   As described above, in a multi-cylinder internal combustion engine that operates with a twin entry turbocharger, exhaust from cylinders with different exhaust strokes is parallel to the twin entry turbocharger via parallel exhaust passages. And a passage communication control valve that selectively communicates the middle of the parallel exhaust passages with each other, and the passage communication control valve is opened during low output torque operation of the engine, During low-power torque operation of the engine, for any cylinder that sends exhaust gas in parallel to the dynamic pressure turbine via the parallel exhaust passage, the exhaust passage leading to the turbine has a ratio of the flow passage cross-sectional area to the exhaust gas flow rate from the middle. The exhaust gas stagnation occurs in the parallel exhaust passages downstream of the passage communication control valve, and the back pressure during the exhaust stroke rises for all cylinders. Exhaust gas recirculation amount increases.

前記通路連通制御弁が過給過剰を生ずる高回転速度運転状態に於いても開かれるようになっていれば、機関の高回転速度運転時には、いずれの気筒に対しても、タービンに至る排気通路は排気流量に対する排気通路の断面積の比が途中から倍化されるので、動圧型タービンの出力は排気流量に対し相対的に低下し、機関の高回転速度運転域に過給が過剰になることを回避することができ、過給過剰時に排気ガス流にタービンをバイパスさせるウェイストゲイト弁を省略することも可能となる。   If the passage communication control valve is opened even in the high rotational speed operation state in which overcharging occurs, the exhaust passage leading to the turbine for any cylinder during the high rotational speed operation of the engine. Since the ratio of the cross-sectional area of the exhaust passage to the exhaust flow rate is doubled from the middle, the output of the dynamic pressure turbine decreases relative to the exhaust flow rate, and supercharging becomes excessive in the high engine speed operating region of the engine This can be avoided, and it is possible to omit the waste gate valve that bypasses the turbine to the exhaust gas flow when overcharging.

前記通路連通制御弁は機関が低出力トルク且つ低回転速度運転状態より高出力トルク且つ低回転速度運転状態を経て高回転速度運転状態へ移行するとき途中で一旦閉じられるようになっていれば、機関を低出力トルク且つ低回転速度運転状態より高出力トルク且つ高回転速度運転状態へ移行させる過程において、スロットルを開くことにより機関の出力トルクは増大するが、機関の回転速度の上昇には遅れがでる高出力トルク且つ低回転速度運転時に、前記通路連通制御弁を一旦とじることにより、過給効果を高め、機関出力をできるだけ速やかに立ち上げることができる。   The passage communication control valve is temporarily closed during the transition from the low output torque and low rotation speed operation state to the high output torque and low rotation speed operation state to the high rotation speed operation state. In the process of shifting the engine from the low output torque and low rotation speed operation state to the high output torque and high rotation speed operation state, the engine output torque increases by opening the throttle, but it is delayed from the increase in the engine rotation speed. When the high-output torque and low-speed operation is generated, the supercharging effect can be enhanced and the engine output can be raised as quickly as possible by closing the passage communication control valve.

機関には吸気弁開閉位相変更手段が設けられており、前記通路連通制御弁が閉じられることに伴って前記吸気弁開閉位相変更手段により吸気弁開閉位相が進められるとき、前記吸気弁開閉位相変更手段による吸気弁開閉位相の進めは、前記通路連通制御弁が閉じ終わる時点に合わせて行われるようになっていれば、通路連通制御弁の開閉作動の速度が、吸気弁開閉位相変更手の吸気弁開閉位相変更作動速度に比してかなり遅いことにより、通路連通制御弁がまだ閉じ終わらないときに吸気弁開閉位相が進められてノッキングやスモーキングが発生するようなことが避けられる。   The engine is provided with intake valve opening / closing phase changing means, and when the intake valve opening / closing phase is advanced by the intake valve opening / closing phase changing means as the passage communication control valve is closed, the intake valve opening / closing phase change is performed. The advancement of the intake valve opening / closing phase by the means is performed in accordance with the time when the passage communication control valve is closed. By being considerably slower than the valve opening / closing phase changing operation speed, it is possible to avoid the occurrence of knocking or smoking by advancing the intake valve opening / closing phase when the passage communication control valve has not yet been closed.

前記並列の排気通路が両者に共通の通路壁にて隔てられた部分を有し、前記通路連通制御弁が前記共通通路壁に開けられた孔を弁板にて開閉するようになっていれば、並列の排気通路の間を選択的に連通させる機能を極めて簡単な構造により達成することができる。   If the parallel exhaust passages have portions separated by a passage wall common to both, and the passage communication control valve opens and closes a hole opened in the common passage wall with a valve plate The function of selectively communicating between the parallel exhaust passages can be achieved with a very simple structure.

図1は本発明による多気筒内燃機関の構造を解図的に示す概略図である。図に於いて、10は多気筒内燃機関のシリンダブロックである。多気筒内燃機関は図示の例では4気筒内燃機関であり、シリンダブロック10内には4つの気筒12a、12b、12c、12dが設けられている。これらの気筒の作動の順序は12a−12c−12d−12bである。そこで作動位相が互いに最も離れている気筒12aと12dからの排気が排気サブマニホールド14により集められ、同じく作動位相が互いに最も離れている気筒12bと12cからの排気が排気サブマニホールド16により集められ、これら2つのサブマニホールドからの排気が、2つの並列に配置された排気通路18および20を経てツインエントリ型のタービン22へ導入されるようになっている。   FIG. 1 is a schematic view schematically showing the structure of a multi-cylinder internal combustion engine according to the present invention. In the figure, reference numeral 10 denotes a cylinder block of a multi-cylinder internal combustion engine. The multi-cylinder internal combustion engine is a four-cylinder internal combustion engine in the illustrated example, and four cylinders 12 a, 12 b, 12 c, and 12 d are provided in the cylinder block 10. The order of operation of these cylinders is 12a-12c-12d-12b. Accordingly, exhaust from the cylinders 12a and 12d whose operating phases are farthest from each other is collected by the exhaust sub-manifold 14, and exhaust from the cylinders 12b and 12c whose operating phases are also most distant from each other is collected by the exhaust sub-manifold 16. Exhaust gas from these two sub-manifolds is introduced into a twin-entry turbine 22 via two exhaust passages 18 and 20 arranged in parallel.

尚、ツインエントリ型タービン22への排気通路18、20による排気の並列導入は、図1の解図的表示では、タービンの軸線方向に沿ってなされているが、実際にもそのようにタービンの軸線方向に沿って並置された2つのノズル群によりなされてもよく、或いはまた排気通路18、20の各々に属する2種類のノズルは、タービンの軸線方向に於ける同じ位置にあってタービンの周方向に半周ずつに分けて設けられるか、或は2種類のノズルをいくつかのノズル群に分け、それらを周方向に沿って交互に並べる等、種々の可能な構成によりなされよい。   Incidentally, the parallel introduction of the exhaust through the exhaust passages 18 and 20 to the twin entry turbine 22 is made along the axial direction of the turbine in the schematic representation of FIG. Two nozzle groups juxtaposed along the axial direction may be used. Alternatively, the two types of nozzles belonging to each of the exhaust passages 18 and 20 may be located at the same position in the axial direction of the turbine and The nozzles may be provided by being divided into half circumferences in the direction, or by various possible configurations such as dividing two types of nozzles into several nozzle groups and arranging them alternately along the circumferential direction.

タービン22からの排気は排気導管24を経て触媒コンバータ26へ導かれ、その後図には示されていない消音器等を経て大気へ放出される。   Exhaust gas from the turbine 22 is guided to the catalytic converter 26 via the exhaust pipe 24, and then released to the atmosphere via a silencer or the like not shown in the drawing.

吸気はエアクリーナ28および吸気導管30を経てタービン22により駆動される圧縮機32の入口へ導かれる。圧縮機32にて加圧された吸気は吸気導管34、インタークーラ36、吸気導管38、スロットル弁40、吸気マニホールド42を経て気筒12a〜12dへ供給されるようになっている。44は気筒12a〜12dに対する図には示されていない吸気弁の開閉位相を変更する吸気弁開閉位相変更装置を示し、符号44が指している部分はそのアクチュエータの部分である。   The intake air is guided to an inlet of a compressor 32 driven by a turbine 22 through an air cleaner 28 and an intake conduit 30. The intake air pressurized by the compressor 32 is supplied to the cylinders 12a to 12d via an intake conduit 34, an intercooler 36, an intake conduit 38, a throttle valve 40, and an intake manifold 42. Reference numeral 44 denotes an intake valve opening / closing phase changing device for changing the opening / closing phase of the intake valve, which is not shown in the drawings for the cylinders 12a to 12d, and a portion indicated by reference numeral 44 is a portion of the actuator.

スロットル弁40および吸気弁開閉位相変更装置44はマイクロコンピュータを備えた電子式車輌運転制御装置(ECU)46によりその作動が制御されるようになっている。電子式車輌運転制御装置46には吸気弁開閉位相センサ48より吸気弁の開閉位相を示す信号、吸気温センサ50より吸気マニホールドへ供給される吸気の温度を示す信号が供給されるほか、内燃機関およびこれを搭載した車輌の運転状態に関する各種の信号Iが供給されるようになっている。   The operation of the throttle valve 40 and the intake valve opening / closing phase change device 44 is controlled by an electronic vehicle operation control device (ECU) 46 having a microcomputer. The electronic vehicle operation control device 46 is supplied with a signal indicating the opening / closing phase of the intake valve from the intake valve opening / closing phase sensor 48, and a signal indicating the temperature of the intake air supplied to the intake manifold from the intake air temperature sensor 50, as well as an internal combustion engine. In addition, various signals I relating to the driving state of a vehicle equipped with the same are supplied.

排気通路18、20には、図2に於いてより詳細に示されている如く、排気通路18と20の途中を選択的に連通する通路連通制御弁52が設けられている。図示の例では、並列の排気通路は両者に共通の通路壁54にて隔てられた部分を有し、通路連通制御弁52は共通通路壁54に開けられた孔56を弁板58にて開閉するようになっている。弁板58は弁軸60により担持され、該弁軸がアクチュエータ62によりその中心軸線の周りに回動されることにより、図中二点鎖線にて示されている如く孔56を閉じる位置と、図中実線にて示されている如く孔56を開く位置の間で回動されるようになっている。アクチュエータ62の作動は電子式車輌運転制御装置46により制御される。   As shown in more detail in FIG. 2, the exhaust passages 18 and 20 are provided with a passage communication control valve 52 that selectively communicates the exhaust passages 18 and 20 in the middle. In the illustrated example, the parallel exhaust passages have portions separated by a common passage wall 54, and the passage communication control valve 52 opens and closes a hole 56 opened in the common passage wall 54 with a valve plate 58. It is supposed to be. The valve plate 58 is carried by a valve shaft 60, and the valve shaft is rotated around its central axis by an actuator 62, thereby closing the hole 56 as shown by a two-dot chain line in the figure. As indicated by the solid line in the figure, the hole 56 is rotated between positions. The operation of the actuator 62 is controlled by the electronic vehicle operation control device 46.

内燃機関の運転領域をその回転数と出力トルクにより表せば、図3の如くなり、出力トルクが比較的低い領域では、NOx排出抑制のため、かなり広い回転数領域にわたって排気ガス再循環(EGR)を実施することが望まれる。図にてEGR領域として示されている領域がそれである。一方、排気による吸気の過給が行われる場合に、過給過剰となるため従来のウェイストゲイト装置により排気の一部に排気タービンをバイパスさせる必要が生ずる領域が、図にてWG領域として示されている領域である。図1および2に示す如く、排気行程が相互にずれた気筒からの排気を並列排気通路により動圧型タービンへ並列に導入し、並列排気通路間を通路連通制御弁により選択的に連通させる構造は、EGR領域に対する機関運転の適応制御と、WG領域に対する機関運転の適応制御の両方を可能にする。   If the operating range of the internal combustion engine is represented by its rotational speed and output torque, it becomes as shown in FIG. 3, and in a region where the output torque is relatively low, exhaust gas recirculation (EGR) is performed over a considerably wide rotational speed region in order to suppress NOx emission. It is desirable to implement. This is the region indicated as the EGR region in the figure. On the other hand, when the intake air is supercharged by exhaust, the region where the conventional wastegate device needs to bypass the exhaust turbine to a part of the exhaust is shown as a WG region in the figure. It is an area. As shown in FIGS. 1 and 2, a structure in which exhaust from cylinders whose exhaust strokes are shifted from each other is introduced in parallel to the dynamic pressure turbine through a parallel exhaust passage, and the parallel exhaust passage is selectively communicated by a passage communication control valve. , Both adaptive control of engine operation for the EGR region and adaptive control of engine operation for the WG region are enabled.

即ち、上記の如きEGR領域では、各気筒より排出される排気の流量は小さいので、並列の排気通路18、20の各々を通って流れる排気流量が小さいことから、各排気通路内には排気の流れが停滞した状態が生じている。このような状態にあるとき通路連通制御弁52が開かれ、排気通路18、20の途中が互いに連通されると、いずれの気筒に対しても背圧を高める結果となり、排気行程から吸気行程に移る際に気筒内に残留する排気の量が増え、内部排気ガス再循環量の増大により排気ガス再循環率が高まる。従って、通路連通制御弁52は、図3に示されている如きEGR領域にて開かれることにより、かかる低トルク運転領域にて機関出力を損なうことなく排気ガス再循環率を高め、NOxの排出を可及的に抑制する機能を発揮することができる。   That is, in the EGR region as described above, since the flow rate of exhaust discharged from each cylinder is small, the flow rate of exhaust flowing through each of the parallel exhaust passages 18 and 20 is small. The flow is stagnant. When the passage communication control valve 52 is opened in such a state and the exhaust passages 18 and 20 are in communication with each other, the back pressure is increased for any cylinder, and the exhaust stroke is changed to the intake stroke. When moving, the amount of exhaust gas remaining in the cylinder increases, and the exhaust gas recirculation rate increases due to the increase in the internal exhaust gas recirculation amount. Therefore, the passage communication control valve 52 is opened in the EGR region as shown in FIG. 3 to increase the exhaust gas recirculation rate without impairing the engine output in the low torque operation region, and to release NOx. The function which suppresses as much as possible can be exhibited.

また、動圧型タービンでは、タービンのノズルへ供給される作動流体の流量に対する作動流体通路の断面積の比である断面比が、タービン出力を最大にする値より増大すれば、それにつれてタービン出力は低下していくが、図示の如く位相が互いにずれた2つの気筒からの排気を動圧型タービン22へ並列に導く排気通路18、20が途中で通路連通制御弁52により連通されると、各一つの気筒からの排気流にとっては、断面比が途中から2倍に倍化されることになり、各一つの気筒からの排気流により得られるタービン出力はそれに相当して低下する。図示の4気筒の例では、このことは気筒12a〜12dのいずれについても生じ、従ってタービン22の出力は全体としてそれに相当して低下する。従って、WG領域にて通路連通制御弁52を開くことにより、従来のウェイストゲイト装置による排気の一部のタービンバイパスと同様の効果が得られる。   Also, in a dynamic pressure turbine, if the cross-sectional ratio, which is the ratio of the cross-sectional area of the working fluid passage to the flow rate of the working fluid supplied to the nozzle of the turbine, increases from a value that maximizes the turbine output, the turbine output will increase accordingly. As shown in the figure, when the exhaust passages 18 and 20 that lead the exhaust from the two cylinders whose phases are shifted from each other in parallel to the dynamic pressure turbine 22 are communicated by the passage communication control valve 52 on the way, For the exhaust flow from one cylinder, the cross-sectional ratio is doubled from the middle, and the turbine output obtained by the exhaust flow from each one cylinder is correspondingly reduced. In the illustrated four-cylinder example, this occurs for any of the cylinders 12a-12d, so that the output of the turbine 22 as a whole decreases correspondingly. Therefore, by opening the passage communication control valve 52 in the WG region, an effect similar to that of a part of the turbine bypass of the exhaust gas by the conventional wastegate device can be obtained.

図3に矢印にて示されている2つの機関運転状態の変化を示す線AおよびBは、上記の如きEGR領域およびWG領域に対する通路連通制御弁52の制御を踏まえて、内燃機関の出力を低トルク運転状態より出発して増大させるとき、初期機関回転数が比較的低いときと比較的高いときとで、通路連通制御弁52の制御を異ならせる態様を例示している。これには、通路連通制御弁52の制御に関連して吸気弁開閉位相変更装置44も制御される。図4はその作動態様の変化を表にして示すものである。   Lines A and B showing changes in the two engine operating states indicated by arrows in FIG. 3 indicate the output of the internal combustion engine based on the control of the passage communication control valve 52 for the EGR region and the WG region as described above. When the starting torque is increased from the low torque operation state, the control of the passage communication control valve 52 is different depending on whether the initial engine speed is relatively low or relatively high. For this purpose, the intake valve opening / closing phase changing device 44 is also controlled in association with the control of the passage communication control valve 52. FIG. 4 is a table showing changes in the operation mode.

低トルクであって機関回転数が比較的低い状態より機関出力を増大させるときには、経路Aにより示す如く、通路連通制御弁52は当初の開かれた状態から途中で一旦閉じられ、これに対応して吸気弁開閉位相は当初の幾分進角された状態から最大進角位置まで進められる。これは、低トルク運転状態のとき通路連通制御弁52が開かれていたことにより各排気通路内に生じていた排気の停滞を一旦解消させ、それと同時に吸気弁開閉位相を最大限に進めることにより吸気の充填効率の上昇を図るためである。その後、運転がWG領域に入るところで、通路連通制御弁52が再び開かれ、過給が過剰になることが回避される。尚、加速が終了したら吸気弁開閉位相は遅角されてよい。   When the engine output is increased from a low torque and relatively low engine speed, as shown by the path A, the passage communication control valve 52 is temporarily closed halfway from the initial opened state. Thus, the intake valve opening / closing phase is advanced from the initially advanced state to the maximum advanced position. This is because once the passage communication control valve 52 is opened in the low torque operation state, the stagnation of the exhaust gas that has occurred in each exhaust passage is once resolved, and at the same time, the intake valve opening / closing phase is advanced to the maximum. This is to increase the charging efficiency of the intake air. Thereafter, when the operation enters the WG region, the passage communication control valve 52 is opened again, and it is avoided that the supercharging becomes excessive. When the acceleration is finished, the intake valve opening / closing phase may be delayed.

低トルクであって機関回転数が比較的高い状態より機関出力を増大させるときには、経路Bにより示す如く、トルクが上昇すると運転は直ぐにWG領域に入るので、通路連通制御弁52は当初の開いた状態をそのまま保持されればよい。この場合には、吸気弁開閉位相は当初の幾分進角した状態からそのまま遅角されればよい。   When the engine output is increased from a state where the engine speed is relatively low and the engine speed is relatively high, as indicated by the path B, the operation immediately enters the WG region when the torque increases, so that the passage communication control valve 52 is initially opened. What is necessary is just to hold | maintain a state as it is. In this case, the intake valve opening / closing phase may be retarded as it is from the initial slightly advanced state.

図5は、上記の経路Aによる機関出力増大に際して、途中で通路連通制御弁52を一旦閉じると共に、吸気弁開閉位相を最大進角位置まで進めるに当たっての制御の更なる改善を図ることを示すグラフである。この場合、通路連通制御弁52を一旦閉じるのは、上記の通り低トルク運転状態のとき通路連通制御弁50が開かれていたことにより各排気通路内に生じていた排気の停滞を一旦解消させ、吸気弁開閉位相を最大限に進めることによる吸気充填効率の上昇効果を高めるためであるが、通路連通制御弁52の開閉速度は吸気弁開閉位相変更装置44により吸気弁開閉位相を進角させる速度よりも遅いので、通路連通制御弁52の閉弁制御と吸気弁開閉位相変更装置44の進角制御とを同時に開始したのでは、並列排気通路間の干渉による排気の停滞が解消されない状態で吸気弁の開閉位相が進められ、気筒内に於ける残留排気の割合が増大し、スモーキング、ノッキング、異常燃焼等が生ずる虞れがある。そこで、吸気弁開閉位相変更装置44による吸気弁開閉位相の進角は、通路連通制御弁50が実際に閉じられた時とされるよう、吸気弁開閉位相変更装置44の作動を破線より実線にて示す如く修正することが行われれば、図中破線にて示されている如き気筒内残留排気の増大を来たすことなく、それを実線にて示す如く低減させることができる。   FIG. 5 is a graph showing that when the engine output is increased by the path A described above, the passage communication control valve 52 is temporarily closed in the middle and further improvement of the control is performed when the intake valve opening / closing phase is advanced to the maximum advance position. It is. In this case, the passage communication control valve 52 is temporarily closed by temporarily eliminating the stagnation of exhaust gas that has occurred in each exhaust passage due to the passage communication control valve 50 being opened in the low torque operation state as described above. The intake valve opening / closing phase is advanced by the intake valve opening / closing phase changing device 44 to increase the intake charging efficiency by increasing the intake valve opening / closing phase to the maximum. Since it is slower than the speed, if the valve closing control of the passage communication control valve 52 and the advance angle control of the intake valve opening / closing phase changing device 44 are started at the same time, the stagnation of exhaust due to interference between the parallel exhaust passages is not solved. The opening / closing phase of the intake valve is advanced, and the ratio of residual exhaust in the cylinder increases, which may cause smoking, knocking, abnormal combustion, and the like. Therefore, the advance of the intake valve opening / closing phase by the intake valve opening / closing phase changing device 44 is changed from the broken line to the solid line so that the operation of the intake valve opening / closing phase changing device 44 is performed when the passage communication control valve 50 is actually closed. If the correction is made as shown in the figure, it can be reduced as shown by the solid line without increasing the residual exhaust in the cylinder as shown by the broken line in the figure.

以上に於いては本発明を一つの実施の形態について詳細に説明したが、かかる実施の形態について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。   While the present invention has been described in detail with respect to one embodiment thereof, it will be apparent to those skilled in the art that various modifications can be made within the scope of the present invention.

本発明による多気筒内燃機関の構造を解図的に示す概略図。1 is a schematic view schematically showing the structure of a multi-cylinder internal combustion engine according to the present invention. 並列排気通路の途中を選択的に連通する通路連通制御弁一例についてより詳細に示す概略図。Schematic shown in detail about an example of a passage communication control valve for selectively communicating in the middle of parallel exhaust passages. 内燃機関の運転領域をその回転数と出力トルクにより示すグラフ。The graph which shows the driving | operation area | region of an internal combustion engine with the rotation speed and output torque. 図3に矢印にて示す2つの機関運転状態の変化経路AおよびBによる作動態様の変化を示す表。The table | surface which shows the change of the operation | movement aspect by the change paths A and B of two engine operation states shown by the arrow in FIG. 図3の経路Aによる機関出力増大に際して、途中で通路連通制御弁を一旦閉じると共に、吸気弁開閉位相を最大進角位置まで進めるに当たっての制御の更なる改善を示すグラフ。FIG. 4 is a graph showing a further improvement in control when the passage communication control valve is temporarily closed on the way and the intake valve opening / closing phase is advanced to the maximum advance position when the engine output is increased by the path A in FIG. 3.

符号の説明Explanation of symbols

10…シリンダブロック、12a,12b,12c.12d…気筒、14,16…サブマニホールド、18,20…排気通路、22…タービン、24…排気導管、26…触媒コンバータ、28…エアクリーナ、30…吸気導管、32…圧縮機、34…吸気導管、36…インタークーラ、38…吸気導管、40…スロットル弁、42…吸気マニホールド、44…吸気弁開閉位相変更装置、46…電子式車輌運転制御装置、48…吸気弁開閉位相センサ、50…吸気温センサ、52…通路連通制御弁、54…共通通路壁、56…孔、58…弁板、60…弁軸、62…アクチュエータ   10 ... Cylinder block, 12a, 12b, 12c. 12d ... Cylinder, 14, 16 ... Sub-manifold, 18, 20 ... Exhaust passage, 22 ... Turbine, 24 ... Exhaust conduit, 26 ... Catalytic converter, 28 ... Air cleaner, 30 ... Intake conduit, 32 ... Compressor, 34 ... Intake conduit 36 ... Intercooler, 38 ... Intake conduit, 40 ... Throttle valve, 42 ... Intake manifold, 44 ... Intake valve opening / closing phase change device, 46 ... Electronic vehicle operation control device, 48 ... Intake valve opening / closing phase sensor, 50 ... Intake valve Air temperature sensor, 52 ... passage communication control valve, 54 ... common passage wall, 56 ... hole, 58 ... valve plate, 60 ... valve shaft, 62 ... actuator

Claims (5)

ツインエントリターボ過給装置を伴って作動する多気筒内燃機関にして、排気行程が相互にずれた気筒からの排気が並列の排気通路を経て前記ツインエントリターボ過給装置へ並列に導入されると共に、前記並列の排気通路の途中を互いに選択的に連通させる通路連通制御弁が設けられ、機関の低出力トルク運転時に前記通路連通制御弁が開かれるようになっていることを特徴とする多気筒内燃機関。   In a multi-cylinder internal combustion engine that operates with a twin entry turbocharger, exhaust from cylinders with different exhaust strokes is introduced into the twin entry turbocharger in parallel through parallel exhaust passages. A multi-cylinder characterized in that a passage communication control valve for selectively communicating the middle of the parallel exhaust passages with each other is provided, and the passage communication control valve is opened during low output torque operation of the engine. Internal combustion engine. 前記通路連通制御弁は過給過剰を生ずる高回転速度運転時にも開かれるようになっていることを特徴とする請求項1に記載の多気筒内燃機関。   2. The multi-cylinder internal combustion engine according to claim 1, wherein the passage communication control valve is opened even at a high rotational speed operation in which overcharging occurs. 3. 前記通路連通制御弁は機関が低出力トルク且つ低回転速度運転状態より高出力トルク且つ低回転速度運転状態を経て高回転速度運転状態へ移行するとき途中で一旦閉じられるようになっていることを特徴とする請求項2に記載の多気筒内燃機関。   The passage communication control valve is configured to be temporarily closed during the transition from the low output torque and low rotation speed operation state to the high output torque and low rotation speed operation state to the high rotation speed operation state. The multi-cylinder internal combustion engine according to claim 2, 機関には吸気弁開閉位相変更手段が設けられており、前記通路連通制御弁が閉じられることに伴って前記吸気弁開閉位相変更手段により吸気弁開閉位相が進められるとき、前記吸気弁開閉位相変更手段による吸気弁開閉位相の進めは、前記通路連通制御弁が閉じ終わる時点に合わせて行われるようになっていることを特徴とする請求項3に記載の多気筒内燃機関。   The engine is provided with intake valve opening / closing phase changing means, and when the intake valve opening / closing phase is advanced by the intake valve opening / closing phase changing means as the passage communication control valve is closed, the intake valve opening / closing phase change is performed. 4. The multi-cylinder internal combustion engine according to claim 3, wherein the advancement of the intake valve opening / closing phase by the means is performed in accordance with a point in time when the passage communication control valve finishes closing. 前記並列の排気通路は両者に共通の通路壁にて隔てられた部分を有し、前記通路連通制御弁は前記共通通路壁に開けられた孔を弁板にて開閉するようになっていることを特徴とする請求項1〜4のいずれかに記載の多気筒内燃機関。
The parallel exhaust passages have portions separated by a passage wall common to both, and the passage communication control valve is configured to open and close a hole opened in the common passage wall with a valve plate. The multi-cylinder internal combustion engine according to any one of claims 1 to 4.
JP2004147963A 2004-05-18 2004-05-18 Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve Pending JP2005330836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147963A JP2005330836A (en) 2004-05-18 2004-05-18 Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147963A JP2005330836A (en) 2004-05-18 2004-05-18 Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve

Publications (1)

Publication Number Publication Date
JP2005330836A true JP2005330836A (en) 2005-12-02

Family

ID=35485688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147963A Pending JP2005330836A (en) 2004-05-18 2004-05-18 Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve

Country Status (1)

Country Link
JP (1) JP2005330836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174859A (en) * 2009-02-02 2010-08-12 Toyota Motor Corp Control device of internal combustion engine with supercharger
JP2014525008A (en) * 2011-08-09 2014-09-25 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine for automobile
JP2017201145A (en) * 2016-05-02 2017-11-09 トヨタ自動車株式会社 Internal combustion engine
CN111356825A (en) * 2017-11-15 2020-06-30 珀金斯发动机有限公司 Exhaust flow control valve with integrated wastegate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174859A (en) * 2009-02-02 2010-08-12 Toyota Motor Corp Control device of internal combustion engine with supercharger
JP2014525008A (en) * 2011-08-09 2014-09-25 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine for automobile
JP2017201145A (en) * 2016-05-02 2017-11-09 トヨタ自動車株式会社 Internal combustion engine
CN111356825A (en) * 2017-11-15 2020-06-30 珀金斯发动机有限公司 Exhaust flow control valve with integrated wastegate
CN111356825B (en) * 2017-11-15 2022-03-11 珀金斯发动机有限公司 Exhaust flow control valve with integrated wastegate

Similar Documents

Publication Publication Date Title
CN101939529B (en) Controlling exhaust gas flow divided between turbocharging and exhaust gas recirculating
US7587898B2 (en) Internal combustion engine
US8256402B2 (en) Exhaust passage structure of multi-cylinder engine
CN104755739B (en) Internal combustion engine system and the method for controlling the system
JP3692037B2 (en) Twin turbo charger internal combustion engine with EGR and driving method thereof
JP2008019835A (en) Engine with supercharger
GB2430708A (en) Turbocharging in a variable displacement i.c. engine, ie having cylinders selectively disabled
JP2012500357A (en) Exhaust turbocharger for automobile internal combustion engine
JP2010502880A (en) Method and apparatus for operating an internal combustion engine
US9062632B2 (en) Internal combustion engine for a motor vehicle
US20160131021A1 (en) Exhaust turbocharger
WO2019123624A1 (en) Internal combustion engine and method of controlling same
JP2014114788A (en) Turbocharged engine
JP2008031942A (en) Engine with supercharger
JP2008175114A (en) Supercharger control device of internal combustion engine
JP2007046487A (en) Supercharging control device for internal combustion engine
JP2005330836A (en) Supercharging type multi-cylinder internal combustion engine controlled by passage communication control valve
JP2019065778A (en) Control device of internal combustion engine
JP6046918B2 (en) Valve timing control device
JP4049366B2 (en) EGR system for a turbocharged diesel engine
JP2009250209A (en) Exhaust gas recirculating device of internal combustion engine
RU151787U1 (en) INTERNAL COMBUSTION ENGINE
JP5974805B2 (en) Multi-cylinder engine with turbocharger
JP5983285B2 (en) Turbocharged engine
JP5488124B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616