JP4072888B2 - Chuck - Google Patents

Chuck Download PDF

Info

Publication number
JP4072888B2
JP4072888B2 JP2002020644A JP2002020644A JP4072888B2 JP 4072888 B2 JP4072888 B2 JP 4072888B2 JP 2002020644 A JP2002020644 A JP 2002020644A JP 2002020644 A JP2002020644 A JP 2002020644A JP 4072888 B2 JP4072888 B2 JP 4072888B2
Authority
JP
Japan
Prior art keywords
chuck
spider
jaws
wedge
centering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002020644A
Other languages
Japanese (ja)
Other versions
JP2003220506A (en
Inventor
崇之 後藤
浩一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Howa Machinery Ltd
Original Assignee
Okuma Corp
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Howa Machinery Ltd filed Critical Okuma Corp
Priority to JP2002020644A priority Critical patent/JP4072888B2/en
Publication of JP2003220506A publication Critical patent/JP2003220506A/en
Application granted granted Critical
Publication of JP4072888B2 publication Critical patent/JP4072888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、薄肉円筒ワークの把握に好適なチャックに関するものである。
【0002】
【従来の技術】
薄肉円筒ワークは軟弱で歪みやすいため、従来から、チャック円周方向に多数の把握部を配列して、把握力を分散させる技術が提案されている。例えば、特開平10−249614号公報(第1従来例)には、チャックボディに多数の油圧シリンダを放射状に配列し、各シリンダのロッドでワークを把握するチャックが示されている。特公昭57−46964号公報(第2従来例)には、チャック軸線方向の1箇所に9個の把握爪を配設し、そのうち3個の把握爪がワークを芯出しするまで、残り6個の把握爪を変位可能に設けたチャックが示されている。実開昭55−31532号公報(第3従来例)には、チャック中心軸に垂直な複数の平面上に、それぞれ揺動する3つの把握爪を配置し、これらの把握爪により芯出しと把握とを行って、各平面内においてワークの中心と把握中心とが一致するようにしたチャックが開示されている。
【0003】
【発明が解決しようとする課題】
ところが、第1従来例のチャックによると、油圧シリンダが放射状に配列されているので、高速回転時に、遠心力がピストンに作用して把握力を低下させる問題点があった。第2従来例のチャックによると、全ての把握爪がチャック軸線方向の1箇所に配設されていため、チャック軸線方向に長いワークを重切削する場合に、切削抵抗によるモーメントに対して充分な剛性を確保できない問題点があった。第3従来例のチャックでは、各垂直面内の各3つの把握爪はそれぞれ半径方向に等距離移動して把握するものであるから、このように等距離移動する把握爪をそれ以上追加しても、ワーク外径精度のバラツキによりワークを把握できない把握爪が発生することになり、ワークを均一に把握できない。また、1つの把握箇所における把握荷重を小さくするために、各平面内に位置するそれぞれ3つの把握爪の把握部を揺動するようにして、ワーク把握箇所を6点としているが、把握箇所をそれ以上とすることはできず、一層の重切削には向かない問題点があった。
【0004】
そこで、本発明の課題は、遠心力による把握力の低下を抑え、剛性を高め、外径寸法にバラツキのあるワークを精度よく把握して、高速回転、重切削、高精度加工に適応でき、特に薄肉円筒ワークの把握に好適なチャックを提供することにある。
【0005】
【課題を解決するための手段】
上記の課題を解決するために、請求項1の発明によるチャックは、チャックボディの前後2位置にそれぞれ多数のマスタージョウをチャック半径方向へ移動可能に支持し、前側の3つのマスタージョウにワークを芯出しする前芯出ジョウを設け、前側の残り複数のマスタージョウに前芯出ジョウより遅れてワークを把握する前把握ジョウを設け、後側の3つのマスタージョウにワークを芯出しする後芯出ジョウを設け、後側の残り複数のマスタージョウに後芯出ジョウより遅れてワークを把握する後把握ジョウを設け、全部のマスタージョウにチャック軸線方向に長いウエッジバーを楔部を介し長手方向へ移動可能に結合し、チャックボディに、ウエッジバーを案内する案内孔を形成するとともに、ウエッジバーをチャック軸線方向へ駆動する駆動機構を設け、前記駆動機構を、全部のウエッジバーが貫通する第1スパイダと、第1スパイダをチャック軸線方向へ駆動する駆動部材と、前芯出ジョウに連なる各ウエッジバーをチャック軸線方向へ一体移動可能に連結する第2スパイダと、後芯出ジョウに連なる各ウエッジバーをチャック軸線方向へ一体移動可能に連結する第3スパイダと、第1スパイダの動力を第2スパイダに伝える第1バネ部材と、第1スパイダの動力を第3スパイダに伝える第2バネ部材と、第1スパイダの動力を前後の把握ジョウに連なる各ウエッジバーにそれぞれ別々に伝える第3バネ部材とから構成したことを特徴とする
【0008】
請求項の発明によるチャックは、チャックボディとウエッジバーとの間の摩擦力を有効利用して、遠心力による把握力の低下を確実に防止するために、第1、第2及び第3スパイダに、ウエッジバーがチャック半径方向の隙間を介して貫通する孔を形成したことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図4に示すように、この実施形態のチャックにおいては、チャックボディ1の前部に保持筒2が一体的に突設され、保持筒2の外周に防塵カップ3が嵌着されている。チャックボディ1の後端面にはバックプレート4がボルト5で組み付けられ、バックプレート4に複数の孔6(図2参照)が形成され、孔6に挿入されるボルト7によってチャックが旋盤等の主軸に取り付けられる。
【0010】
保持筒2の前端部には、円周方向に9個の前孔9が40°の等角度間隔をおいてチャック半径方向に貫設され、各前孔9に前マスタージョウ10が摺動可能に挿入されている。保持筒2の後端部には、円周方向に9個の後孔11が前孔9と20°異なる位相に40°の等角度間隔をおいてチャック半径方向に貫設され、各後孔11に後マスタージョウ12が摺動可能に挿入されている。これにより、チャックボディ1の前後2位置に全部で18本のマスタージョウ10,12がチャック軸線周りの異なる位相に20°の等角度間隔をおいて配列されている(図3参照)。
【0011】
9本の前マスタージョウ10のうち、120°の等角度間隔をおいて位置する3本のマスタージョウ10Aには、薄肉円筒ワークWの前端を芯出しする前芯出ジョウ14が設けられている。残り6本の前マスタージョウ10には、前芯出ジョウ14より遅れてワークWの前端を把握する前把握ジョウ15が設けられている。これらのジョウ14,15はホルダ16の内面に固着され、ホルダ16はスペーサ17を介しボルト18により前マスタージョウ10の内端に取り付けられている。
【0012】
なお、スペーサ17の厚みを調節することにより、マスタージョウ10(10A)に対するジョウ14,15の半径方向の取付位置が、把握するワークの外径寸法に合わせて設定されている。
【0013】
9本の後マスタージョウ12のうち、120°の等角度間隔をおいて位置する3本の後マスタージョウ12Aには、薄肉円筒ワークWの後端を芯出しする後芯出ジョウ21が設けられ、残り6本の後マスタージョウ12には、後芯出ジョウ21より遅れてワークWの後端を把握する後把握ジョウ22が設けられている。これらのジョウ21,22は、前側のジョウ14,15と同様の取付構造により後マスタージョウ12の内端に取り付けられている。
【0014】
前後のマスタージョウ10(10A),12(12A)にはチャック軸線方向に長いウエッジバー24が組み付けられ、チャックボディ1の保持筒2に各ウエッジバー24を別々にチャック軸線方向へ摺動自在に案内する案内孔25が形成されている。図6及び図7に示すように、ウエッジバー24の前端部には扁平部26が形成され、扁平部26の両側面に突条楔部27が前下がりの斜状に突設されている。マスタージョウ10,12には扁平部26が嵌合する半径方向溝28が形成され、半径方向溝28に突条楔部27に噛み合う溝状楔部29が凹設されている。
【0015】
そして、ウエッジバー24は全部のマスタージョウ10,12に楔部27,29を介して長手方向へ摺動可能に結合され、各マスタージョウ10,12がウエッジバー24の後退時に閉鎖され、前進時に開放される。なお、芯出ジョウ14,21に連なる6本のウエッジバー24と、把握ジョウ15,22に連なる12本のウエッジバー24とでは、楔部27,29のチャック軸線方向の噛合位置が僅かに相違し、ウエッジバー24の前進端で、把握ジョウ15,22が芯出ジョウ14,21より僅かに大径の円周上に位置し、ウエッジバー24の後退時に、把握ジョウ15,22が芯出ジョウ14,21より遅れてワークWを把握するようになっている。
【0016】
図1、図2に示すように、チャックボディ1の内部には、各ウエッジバー24をチャック軸線方向へ駆動する駆動機構32が設置されている。駆動機構32は3つのスパイダ33,34,35をチャック軸線方向へ移動可能に備え、中間の第1スパイダ33はチャックボディ1に固定したガイド部材36の小径部により案内され、後側の第2スパイダ34は第1スパイダ33のボス部により案内され、前側の第3スパイダ35はガイド部材36の大径部によって案内される。
【0017】
第1スパイダ33のボス部はボルト38によりドロースクリュー39に結合され、ドロースクリュー39は図示しない外部アクチュエータ(例えば、主軸側に設置された回転シリンダ)に連結され、このドロースクリュー39により第1スパイダ33をチャック軸線方向へ駆動する駆動部材が構成されている。また、第1スパイダ33の外周部には18個の孔40が形成され、各孔40に全部のウエッジバー24がチャック半径方向の隙間(案内孔25とウエッジバー24との摺動隙間より大きい隙間)gを介して別々に貫通されている。
【0018】
図5に示すように、第2スパイダ34には3個の孔41が形成され、各孔41に前芯出ジョウ14に連なる3本のウエッジバー24の後端がチャック半径方向の隙間gを介し別々に貫通されている。第2スパイダ34の背面側には抜止板44が配置され、ボルト43で各ウエッジバー24の後端面に固定されている。第1スパイダ33と第2スパイダ34との間のウエッジバー24には第1圧縮バネ45が嵌挿され、そのばね力により第2スパイダ34が後方へ押されて抜止板44に当接されている。この構成により、前芯出ジョウ14に連なる3本のウエッジバー24が第2スパイダ34にチャック軸線方向へ一体移動可能に連結され、第1スパイダ33の動力が第1圧縮バネ45を介して第2スパイダ34に伝えられる。
【0019】
図1に示すように、第3スパイダ35には18個の孔42が形成され、各孔42に全部のウエッジバー24がチャック半径方向の隙間gを介して別々に貫通され、そのうち後芯出ジョウ21に連なる3本のウエッジバー24は中間部の鍔部46及びネジ48により第3スパイダ35にチャック軸線方向へ一体移動可能に連結されている。これら3本のウエッジバー24の後端にはバネ受け47が設けられ、バネ受け47と第1スパイダ33との間のウエッジバー24に第2圧縮バネ49が嵌挿され、この圧縮バネ49を介して第1スパイダ33の動力が第3スパイダ35に伝えられる。
【0020】
一方、図2に示すように、前把握ジョウ15及び後把握ジョウ22に連なる計12本のウエッジバー24の後端には、バネ受け50がボルト51で固定され、第2スパイダ34には、ウエッジバー24の後退時にボルト51の頭部を逃がす逃し孔52が設けられている。そして、バネ受け50と第1スパイダ33との間のウエッジバー24に第3圧縮バネ53が嵌挿され、この圧縮バネ53を介して第1スパイダ33の動力が前後の把握ジョウ15,22に連なる12本のウエッジバー24にそれぞれ別々に伝達される。
【0021】
なお、ガイド部材36の内側にはワークストッパ55がチャック軸線方向へ進退自在に収容され、主軸側の外部アクチュエータ(図示略)によりスクリューロッド56及びドロースリーブ57を介して駆動され、ワークWをチャック軸線上で位置決めできるようになっている。
【0022】
次に、上記のように構成されたチャックの作用について説明する。チャックの休止状態においては、ワークストッパ55が後退端位置で停止し、ドロースクリュー39及び第1スパイダ33が前進端位置で停止し、全部の圧縮バネ45,49,53が伸び、全部のウエッジバー24が前進端位置で停止し、全部のマスタージョウ10,12がチャック半径方向外側に開き、全部のジョウ14,15,21,22が全開位置で停止している。
【0023】
薄肉円筒ワークWの加工に際しては、ワークストッパ55を前進し、ワークWを挿入してストッパ55で位置決めしたのち、ドロースクリュー39で第1スパイダ33を後退する。これにより、図5に示すように、第1圧縮バネ45を介し第2スパイダ34が後退し、前芯出ジョウ14に連なる3本のウエッジバー24が後退し、楔部27,29の楔作用によって、3本の前マスタージョウ10Aが閉じ、3つの前芯出ジョウ14がワークWの前端3箇所を芯出しする。このとき、各ウエッジバー24が第2スパイダ34に一体移動可能に連結されているので、3つの前芯出ジョウ14が同等量閉じて、ワークWの前端を正確に芯出しすることができる。
【0024】
また、第1スパイダ33の後退により、図1に示すように、第2圧縮バネ49を介し第3スパイダ35が後退し、後芯出ジョウ21に連なる3本のウエッジバー24が後退し、楔部27,29の楔作用によって、3本の後マスタージョウ12Aが閉じ、3つの後芯出ジョウ21がワークWの後端3箇所を芯出しする。このときも、各ウエッジバー24が第3スパイダ35に一体移動可能に連結されているので、3つの後芯出ジョウ21がチャック半径方向へ同等量閉じ、ワークWの後端を前芯出ジョウ14と同じタイミングで正確に芯出しすることができる。
【0025】
ワークWの芯出後には、第1スパイダ33のさらなる後退により、図2に示すように、第3圧縮バネ53を介し前後の把握ジョウ15,22に連なる12本のウエッジバー24が後退し、楔部27,29の楔作用によって、6本の前マスタージョウ10と6本の後マスタージョウ12とが同時に閉じる。そして、6つの前把握ジョウ15がワークWの前端6箇所を把握するとともに、6つの後把握ジョウ22がワークWの後端6箇所を把握する。このときは、第3圧縮バネ53のバネ力が各ウエッジバー24にそれぞれ別々に作用しているので、ワークWの把握箇所に外径寸法のバラツキがある場合でも、これを第3圧縮バネ53で吸収して、ワークWの前後両端を把握ジョウ15,22によって精度よく把握でき、もって、旋盤等による高精度加工が可能となる。
【0026】
また、把握ジョウ15,22と同時に前後の芯出ジョウ14,21もワークWを把握するので、ワークWの前端及び後端をそれぞれ9箇所ずつ強力に把握できて、旋盤等による重切削が可能となる。しかも、18本のマスタージョウ10,12はチャック軸線周りの異なる位相に等角度間隔をおいて配列されているため、全部のジョウ14,15,21,22がワークWの前端全周と後端全周とをそれぞれ均一な力で把握でき、薄肉円筒ワークWの変形を確実に防止することができる。
【0027】
この把握状態で、チャックを回転すると、マスタージョウ10,12に作用する遠心力により楔部27,29の楔作用を介してウエッジバー24を前方へ移動させてジョウ14,15,21,22を開かせようとする。しかし、全部のウエッジバー24が保持筒2の案内孔25に挿入されるとともに、スパイダ33,34,35の孔40,41,42に隙間gを介して貫通されているので、ウエッジバー24が遠心力で案内孔25の内面に強く押し付けられ、チャックボディ1に大きな摩擦力が発生し、この摩擦力でウエッジバー24のチャック軸線方向前方への移動が阻止される。従って、ジョウ14,15,21,22の把握力低下を確実に防止でき、もって、チャックの高速回転が可能となる。
【0028】
なお、マスタージョウ10,12の本数及び配列間隔は前記実施形態に限定されるものではなく、ワークWの外径寸法、厚さ寸法、材質等に応じて適宜に変更することができる。その他、本発明の趣旨を逸脱しない範囲で、チャック各部の形状並びに構成を適宜に変更して実施することも可能である。
【0029】
【発明の効果】
以上詳述したように、請求項1の発明によれば、チャックボディの前後2位置にそれぞれ複数の芯出ジョウ及び把握ジョウを配列し、これらのジョウに連なるウエッジバーをチャックボディの案内孔に挿入したので、遠心力による把握力の低下を抑え、かつ剛性を高め、外形寸法にバラツキのあるワークをも精度よく把握して、重切削、高精度加工に適応させることができ、特に薄肉円筒ワークの把握に好適に使用可能となる。特に、芯出ジョウに連なるウエッジバーと、把握ジョウに連なるウエッジバーへの動力を別々に伝えるような駆動機構を有することにより、1つの駆動部材で芯出及び把握精度をより一層向上させて、薄肉円筒ワークを精度よく把握できる効果がある。
【0032】
請求項の発明によれば、3つのスパイダにウエッジバーをチャック半径方向の隙間を介して貫通したので、チャックボディとウエッジバーとの間の摩擦力を有効利用して、遠心力による把握力の低下を確実に防止できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すチャックの断面図である。
【図2】図1と異なる位相におけるチャックの断面図である。
【図3】図1のチャックの正面図である。
【図4】図3の中心部分の拡大図である。
【図5】図3のA−A線断面図である。
【図6】図1のB−B線断面図である。
【図7】図1のC−C線断面図である。
【符号の説明】
1・・チャックボディ、10・・前マスタージョウ、12・・後マスタージョウ、14・・前芯出ジョウ、15・・前把握ジョウ、21・・後芯出ジョウ、22・・後把握ジョウ、24・・ウエッジバー、25・・案内孔、27・・楔部、29・・楔部、32・・駆動機構、33・・第1スパイダ、34・・第2スパイダ、35・・第3スパイダ、39・・ドロースクリュー、40,41,42・・孔、45・・第1圧縮バネ、49・・第2圧縮バネ、53・・第3圧縮バネ、55・・ワークストッパ、g・・隙間、W・・ワーク。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chuck suitable for grasping a thin cylindrical workpiece.
[0002]
[Prior art]
Since a thin cylindrical workpiece is soft and easily distorted, conventionally, a technique has been proposed in which a large number of grasping portions are arranged in the chuck circumferential direction to disperse the grasping force. For example, Japanese Patent Laid-Open No. 10-249614 (first conventional example) shows a chuck in which a number of hydraulic cylinders are arranged radially in a chuck body and a workpiece is grasped by a rod of each cylinder. In Japanese Patent Publication No.57-46964 (second conventional example), nine gripping claws are provided at one location in the chuck axis direction, and the remaining six grips until three gripping claws center the workpiece. A chuck is shown in which the gripping claws are provided so as to be displaceable. In Japanese Utility Model Laid-Open No. 55-31532 (third conventional example), three grasping claws that respectively swing are arranged on a plurality of planes perpendicular to the central axis of the chuck, and centering and grasping by these grasping claws. Thus, there is disclosed a chuck in which the center of the workpiece and the grasping center coincide with each other in each plane.
[0003]
[Problems to be solved by the invention]
However, according to the chuck of the first conventional example, since the hydraulic cylinders are arranged in a radial manner, there is a problem in that the centrifugal force acts on the piston during high-speed rotation to reduce the grasping force. According to the chuck of the second conventional example, since all the gripping claws are arranged at one place in the chuck axis direction, sufficient rigidity against the moment due to the cutting force is obtained when a long workpiece is cut in the chuck axis direction. There was a problem that could not be secured. In the chuck of the third conventional example, each of the three grasping claws in each vertical plane is grasped by moving the same distance in the radial direction. However, a gripping claw that cannot grasp the workpiece occurs due to variations in the workpiece outer diameter accuracy, and the workpiece cannot be grasped uniformly. In addition, in order to reduce the grasping load at one grasping point, the grasping portions of the three grasping claws located in each plane are swung so that there are six workpiece grasping points. There was a problem that it could not be more than that and was not suitable for further heavy cutting.
[0004]
Therefore, the problem of the present invention is to suppress a decrease in grasping force due to centrifugal force, increase rigidity, accurately grasp a workpiece with variations in outer diameter dimensions, and can be applied to high-speed rotation, heavy cutting, high-precision machining, In particular, it is to provide a chuck suitable for grasping a thin cylindrical workpiece.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the chuck according to the invention of claim 1 supports a large number of master jaws at two front and rear positions of the chuck body so as to be movable in the chuck radial direction, and supports a work on the three master jaws on the front side. A front centering jaw for centering is provided, and a plurality of remaining master jaws on the front side are provided with a front gripping jaw for grasping the workpiece later than the front centering jaw, and a rear centering centering the workpiece on the three master jaws on the rear side. A post-holding jaw is provided on the remaining master jaws on the rear side to grasp the workpiece later than the rear centering jaw, and a long wedge bar in the chuck axis direction is provided on all master jaws in the longitudinal direction via the wedge. A guide hole for guiding the wedge bar is formed in the chuck body, and the wedge bar is driven in the chuck axis direction. The drive mechanism is provided, said drive mechanism, a first spider that all the wedge bar passes, a driving member for driving the first spider to the chuck axis direction, each wedge bar leading to the front centering jaw to the chuck axis direction A second spider that is connected so as to be movable integrally, a third spider that connects each wedge bar connected to the rear centering jaw so as to be integrally movable in the chuck axis direction, and a first spring that transmits the power of the first spider to the second spider A member, a second spring member for transmitting the power of the first spider to the third spider, and a third spring member for separately transmitting the power of the first spider to each wedge bar connected to the front and rear grasping jaws. Features .
[0008]
The chuck according to the second aspect of the present invention uses the frictional force between the chuck body and the wedge bar to effectively prevent a decrease in the gripping force due to the centrifugal force. Further, the wedge bar is formed with a hole penetrating through a gap in the chuck radial direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 4, in the chuck of this embodiment, a holding cylinder 2 is integrally projected on the front portion of the chuck body 1, and a dust-proof cup 3 is fitted on the outer periphery of the holding cylinder 2. Yes. A back plate 4 is assembled with bolts 5 on the rear end surface of the chuck body 1, and a plurality of holes 6 (see FIG. 2) are formed in the back plate 4. The bolts 7 inserted into the holes 6 serve as a main spindle such as a lathe. Attached to.
[0010]
At the front end of the holding cylinder 2, nine front holes 9 are circumferentially provided in the chuck radial direction at equal angular intervals of 40 °, and the front master jaw 10 can slide in each front hole 9. Has been inserted. At the rear end of the holding cylinder 2, nine rear holes 11 in the circumferential direction are provided in the chuck radial direction at an equal angular interval of 40 ° at a phase different from the front hole 9 by 20 °, and each rear hole 11, a rear master jaw 12 is slidably inserted. Accordingly, a total of 18 master jaws 10 and 12 are arranged at two different positions around the chuck axis at equal angular intervals of 20 ° at two positions on the front and rear sides of the chuck body 1 (see FIG. 3).
[0011]
Of the nine front master jaws 10, three master jaws 10A positioned at equal angular intervals of 120 ° are provided with front centering jaws 14 for centering the front end of the thin cylindrical workpiece W. . The remaining six front master jaws 10 are provided with a front grasping jaw 15 for grasping the front end of the work W after the front centering jaw 14. These jaws 14 and 15 are fixed to the inner surface of the holder 16, and the holder 16 is attached to the inner end of the front master jaw 10 with a bolt 18 through a spacer 17.
[0012]
In addition, by adjusting the thickness of the spacer 17, the radial mounting positions of the jaws 14 and 15 with respect to the master jaw 10 (10 </ b> A) are set in accordance with the outer diameter size of the workpiece to be grasped.
[0013]
Of the nine rear master jaws 12, three rear master jaws 12A positioned at equal angular intervals of 120 ° are provided with rear centering jaws 21 for centering the rear end of the thin cylindrical workpiece W. The remaining six rear master jaws 12 are provided with rear grasping jaws 22 for grasping the rear end of the work W after the rear centering jaw 21. These jaws 21 and 22 are attached to the inner end of the rear master jaw 12 by the same attachment structure as the front jaws 14 and 15.
[0014]
The front and rear master jaws 10 (10A) and 12 (12A) are assembled with a wedge bar 24 which is long in the chuck axis direction, and each wedge bar 24 can be separately slid in the chuck axis direction on the holding cylinder 2 of the chuck body 1. A guide hole 25 for guiding is formed. As shown in FIGS. 6 and 7, a flat portion 26 is formed at the front end portion of the wedge bar 24, and a protruding wedge portion 27 is provided on both side surfaces of the flat portion 26 so as to project obliquely downward. The master jaws 10 and 12 are formed with a radial groove 28 into which the flat portion 26 is fitted, and a grooved wedge portion 29 that engages with the protruding wedge portion 27 is recessed in the radial groove 28.
[0015]
The wedge bar 24 is coupled to all the master jaws 10 and 12 through the wedge portions 27 and 29 so as to be slidable in the longitudinal direction. Each master jaw 10 and 12 is closed when the wedge bar 24 is retracted, and when the wedge bar 24 is advanced. Opened. The 6 wedge bars 24 connected to the centering jaws 14 and 21 and the 12 wedge bars 24 connected to the grasping jaws 15 and 22 have slightly different engagement positions in the chuck axis direction of the wedge portions 27 and 29. At the forward end of the wedge bar 24, the grasping jaws 15 and 22 are positioned on a circumference slightly larger in diameter than the centering jaws 14 and 21, and when the wedge bar 24 is retracted, the grasping jaws 15 and 22 are centered. The workpiece W is grasped later than the jaws 14 and 21.
[0016]
As shown in FIGS. 1 and 2, a drive mechanism 32 that drives each wedge bar 24 in the chuck axis direction is installed inside the chuck body 1. The drive mechanism 32 includes three spiders 33, 34, and 35 movably in the chuck axis direction, and the intermediate first spider 33 is guided by a small diameter portion of a guide member 36 fixed to the chuck body 1, and the second spider 33 on the rear side. The spider 34 is guided by the boss portion of the first spider 33, and the front third spider 35 is guided by the large diameter portion of the guide member 36.
[0017]
The boss portion of the first spider 33 is coupled to a draw screw 39 by a bolt 38, and the draw screw 39 is connected to an external actuator (not shown) (for example, a rotary cylinder installed on the main shaft side). A drive member for driving 33 in the chuck axis direction is configured. In addition, 18 holes 40 are formed in the outer peripheral portion of the first spider 33, and all the wedge bars 24 are larger in the chuck radial direction gaps than the sliding gaps between the guide holes 25 and the wedge bars 24. It is penetrated separately via a gap g.
[0018]
As shown in FIG. 5, three holes 41 are formed in the second spider 34, and the rear ends of the three wedge bars 24 connected to the front centering jaw 14 in each hole 41 form a gap g in the chuck radial direction. It is penetrated separately through. A retaining plate 44 is disposed on the back side of the second spider 34 and is fixed to the rear end surface of each wedge bar 24 with a bolt 43. A first compression spring 45 is fitted into the wedge bar 24 between the first spider 33 and the second spider 34, and the second spider 34 is pushed rearward by the spring force to come into contact with the retaining plate 44. Yes. With this configuration, the three wedge bars 24 connected to the front centering jaw 14 are coupled to the second spider 34 so as to be integrally movable in the chuck axis direction, and the power of the first spider 33 is transmitted via the first compression spring 45. 2 is transmitted to the spider 34.
[0019]
As shown in FIG. 1, 18 holes 42 are formed in the third spider 35, and all the wedge bars 24 are individually penetrated through the holes 42 through the gaps g in the chuck radial direction. The three wedge bars 24 connected to the jaw 21 are connected to the third spider 35 by an intermediate flange 46 and a screw 48 so as to be integrally movable in the chuck axis direction. A spring receiver 47 is provided at the rear ends of the three wedge bars 24, and a second compression spring 49 is inserted into the wedge bar 24 between the spring receiver 47 and the first spider 33. Thus, the power of the first spider 33 is transmitted to the third spider 35.
[0020]
On the other hand, as shown in FIG. 2, spring receivers 50 are fixed with bolts 51 to the rear ends of a total of 12 wedge bars 24 connected to the front grasping jaw 15 and the rear grasping jaw 22. An escape hole 52 for allowing the head of the bolt 51 to escape when the wedge bar 24 is retracted is provided. A third compression spring 53 is inserted into the wedge bar 24 between the spring receiver 50 and the first spider 33, and the power of the first spider 33 is transmitted to the front and rear grasping jaws 15 and 22 through the compression spring 53. Each of the 12 wedge bars 24 is transmitted separately.
[0021]
A work stopper 55 is housed inside the guide member 36 so as to be able to advance and retract in the chuck axis direction, and is driven by an external actuator (not shown) on the main shaft side via a screw rod 56 and a draw sleeve 57 to chuck the work W. It can be positioned on the axis.
[0022]
Next, the operation of the chuck configured as described above will be described. In the chuck rest state, the work stopper 55 stops at the retracted end position, the draw screw 39 and the first spider 33 stop at the advanced end position, all the compression springs 45, 49, 53 extend, and all the wedge bars 24 stops at the forward end position, all the master jaws 10 and 12 open outward in the chuck radial direction, and all the jaws 14, 15, 21, and 22 stop at the fully open position.
[0023]
When processing the thin cylindrical workpiece W, the workpiece stopper 55 is advanced, the workpiece W is inserted and positioned by the stopper 55, and then the first spider 33 is retracted by the draw screw 39. As a result, as shown in FIG. 5, the second spider 34 is retracted via the first compression spring 45, the three wedge bars 24 connected to the front centering jaw 14 are retracted, and the wedge action of the wedge portions 27 and 29 is performed. As a result, the three front master jaws 10A are closed, and the three front centering jaws 14 center the three front ends of the workpiece W. At this time, since each wedge bar 24 is connected to the second spider 34 so as to be integrally movable, the three front centering jaws 14 are closed by the same amount, and the front end of the workpiece W can be accurately centered.
[0024]
As the first spider 33 is retracted, as shown in FIG. 1, the third spider 35 is retracted via the second compression spring 49, the three wedge bars 24 connected to the rear centering jaw 21 are retracted, and the wedges are retracted. The three rear master jaws 12A are closed by the wedge action of the portions 27 and 29, and the three rear centering jaws 21 center the three rear ends of the workpiece W. Also at this time, since each wedge bar 24 is connected to the third spider 35 so as to be integrally movable, the three rear centering jaws 21 are closed by the same amount in the chuck radial direction, and the rear end of the workpiece W is closed to the front centering jaw. 14 can be accurately centered at the same timing.
[0025]
After the workpiece W is centered, the 12 wedge bars 24 connected to the front and rear grasping jaws 15 and 22 are retracted via the third compression spring 53 by further retracting the first spider 33, as shown in FIG. By the wedge action of the wedge portions 27 and 29, the six front master jaws 10 and the six rear master jaws 12 are simultaneously closed. The six front grasping jaws 15 grasp the six front end positions of the workpiece W, and the six rear grasping jaws 22 grasp the six rear end positions of the workpiece W. At this time, since the spring force of the third compression spring 53 acts on each wedge bar 24 separately, even if there is a variation in the outer diameter at the grasping position of the workpiece W, this is applied to the third compression spring 53. Thus, both the front and rear ends of the workpiece W can be accurately grasped by the grasping jaws 15 and 22, thereby enabling high-precision machining using a lathe or the like.
[0026]
In addition, the front and rear centering jaws 14 and 21 simultaneously grasp the workpiece W at the same time as the grasping jaws 15 and 22, so that the front end and the rear end of the workpiece W can be grasped powerfully at 9 locations respectively, and heavy cutting with a lathe or the like is possible. It becomes. In addition, since the 18 master jaws 10 and 12 are arranged at different angles around the chuck axis at equal angular intervals, all the jaws 14, 15, 21, and 22 are all around the front end and the rear end of the workpiece W. The entire circumference can be grasped with a uniform force, and deformation of the thin cylindrical workpiece W can be reliably prevented.
[0027]
When the chuck is rotated in this grasping state, the wedge bar 24 is moved forward through the wedge action of the wedge portions 27 and 29 by the centrifugal force acting on the master jaws 10 and 12, and the jaws 14, 15, 21, and 22 are moved. Try to open. However, since all the wedge bars 24 are inserted into the guide holes 25 of the holding cylinder 2 and penetrated through the holes 40, 41, and 42 of the spiders 33, 34, and 35 through the gap g, the wedge bar 24 is It is strongly pressed against the inner surface of the guide hole 25 by the centrifugal force, and a large frictional force is generated in the chuck body 1, and the wedge bar 24 is prevented from moving forward in the chuck axis direction by this frictional force. Accordingly, a decrease in the gripping force of the jaws 14, 15, 21, 22 can be reliably prevented, and the chuck can be rotated at high speed.
[0028]
Note that the number and arrangement interval of the master jaws 10 and 12 are not limited to the above-described embodiment, and can be appropriately changed according to the outer diameter size, thickness dimension, material, and the like of the workpiece W. In addition, the shape and configuration of each part of the chuck can be changed as appropriate without departing from the spirit of the present invention.
[0029]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, a plurality of centering jaws and grasping jaws are arranged at two positions on the front and rear sides of the chuck body, and a wedge bar connected to these jaws is used as a guide hole of the chuck body. Because it is inserted, it can suppress the decrease in gripping force due to centrifugal force, increase rigidity, accurately grasp workpieces with variations in external dimensions, and can be applied to heavy cutting and high precision machining, especially thin-walled cylinders It can be suitably used for grasping a workpiece . In particular, by having a drive mechanism that separately transmits the power to the wedge bar linked to the centering jaw and the wedge bar linked to the grasping jaw, the centering and grasping accuracy can be further improved with one drive member, It has the effect of accurately grasping thin cylindrical workpieces.
[0032]
According to the invention of claim 2 , since the wedge bar is passed through the three spiders through the gap in the chuck radial direction, the friction force between the chuck body and the wedge bar is effectively used, and the grasping force by the centrifugal force is obtained. There is an effect that can surely prevent the lowering of.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a chuck showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the chuck at a phase different from that of FIG.
FIG. 3 is a front view of the chuck of FIG. 1;
4 is an enlarged view of a central portion of FIG.
5 is a cross-sectional view taken along line AA in FIG.
6 is a cross-sectional view taken along line BB in FIG.
7 is a cross-sectional view taken along the line CC in FIG. 1. FIG.
[Explanation of symbols]
1 .... Chuck body, 10 .... Front master jaw, 12 .... Rear master jaw, 14 .... Front centering jaw, 15 .... Front gripping jaw, 21 ... Rear centering jaw, 22 .... Back gripping jaw, 24 ... Wedge bar 25 ... Guide hole 27 ... Wedge part 29 ... Wedge part 32 ... Drive mechanism 33 ... First spider 34 ... Second spider 35 ... Third spider , 39 .. Draw screw, 40, 41, 42 .. hole, 45 .. First compression spring, 49 .. Second compression spring, 53 .. Third compression spring, 55 .. Work stopper, g. , W. Work.

Claims (2)

チャックボディの前後2位置にそれぞれ多数のマスタージョウをチャック半径方向へ移動可能に支持し、前側の3つのマスタージョウにワークを芯出しする前芯出ジョウを設け、前側の残り複数のマスタージョウに前芯出ジョウより遅れてワークを把握する前把握ジョウを設け、後側の3つのマスタージョウにワークを芯出しする後芯出ジョウを設け、後側の残り複数のマスタージョウに後芯出ジョウより遅れてワークを把握する後把握ジョウを設け、全部のマスタージョウにチャック軸線方向に長いウエッジバーを楔部を介し長手方向へ移動可能に結合し、チャックボディに、ウエッジバーを案内する案内孔を形成するとともに、ウエッジバーをチャック軸線方向へ駆動する駆動機構を設け、前記駆動機構を、全部のウエッジバーが貫通する第1スパイダと、第1スパイダをチャック軸線方向へ駆動する駆動部材と、前芯出ジョウに連なる各ウエッジバーをチャック軸線方向へ一体移動可能に連結する第2スパイダと、後芯出ジョウに連なる各ウエッジバーをチャック軸線方向へ一体移動可能に連結する第3スパイダと、第1スパイダの動力を第2スパイダに伝える第1バネ部材と、第1スパイダの動力を第3スパイダに伝える第2バネ部材と、第1スパイダの動力を前後の把握ジョウに連なる各ウエッジバーにそれぞれ別々に伝える第3バネ部材とから構成したことを特徴とするチャック。A large number of master jaws are supported at two positions on the front and back of the chuck body so as to be movable in the chuck radial direction, and front centering jaws for centering the workpiece are provided on the three front master jaws. A pre-holding jaw is provided to grasp the workpiece later than the front centering jaw, a rear centering jaw is provided for centering the workpiece on the three rear master jaws, and a rear centering jaw is provided to the remaining master jaws on the rear side. A gripping jaw is provided to grasp the workpiece later, and a wedge hole that is long in the chuck axis direction is coupled to all the master jaws so as to be movable in the longitudinal direction via the wedge portion, and guide holes for guiding the wedge bar to the chuck body to form a, a driving mechanism for driving the wedge bars to the chuck axis direction is provided, said drive mechanism, be through a total of wedge bar A first spider, a driving member that drives the first spider in the chuck axis direction, a second spider that connects each wedge bar connected to the front centering jaw so as to be integrally movable in the chuck axis direction, and a rear centering jaw A third spider that connects each wedge bar so as to be integrally movable in the chuck axis direction, a first spring member that transmits the power of the first spider to the second spider, and a second spring that transmits the power of the first spider to the third spider A chuck comprising: a member; and a third spring member for separately transmitting the power of the first spider to each wedge bar connected to the front and rear grasping jaws . 第1、第2及び第3スパイダに、ウエッジバーがチャック半径方向の隙間を介して貫通する孔を形成した請求項1記載のチャック。 The chuck according to claim 1, wherein the first, second and third spiders are formed with holes through which the wedge bar passes through a gap in the chuck radial direction .
JP2002020644A 2002-01-29 2002-01-29 Chuck Expired - Fee Related JP4072888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020644A JP4072888B2 (en) 2002-01-29 2002-01-29 Chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020644A JP4072888B2 (en) 2002-01-29 2002-01-29 Chuck

Publications (2)

Publication Number Publication Date
JP2003220506A JP2003220506A (en) 2003-08-05
JP4072888B2 true JP4072888B2 (en) 2008-04-09

Family

ID=27744091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020644A Expired - Fee Related JP4072888B2 (en) 2002-01-29 2002-01-29 Chuck

Country Status (1)

Country Link
JP (1) JP4072888B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639412B1 (en) * 2005-09-23 2006-10-31 주식회사 삼천리기계 The out of roundness clamp chuck for machines tools
CN105014466B (en) * 2015-08-20 2016-04-20 温州智信机电科技有限公司 The conveyer of column device for processing center hole

Also Published As

Publication number Publication date
JP2003220506A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
US8777823B2 (en) Automatic tool changer
JPH0712561B2 (en) Method and apparatus for processing rotationally symmetrical members
US20120319364A1 (en) Chuck assembly for light alloy wheels
JP4705603B2 (en) Chuck
CN109128948B (en) Production fixture for balance shaft of automobile engine
JP4072888B2 (en) Chuck
JP3785225B2 (en) Collet chuck
US4482163A (en) Spindle powered adjustable chuck
JP5543193B2 (en) Eccentric chuck device and workpiece eccentric method
JP2011177871A (en) Operating body structure for chuck
CN211386964U (en) Lathe spindle box for flange machining
US4809466A (en) Method for the high-speed precision clamping of rotationally symmetrical workpieces and high-speed precision clamping device for implementing the method
JP3798843B2 (en) Lathe chuck device
JPS6346172Y2 (en)
JP6767779B2 (en) Chuck device and work chuck method
CN212471137U (en) Adjustable bench vice
JP2003001507A (en) High accuracy retracting chuck
CN217800155U (en) Turning and milling combined machine tool
JPH0596407A (en) Clamping device
JP4290422B2 (en) Material gripping device and automatic lathe
CN209550619U (en) A kind of self-lubricating bearing chamfering lathe
JP5526953B2 (en) Chuck device
JPH10296512A (en) Chuck
JPS60127906A (en) Power chuck
JP2796378B2 (en) Driving force transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees