JP4068511B2 - 固液界面反応微小反応装置 - Google Patents

固液界面反応微小反応装置 Download PDF

Info

Publication number
JP4068511B2
JP4068511B2 JP2003165585A JP2003165585A JP4068511B2 JP 4068511 B2 JP4068511 B2 JP 4068511B2 JP 2003165585 A JP2003165585 A JP 2003165585A JP 2003165585 A JP2003165585 A JP 2003165585A JP 4068511 B2 JP4068511 B2 JP 4068511B2
Authority
JP
Japan
Prior art keywords
reaction
solid
gasket
test piece
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165585A
Other languages
English (en)
Other versions
JP2005000770A (ja
Inventor
圭太 奥山
健司 野下
朗 笹平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003165585A priority Critical patent/JP4068511B2/ja
Publication of JP2005000770A publication Critical patent/JP2005000770A/ja
Application granted granted Critical
Publication of JP4068511B2 publication Critical patent/JP4068511B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固相と液相との界面における界面反応を測定するに好適な固液界面反応微小反応装置に関する。
【0002】
【従来の技術】
近年、生化学分野において、無細胞系蛋白質の合成反応や遺伝子の増幅反応等を評価する装置として、サンプルの微量化、反応や分析の高速化等といった様々な有効性を有するいわゆるマイクロリアクタを用いたものが開発されている。マイクロリアクタは、例えば、特開平10−337173号公報に記載されているように、基板に微小な液相の流路(数十〜数百μmの幅の流路)を形成し、この流路に接続した2つの流入口から、評価対象となる二種類の液体を送り込み、流路にて二液を合成するものである。
【0003】
かかる構成により、マイクロリアクタは、微細な流路に測定対象となる液体を送り込むため、液体の体積に対する液−液界面の面積が大きくなり、液体中の分子移動速度が高速化し、二液を効率的に反応させることができる。また、マイクロリアクタの流路は、容積が微量であるため、サンプルの量も少量で足り、かつ不純物の混入も抑制される。
【0004】
【特許文献1】
特開平10−337173号公報
【0005】
【発明が解決しようとする課題】
上述のマイクロリアクタは、液相と液相の反応に用いられるものであるが、例えば放射性物質の処理等において、液体に含まれる放射性物質に対する固体の吸着性能を測定する場合のように、固体と液体との界面で起こる現象を正確に評価する手段が必要となる。
【0006】
そこで、本発明者らは、先に、次のような固液界面反応微小反応装置を提案している。すなわち、この装置では、液相との界面にて界面反応を起こす固相の固体試料と表面に溝が形成された基板とを重ね合わせ、この溝及び固体試料によって形成される薄層の流路に界面反応を起こす液相を流通するようにしている。このように、実際の環境を再現して起こした固液界面反応を測定することにより、実際の環境で生じる様々な固液界面反応を精度良く測定することができるものである。
【0007】
しかしながら、試験片である固体試料の表面をやすり等により平坦にしたとしても、表面の凹凸が残るため、固体試料と溝の形成された基板を重ね合わせて流路を形成し、この流路に液体を流通したとき、両者の接触面から液体が漏洩しやすいという問題があることが判明した。特に、液体に含まれる放射性物質に対する固体の吸着性能を測定する場合では、液漏れが生じるということは、放射性物質の洩れとなり、問題が生じてくる。
【0008】
本発明の目的は、流路からの液漏れを防止できる固液界面反応微小反応装置を提供することにある。
【0009】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、反応溶液の流入口及び流出口が形成された基盤と、弾性を有し、前記基盤に比べて薄く、中央にスリットを有するガスケットとを備え、前記基盤と、前記ガスケットと、前記反応溶液の液相と界面反応を起こす固相が表面に形成された固体の試験片とを積層し、外圧を掛けることにより前記基盤とガスケットと試験片を密着させ、前記ガスケットのスリットとこのスリットの開口部に接する前記固相により反応流路を形成し、前記流入口から反応液を流入し、反応流路を経た反応溶液を前記流出口から流出させるようにしたものである。
かかる構成により、反応流路からの液漏れを防止し得るものとなる。
【0010】
(2)上記(1)において、好ましくは、前記基盤は、前記ガスケットと同等以上の硬さを有するようにしたものである。
【0011】
【発明の実施の形態】
以下、図1〜図3を用いて、本発明の一実施形態による固液界面反応微小反応装置の構成について説明する。
最初に、図1を用いて、本実施形態による固液界面反応微小反応装置に用いる反応容器の構成について説明する。
図1は、本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の構成を示す分解斜視図である。
【0012】
本実施形態による固液界面反応微小反応装置に用いる反応容器は、基盤チップ10と、ガスケット20と、試験片30とから構成されている。基盤チップ10は、ポリテトラフルオロエチレン(PTFE)からなり、その大きさは、例えば、縦40mm、横25mm、厚さ10mmである。基盤チップ10には、流体の流入口12と、流体の流出口14が厚さ方向に貫通する穴として形成されている。流入口12および流出口14の直径は、例えば、1.2mmφである。
【0013】
ガスケット20は、弾性を有する材料からなり、例えば、基盤チップ10と同じく、ポリテトラフルオロエチレン(PTFE)からなる。その大きさは、例えば、縦40mm、横25mm、厚さ160μmである。ガスケット20の中央部には、反応流路の一部となるスリット22が形成されている。スリット22の大きさは、例えば、縦20mm、横2mm、厚さ160μmである。
【0014】
試験片30は、固体試料であり、その大きさは、例えば、縦40mm、横25mm、厚さ10mmである。試験片30は、例えば、図2を用いて後述するSrCl2溶液中のSr2+イオンの花崗岩に対する吸着・脱離反応を計測する試験装置に用いる場合、花崗岩からなる。試験片30の表面の内、ガスケット20と接する面は、例えば、♯2000のヤスリ等により平坦になるように研磨されている。しかしながら、ヤスリ等により研磨したとしても、その表面には凹凸が残存している。
【0015】
基盤チップ10と、ガスケット20と、試験片30との3体を重ね合わせて外力を加えることにより、ガスケット20は弾性変形して、試験片30の表面の凹凸に倣い、試験片30と密着する。そして、ガスケット20のスリット22と、基盤チップ10の表面の一部と、試験片30の表面の一部が、固液界面反応微小反応装置に用いる反応容器の流路を形成する。以上のようにして、固相である試験片(花崗岩)30の一部が液体の薄い流路壁の一部を構成する。
【0016】
次に、図2を用いて、本実施形態による固液界面反応微小反応装置の構成について説明する。
図2は、本発明の一実施形態による固液界面反応微小反応装置の構成を示す斜視図である。なお、図1と同一符号は、同一部分を示している。
【0017】
本実施形態による固液界面反応微小反応装置は、試験片と溶液の接触により試験片に含有されている物質の一部と溶液に溶解している物質との反応を測定するための装置(マイクロリアクタチップ)である。図示の例では、この装置は、試験片である花崗岩と、SrCl2溶液中のSr2+イオンの吸着・脱離反応を計測する試験装置である。
【0018】
反応容器RVは、図1にて説明したように、基盤チップ10と、ガスケット20と、試験片30とを重ね合わせて外力を掛けることにより互いに密着して構成されている。基盤チップ10の流入口12には、液供給ポンプ40が接続されている。基盤チップ10の流出口14には、分割サンプリング器50が接続されている。
【0019】
液供給ポンプ40により送液されたSrCl2溶液は、流体の流入口12を通り流路兼反応槽RPに供給される。流路兼反応槽RPは、上述したように、ガスケット20のスリット22と、基盤チップ10の表面の一部と、試験片30の表面の一部とによって形成されいる。ここで、SrCl2溶液はマイクロリアクタ内に構成された薄い流路を流れながら、試験片30である花崗岩と吸着・脱離反応を繰り返して、流体の流出口14より排出される。排出された液は、分割サンプリング器50により経時的にサンプリングする。サンプリングされた液中の85Srの濃度変化を計測することにより、花崗岩とSrの破過曲線が得られる。
【0020】
なお、以上の説明では、反応流路の深さ(即ち、ガスケット20の厚さ)は、160μmとしているが、この深さは、試験対象の性質(例えば、実効拡散係数や、花崗岩に対するSr2+イオンの吸着・脱離反応の反応速度)と、着目する固体―液体反応(花崗岩とSr)に応じて選定されるものである。流路の深さは、例えば、50〜200μm程度である。また、流路の長さは、例えば、20〜60mm程度である。
【0021】
試験片30としては、花崗岩を例示したが、その他に、例えば、固化したセメント,砂岩,粘板岩等も用いることができる。
【0022】
反応溶液としては、SrCl2溶液の他に、NiCl2やCsCl等も用いることができる。
【0023】
ガスケット20の材料としては、弾性を有する材料として、ポリテトラフルオロエチレン(PTFE)(ヤング率:408MPa)の他に、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)(ヤング率:357MPa),テトラフルオロエチレン−エチレン共重合体(ETFE)(ヤング率:857MPa),ポリクロロトリフルオロエチレン(PCTFE)(ヤング率:1071〜2141MPa),クロロトリフルオロエチレン−エチレン共重合体(ECTFE)(ヤング率:1714MPa),ポリビニリデンフルオライド(PVDF)(ヤング率:857MPa),ポリビニルフルオライド(PVF),テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素系樹脂や、クレゾール,アルキルフェノールなどのフェノール系樹脂(ヤング率:20700〜22700MPa)や、メラミン樹脂,尿素樹脂などのアミノ系樹脂(ヤング率:6860〜13700MPa)や、アルキド樹脂(ヤング率:13780〜17230MPa)や、ポリエステル樹脂(ヤング率:10340〜17230MPa)や、スチレン系樹脂(ヤング率:2270〜2760MPa)や、ポリカーボネード樹脂(ヤング率:2140〜2380MPa)や、ポリエーテル樹脂(ヤング率:2570MPa)を用いることができる。また、フラン樹脂、エポキシ樹脂、ポリオレフィン樹脂、アクリル系樹脂、塩化ビニル樹脂、ポリ酢酸ビニル樹脂、、シリコーン樹脂、セルロース樹脂、ウレタン樹脂、キシレン樹脂、耐熱性樹脂などの合成樹脂や、フッ素ゴム、シリコーンゴムなどのゴムなども用いることができる。
【0024】
試験片30が砂岩や粘板岩のように脆い材料の場合、反応容器を形成するために掛けられる外圧は大きくできないため、試験片の表面の凹凸が大きい場合には、ガスケット20の材料としては、上記の材料の中でも、柔らかい(ヤング率の大きい)材料を選択する必要がある。
【0025】
さらに、ガスケット20の材料としては、反応溶液中の放射線核種との吸着性がないものが選ばれる。反応溶液がSrCl2の場合には、ポリテトラフルオロエチレン(PTFE)や他の適当な材料が用いられる。
【0026】
基盤チップ10の材料としては、ガスケット20と同等以下のヤング率を有する材料(ガスケット20と同じ硬さか、より硬い材料)が選ばれる。これは、基盤チップ10とガスケット20と試験片30の積層体に外力を掛けた場合に、ガスケット20が変形して、試験片30の表面に密着させるためである。具体的には、ポリテトラフルオロエチレン(PTFE),テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP),テトラフルオロエチレン−エチレン共重合体(ETFE),ポリクロロトリフルオロエチレン(PCTFE),クロロトリフルオロエチレン−エチレン共重合体(ECTFE),ポリビニリデンフルオライド(PVDF),ポリビニルフルオライド(PVF),テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素系樹脂や、クレゾール,アルキルフェノールなどのフェノール系樹脂や、メラミン樹脂,尿素樹脂などのアミノ系樹脂や、アルキド樹脂や、ポリエステル樹脂や、スチレン系樹脂や、ポリカーボネード樹脂や、ポリエーテル樹脂を用いることができる。また、フラン樹脂、エポキシ樹脂、ポリオレフィン樹脂、アクリル系樹脂、塩化ビニル樹脂、ポリ酢酸ビニル樹脂、、シリコーン樹脂、セルロース樹脂、ウレタン樹脂、キシレン樹脂、耐熱性樹脂などの合成樹脂や、フッ素ゴム、シリコーンゴムなどのゴムなども用いることができる。
【0027】
次に、図3及び図4を用いて、本実施形態による固液界面反応微小反応装置に用いる反応容器の固定装置について説明する。
図3は、本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の固定装置の構成を示す正面図である。図4は、本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の固定装置の構成を示す側面図である。なお、図1と同一符号は、同一部分を示している。
【0028】
クランプ支持台60の上に、基盤チップ10と、ガスケット20と、試験片30とを積層した状態でセットする。さらに、試験片30の上に金属プレート70を載置する。その状態で、ネジ65を締めることにより、金属プレート70が加圧され、基盤チップ10とガスケット20と試験片30とを積層体も加圧される。この加圧により、弾性体であるガスケット20が変形して、試験片30の表面の凹凸に拘わらず、試験片30とガスケット20が密着して、液漏れを防止できる。
【0029】
試験片30は、ガスケット20と接触する面と、その反対側の面(金属プレート70と接触する面)の平行度を確保しておくことにより、均一加圧が可能である。
【0030】
また、反応容器の流路は、ガスケット20のスリットと試験片30が接触した部分に形成される。したがって、試験片30とガスケット20の位置関係はおおよそ位置決めするだけで、反応容器の流路を形成できるため、位置決めが容易に行えるものである。
【0031】
次に、図5及び図6を用いて、本実施形態による固液界面反応微小反応装置に用いる反応容器の他の固定装置について説明する。
図5は、本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の他の固定装置の構成を示す正面図である。図6は、本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の他の固定装置の構成を示す側面図である。なお、図3及び図4と同一符号は、同一部分を示している。
【0032】
本例では、ネジ式のクランプ台でなく、油圧式のクランプ台を用いている。油圧式のクランプ台は、クランプ支持台60Aと、伸縮可能なシリンダ60Bと、クランパ60Cと、クランパ60Cと一体のクランプ部60Dから構成されている。
【0033】
クランプ支持台60Aの上に、基盤チップ10と、ガスケット20と、試験片30とを積層した状態でセットする。さらに、試験片30の上に金属プレート70を載置する。その状態で、油圧クランプを動作させることにより、シリンダ60Bが縮んで、クランプ部60Dによって、金属プレート70が加圧され、基盤チップ10とガスケット20と試験片30とを積層体も加圧される。この加圧により、弾性体であるガスケット20が変形して、試験片30の表面の凹凸に拘わらず、試験片30とガスケット20が密着して、液漏れを防止できる。
【0034】
以上説明したように、本実施形態によれば、弾性を有し、反応流路の一部を形成するスリットが形成されたガスケットを用いることにより、反応流路の密閉性が向上する。
【0035】
【発明の効果】
本発明によれば、固液界面反応微小反応装置における流路からの液漏れを防止できる。
【図面の簡単な説明】
【図1】本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の構成を示す分解斜視図である。
【図2】本発明の一実施形態による固液界面反応微小反応装置の構成を示す斜視図である。
【図3】本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の固定装置の構成を示す正面図である。
【図4】本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の固定装置の構成を示す側面図である。
【図5】本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の他の固定装置の構成を示す正面図である。
【図6】本発明の一実施形態による固液界面反応微小反応装置に用いる反応容器の他の固定装置の構成を示す側面図である。
【符号の説明】
10…基盤チップ
12…流入口
14…流出口
20…ガスケット
22…スリット
30…試験片
40…液供給ポンプ
50…分割サンプリング器
RP…流路
RV…反応容器

Claims (2)

  1. 反応溶液の流入口及び流出口が形成された基盤と、
    弾性を有し、前記基盤に比べて薄く、中央にスリットを有するガスケットとを備え、
    前記基盤と、前記ガスケットと、前記反応溶液の液相と界面反応を起こす固相が表面に形成された固体の試験片とを積層し、外圧を掛けることにより前記基盤とガスケットと試験片を密着させ、前記ガスケットのスリットとこのスリットの開口部に接する前記固相により反応流路を形成し、
    前記流入口から反応液を流入し、反応流路を経た反応溶液を前記流出口から流出させることを特徴とする固液界面反応微小反応装置。
  2. 請求項1記載の固液界面反応微小反応装置において、
    前記基盤は、前記ガスケットと同等以上の硬さを有することを特徴とする固液界面反応微小反応装置。
JP2003165585A 2003-06-10 2003-06-10 固液界面反応微小反応装置 Expired - Fee Related JP4068511B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165585A JP4068511B2 (ja) 2003-06-10 2003-06-10 固液界面反応微小反応装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165585A JP4068511B2 (ja) 2003-06-10 2003-06-10 固液界面反応微小反応装置

Publications (2)

Publication Number Publication Date
JP2005000770A JP2005000770A (ja) 2005-01-06
JP4068511B2 true JP4068511B2 (ja) 2008-03-26

Family

ID=34092022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165585A Expired - Fee Related JP4068511B2 (ja) 2003-06-10 2003-06-10 固液界面反応微小反応装置

Country Status (1)

Country Link
JP (1) JP4068511B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4295162B2 (ja) * 2004-04-27 2009-07-15 株式会社日立製作所 地下環境評価装置および方法
JP4855471B2 (ja) * 2005-09-26 2012-01-18 エルジー・ケム・リミテッド 積層反応装置
JP4593451B2 (ja) * 2005-12-05 2010-12-08 セイコーインスツル株式会社 マイクロリアクターシステム及び送液方法
JP2007296491A (ja) * 2006-05-02 2007-11-15 National Institute For Materials Science 保型容器およびそれを用いたコロイド結晶ゲルの製造方法
JP4528285B2 (ja) * 2006-06-16 2010-08-18 株式会社日立製作所 固液界面反応評価方法および固液界面反応評価装置
JP4641322B2 (ja) * 2009-02-16 2011-03-02 株式会社日立製作所 地下環境評価装置および方法
CN103003702B (zh) * 2010-06-30 2015-04-15 美特宝思科润株式会社 微型化学芯片、其制造方法及其使用方法
JP6084370B2 (ja) * 2011-05-10 2017-02-22 国立大学法人 東京大学 組織化学用自動反応装置
JP6422197B2 (ja) * 2012-03-13 2018-11-14 株式会社朝日Fr研究所 マイクロ化学チップを製造する方法
CN106290161B (zh) * 2016-09-08 2024-01-12 刘雳 一种用于动态吸收光谱采集的样品池

Also Published As

Publication number Publication date
JP2005000770A (ja) 2005-01-06

Similar Documents

Publication Publication Date Title
US11110454B2 (en) Microfluidic structure, microfluidic device having the same and method of controlling the microfluidic device
JP4068511B2 (ja) 固液界面反応微小反応装置
US8492165B2 (en) Microfluidic interface
US20060057030A1 (en) Fluid transport device and disposable chip having the same
CA2866754C (en) Device with rotary valve for manipulation of liquids
JP2003506679A (ja) 気体の内部送達および減圧の適用のための流体相互接続、相互接続マニホルドおよび微小流体性デバイス
JP5581236B2 (ja) 分注チップ及び核酸分析装置
US11920700B2 (en) Rotary valve
US10737264B2 (en) Fluidic peristaltic layer pump
KR20080090410A (ko) 정밀한 라인 접합 및/또는 밀봉 시스템과 그 방법
JP2001088098A (ja) 減圧送液機構を有する微小ケミカルデバイス
JP2007255717A (ja) 化学分析装置
EP2134472A1 (en) Device for handling liquid samples
JP2005083510A (ja) バルブ装置、化学分析装置及び化学分析システム
US7767437B2 (en) System for detection of a component in a liquid
JP4819945B2 (ja) チャンバを含む流路部位を有する基板、およびそれを用いて液体を移送する方法
JP2004058214A (ja) 流路接続方法、流路接続用部材、マイクロ流体デバイス及びマイクロ流体デバイスの接続構造
Mauk et al. Microfluidic “Pouch” chips for immunoassays and nucleic acid amplification tests
Tamanaha et al. Reusable, compression-sealed fluid cells for surface mounting to planar substrates
KR20170065246A (ko) 유체분석 카트리지 및 이를 포함하는 유체분석장치
JP2005345279A (ja) マイクロチップ及びその製造方法
JP2004121998A (ja) マイクロ高圧流体接触装置
TW581857B (en) System for detection of a component in a liquid
CN112791755B (zh) 多层微流控芯片封装器件、多层微流控芯片及其应用
JP2004045410A (ja) 試料分離装置及び化学分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees