JP4067159B2 - Semiconductor device and manufacturing method of semiconductor device - Google Patents

Semiconductor device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4067159B2
JP4067159B2 JP34716297A JP34716297A JP4067159B2 JP 4067159 B2 JP4067159 B2 JP 4067159B2 JP 34716297 A JP34716297 A JP 34716297A JP 34716297 A JP34716297 A JP 34716297A JP 4067159 B2 JP4067159 B2 JP 4067159B2
Authority
JP
Japan
Prior art keywords
silicon
oxide film
silicon substrate
electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34716297A
Other languages
Japanese (ja)
Other versions
JPH11162874A (en
Inventor
弘明 岩黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP34716297A priority Critical patent/JP4067159B2/en
Publication of JPH11162874A publication Critical patent/JPH11162874A/en
Application granted granted Critical
Publication of JP4067159B2 publication Critical patent/JP4067159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はオーム性接合電極及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
シリコン電子デバイスを作る上で金属半導体接合は重要な要素である。この接合には、整流性を示すショットキー接合、他は整流性のないオーム性接合の2つがある。n型シリコン基板と金属を接触させて良好な低接触抵抗を示すオーム性接合電極を形成するには、理論上、シリコン基板の不純物濃度を1020cm-3以上にする必要がある。実用的には、シリコン基板の不純物濃度が1019から1020cm-3でオーム性接合を作っている。シリコンに不純物を多量に導入するために、イオン注入・熱処理法や不純物デポジション・熱拡散法などの方法が使われてきた。
【0003】
最近のシリコンウェーハの大口径化に伴い、ウェーハの厚さは厚くなっている。縦型構造のパワーデバイスにおいては、ウェーハの厚さが厚くなることは、オン抵抗の上昇を引き起こすことになるので、このオン抵抗の上昇を抑えるためにウェーハ表側のデバイスを作製した後、組み立て前にウェーハを裏側から削って薄くする。この裏側を薄くした後、裏側にオーム性接合電極を作製する。しかしながら、このときシリコン基板の不純物濃度は、1020cm-3よりも低いことが多い。表側にデバイスがすでにできており、A1などの金属配線がなされているため、高温熱処理が困難であり、イオン注入・熱処理法や不純物デポジション・熱拡散法を使って意識的に不純物をシリコン基板に導入することはできない。又、特開平7−307306号に示すように半導体基板表面に電荷を内存する薄膜を設けてオーム性電極を形成することも提案されている。
【0004】
【発明が解決しようとする課題】
本発明はこのような問題に対して、たとえシリコン基板の不純物濃度が1020cm-3よりも低くても良好な低接触抵抗を示すオーム性接合を提供するものである。通常、シリコン基板の不純物濃度が低いとき、その上に金属膜を堆積させると、金属とシリコン基板の間でショットキー接触となる。このような場合でも、金属とシリコン基板の間にシリコン酸化膜を介することで、良好な低接触抵抗を示すオーム性接合を得る。
【0005】
シリコン基板にオーミック性接合電極を設けた半導体装置において、シリコン基板に対し、熱酸化法又はOプラズマ酸化法によって2酸化シリコンを形成し、該2酸化シリコンに対し、希沸酸を用いてエッチングを施して、2酸化シリコンおよびシリコン基板の界面に介在するシリコンサブ酸化膜を露出させ、該シリコンサブ酸化膜上にオーミック性接合電極を形成して成ることを特徴とする。
シリコン基板にオーミック性接合電極を設ける半導体装置の製造方法において、シリコン基板に対し、熱酸化法又はOプラズマ酸化法によって2酸化シリコンを形成すること、2酸化シリコンに対し希沸酸を用いてエッチングを施して、2酸化シリコンおよびシリコン基板の界面に介在するシリコンサブ酸化膜を露出させること、シリコンサブ酸化膜上にオーミック性接合電極を形成することを特徴とする半導体装置の製造方法。
【0006】
シリコン基板を熱酸化法やプラズマ酸化法で酸化させると、2酸化シリコン(SiO2)がシリコン基板上には生成される。この2酸化シリコンとシリコン基 板の界面には、2酸化シリコン(SiO2)ではなく、サブシリコン酸化膜[S iOx(x=0.5,1.0,1.5)]が形成される。このサブシリコン酸化膜の厚さは界面から2nm程度である。本発明の電極構造のシリコン酸化膜とはこのサブ酸化膜[SiOx(x=0.5,1.0,1.5)]のことである。金属膜とサブシリコン酸化膜とを接触させることによって、良好で低接触抵抗を示すオーム性接合が得られる。サブシリコン酸化膜の化学的な活性さによって、本発明の効果が得られるものと思われるが、詳細な理由は明確ではない。2酸化シリコン層と金属膜を接触させると、効果はまったくなくなる。
【0007】
【実施例】
図1は本発明の一実施例を示す断面図で図中1はシリコン基板、2はシリコンサブ酸化膜、3は電極金属である。図2は本発明の酸化膜の厚さの有効性を調べるためのデバイス構造を示す。使用したシリコン基板は、抵抗率が2mΩcm(不純物濃度:8×1019cm-3)のn+シリコン基板6に、抵抗率が0.5Ωc m(不純物濃度:1016cm-3)のシリコンエピタクシャル層5を5μm成長させたものを使用した。このエピタクシャル面はミラーポリッシュ加工されており、表面のひずみは小さい。
【0008】
図2の構造を作製するための製造プロセスは、まず、シリコン基板を希沸酸で1分間洗浄した後、ドライ酸化法を用いて800℃、30分間酸化させた。酸化膜厚は約3nmである。次に、その酸化膜の厚さを変えるために希沸酸(HF:H2O=1:100)液中に一定の時間だけ浸漬させた。この希沸酸で上記3n mの酸化膜を完全にエッチングするには、100秒の時間がかかった。さらに、上部電極4を形成するために、シリコンエピタクシャル層5の上にチタン膜をスパッタ法で500nmの厚さに堆積した後、ホトリソグラフィ技術を使って図2に示すように0.9mm角にパターン化した。チタンの化学エッチングには希沸酸を使用した。エッチング時間は2.5分間である。ホトレジストは、沸騰硝酸を用いて除去した。最後に、シリコン基板の裏側にチタンを100nm、ニッケルを500nm、銀を100nm真空蒸着し、下部電極7を形成した。下部電極7はオーム性接合電極である。
【0009】
図3は各HF浸漬時間に対する評価デバイス(図2)の電流−電圧特性を示すもので、図2において電極4をプラス(+)、電極7をマイナス(−)にした時を第一象限に示し(順方向特性)、又極性を逆にした時を第3象限に示した(逆方向特性)ものである。HF浸漬しない時(酸化膜の厚さ3nm)図中特性Aに示すように順方向、逆方向共、電流は全く流れない。HF浸漬時間を増加するのに伴って電流は両方向共流れ始め酸化膜が厚さ1.5nmで(浸漬時間50秒)で特性Bに示すオーミック特性が得られている。更に浸漬時間を増し約100秒で酸化膜はなくなり特性Cに示す整流特性(ショットキー特性)になった。
【0010】
図4は図3の電流−電圧特性から抵触抵抗の変化を示す値(ΔR)のHF浸漬時間依存性を示す特性図で横軸は浸漬時間S(秒)、縦軸に変化値ΔR(mΩcm2)を示す。なお、ΔRは酸化膜を介さない従来デバイスの抵抗値(図3C) を基準に算出した。又、この時の抵抗値は第1象限の特性から求めた。この方法により接触抵抗以外の抵抗成分は相殺され、接触抵抗の変化分のみ得られる。ΔRの値がマイナス(負)であることは従来デバイスより接触抵抗が減少していることを意味する。このマイナス領域は図4から明らかなように浸漬時間で25秒〜90秒の範囲即ち残余の酸化膜の厚さ2.25nm〜0.3nmに相当する。
【0011】
図5は酸化法をO2プラズマ照射法および基板を2mΩcmにしたとき、接触 抵抗が改善されるかどうかを調べるためのデバイス構造を示す。使用したシリコン基板は、抵抗率が2mΩcm(不純物濃度:8×1019cm-3)のn+シリコ ン基板6を使用した。この構造を作製するため、まず、シリコン基板を希沸酸で1分間洗浄した後、マイクロ波プラズマ照射装置で酸素プラズマをシリコンに照射させた。すなわち、シリコン基板の表側のみに酸素プラズマを照射させ、酸化させた。プラズマパワーを1000W、酸素圧を0.5Torr、照射時間を2分とした。このときの酸化膜の厚さは2.5nmであった。次に、その酸化膜の厚さを変えるために希沸酸(HF:H2O=1:100)液中に一定時間だけ浸 漬させ、さらに、上部電極4を形成するために、シリコンの上にチタン膜をスパッタ法で500nmの厚さに堆積した後、ホトリソグラフィ技術を使って0.9mm角にパターン化した。チタンの化学エッチングには希沸酸を使用した。エッチング時間は2.5分間である。ホトレジストは、沸騰硝酸を用いて除去した。最後にシリコン基板の裏側にチタンを100nm、ニッケルを500nm、銀を100nm真空蒸着し、下部電極7を形成した。下部電極7はオーム性接合電極である。
【0012】
図6は酸化膜厚に対するデバイスの(図5)電流−電圧特性を示したものである。この特性は、図5において上部電極4をプラス、下部電極7をマイナスにしたときと第1象限に描き、逆の場合を第3象限に描いている。HF浸漬をしないとき(酸化膜厚:2.5nm)、電流は順、逆の両方向とも流れていない(A)。HF浸漬を30秒行って、酸化膜の厚さを、1.6nmとしたとき、電流−電圧特性Bが得られた。さらに、浸漬時間を90秒行って酸化膜を完全にエッチングすると電流−電圧特性はCになった。図6から明らかなように、酸化膜を1.6nm残したときに得られた特性Bは酸化膜のないときの特性Cよりも抵抗は低減している。特性Cにおいてもオーミック特性が得られているのは抵抗率が2mΩcmの基板を使用したためである。結果として、酸化膜を介した電極構造とすることでより低い接触抵抗を持ったオーミック特性が得られることがわかった。この実施例では、上部電極4の金属膜をチタンとしたが、チタン以外の金属膜たとえばクロムに対しても同様に本発明の効果を確認した。
【0013】
図7は本発明の電極構造にパワーMOSFET(60V、40A級)のドレイン電極に適用したMOSFETの出力特性図で図中特性Bは従来例(酸化膜なし)特性Aは実施例を示す。従来例のドレイン電極構造の出力特性Bのオン抵抗は、19.04mΩであるのに対して、酸化膜を介したドレイン電極構造の出力特性Aのオン抵抗は、16.31mΩとなり、酸化膜を介さない電極構造の出力特性のオン抵抗よりも約14.3%低下した。なお、MOSFETはアンチモン添加した抵抗率が17mΩcm(不純物濃度約1018cm-3)シリコン基板にソース領域、ドレイン領域、ゲート等の能動領域を形成した後、ウェーハの裏側を削って薄くし、その表面に厚さ1.2nmのシリコン酸化膜をシリコン基板の裏側に形成した。その後、チタンを100nmの厚さだけ真空蒸着し、さらに引き続きニッケルを500nm、銀を100nmの厚さだけ真空蒸着しドレイン電極とした。
【0014】
【発明の効果】
本発明によれば、0.3〜2.25nmのシリコンサブ酸化膜を金属膜とシリコン基板の間にはさむことにより、良好なオーミック接触電極が得られ、高性能デバイスの開発に極めて有効である。
【図面の簡単な説明】
【図1】本発明の実施例を示す断面図
【図2】本発明の有効性を評価するデバイスの構造図
【図3】評価デバイスの電圧−電流特性図
【図4】HF浸漬時間依存性を示す特性図
【図5】他の評価デバイスの電流−電圧特性図
【図6】評価デバイスの電流−電圧特性図
【図7】本発明をMOSFETに適用した出力特性図
【符号の説明】
1,6 シリコン基板
2 シリコンサブ酸化膜
3 電極金属
4,7 電極
5 エビタキシアル層
[0001]
[Industrial application fields]
The present invention relates to an ohmic junction electrode and a semiconductor device using the same.
[0002]
[Prior art]
Metal-semiconductor junctions are an important factor in making silicon electronic devices. There are two types of junctions: Schottky junctions that exhibit rectifying properties, and other ohmic junctions that do not have rectifying properties. In order to form an ohmic junction electrode exhibiting a good low contact resistance by bringing an n-type silicon substrate into contact with a metal, theoretically, the impurity concentration of the silicon substrate needs to be 10 20 cm −3 or more. Practically, an ohmic junction is made with an impurity concentration of the silicon substrate of 10 19 to 10 20 cm −3 . In order to introduce a large amount of impurities into silicon, methods such as ion implantation, heat treatment, impurity deposition, and thermal diffusion have been used.
[0003]
With the recent increase in the diameter of silicon wafers, the thickness of the wafers has increased. In a vertical power device, increasing the wafer thickness causes an increase in on-resistance. Therefore, after fabricating the device on the front side of the wafer to suppress this increase in on-resistance, before assembling The wafer is thinned from the backside. After thinning the back side, an ohmic bonding electrode is formed on the back side. However, at this time, the impurity concentration of the silicon substrate is often lower than 10 20 cm −3 . Since the device is already on the front side and metal wiring such as A1 is made, high-temperature heat treatment is difficult, and the silicon substrate is consciously implanted using ion implantation, heat treatment, impurity deposition, and thermal diffusion methods. Can not be introduced. In addition, as disclosed in Japanese Patent Laid-Open No. 7-307306, it has also been proposed to form an ohmic electrode by providing a thin film containing charges on the surface of a semiconductor substrate.
[0004]
[Problems to be solved by the invention]
The present invention provides an ohmic contact that exhibits good low contact resistance even when the impurity concentration of the silicon substrate is lower than 10 20 cm −3 . Usually, when the impurity concentration of a silicon substrate is low, if a metal film is deposited thereon, a Schottky contact occurs between the metal and the silicon substrate. Even in such a case, an ohmic junction exhibiting good low contact resistance is obtained by interposing a silicon oxide film between the metal and the silicon substrate.
[0005]
In a semiconductor device in which an ohmic junction electrode is provided on a silicon substrate, silicon dioxide is formed on the silicon substrate by a thermal oxidation method or an O 2 plasma oxidation method, and the silicon dioxide is etched using dilute acid. The silicon suboxide film interposed at the interface between the silicon dioxide and the silicon substrate is exposed, and an ohmic junction electrode is formed on the silicon suboxide film.
In a method of manufacturing a semiconductor device in which an ohmic bonding electrode is provided on a silicon substrate, silicon dioxide is formed on the silicon substrate by a thermal oxidation method or an O 2 plasma oxidation method, and dilute acid is used for silicon dioxide. A method of manufacturing a semiconductor device, comprising: etching to expose a silicon sub-oxide film interposed at an interface between silicon dioxide and a silicon substrate; and forming an ohmic junction electrode on the silicon sub-oxide film.
[0006]
When the silicon substrate is oxidized by a thermal oxidation method or a plasma oxidation method, silicon dioxide (SiO2) is generated on the silicon substrate. Instead of silicon dioxide (SiO2), a sub-silicon oxide film [SiOx (x = 0.5, 1.0, 1.5)] is formed at the interface between the silicon dioxide and the silicon substrate. The thickness of the sub silicon oxide film is about 2 nm from the interface. The silicon oxide film of the electrode structure of the present invention is this sub-oxide film [SiOx (x = 0.5, 1.0, 1.5)]. By bringing the metal film and the sub-silicon oxide film into contact with each other, it is possible to obtain an ohmic contact that exhibits good and low contact resistance. Although it seems that the effect of the present invention can be obtained by the chemical activity of the sub-silicon oxide film, the detailed reason is not clear. When the silicon dioxide layer and the metal film are brought into contact, the effect is completely lost.
[0007]
【Example】
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, in which 1 is a silicon substrate, 2 is a silicon sub-oxide film, and 3 is an electrode metal. FIG. 2 shows a device structure for examining the effectiveness of the thickness of the oxide film of the present invention. The silicon substrate used is an n + silicon substrate 6 having a resistivity of 2 mΩcm (impurity concentration: 8 × 10 19 cm −3 ) and a silicon epitaxy having a resistivity of 0.5Ωcm (impurity concentration: 10 16 cm −3 ). A material obtained by growing the squal layer 5 by 5 μm was used. This epitaxial surface is mirror-polished, and the surface distortion is small.
[0008]
In the manufacturing process for manufacturing the structure of FIG. 2, first, the silicon substrate was washed with dilute boiling acid for 1 minute, and then oxidized at 800 ° C. for 30 minutes using a dry oxidation method. The oxide film thickness is about 3 nm. Next, in order to change the thickness of the oxide film, it was immersed in a dilute boiling acid (HF: H 2 O = 1: 100) solution for a certain period of time. It took 100 seconds to completely etch the 3 nm oxide film with this diluted acid. Further, in order to form the upper electrode 4, a titanium film is deposited on the silicon epitaxial layer 5 to a thickness of 500 nm by a sputtering method, and then using a photolithography technique, a 0.9 mm square as shown in FIG. Patterned. Diluted acid was used for the chemical etching of titanium. The etching time is 2.5 minutes. The photoresist was removed using boiling nitric acid. Finally, 100 nm of titanium, 500 nm of nickel, and 100 nm of silver were vacuum deposited on the back side of the silicon substrate to form the lower electrode 7. The lower electrode 7 is an ohmic junction electrode.
[0009]
FIG. 3 shows the current-voltage characteristics of the evaluation device (FIG. 2) for each HF immersion time. In FIG. 2, when the electrode 4 is positive (+) and the electrode 7 is negative (-), the first quadrant is used. This is shown in the third quadrant when the polarity is reversed (forward characteristic) (reverse characteristic). When HF is not immersed (thickness of the oxide film is 3 nm), no current flows in the forward direction and the reverse direction as shown in the characteristic A in the figure. As the HF immersion time is increased, the current starts to flow in both directions, and the ohmic characteristic shown in the characteristic B is obtained when the oxide film has a thickness of 1.5 nm (immersion time 50 seconds). Further, the immersion time was increased and the oxide film disappeared in about 100 seconds, and the rectifying characteristic (Schottky characteristic) shown in characteristic C was obtained.
[0010]
FIG. 4 is a characteristic diagram showing the HF immersion time dependence of the value (ΔR) indicating the change in the contact resistance from the current-voltage characteristics of FIG. 3, the horizontal axis is the immersion time S (seconds), and the vertical axis is the change value ΔR (mΩcm 2 ) is shown. ΔR was calculated on the basis of the resistance value of a conventional device without an oxide film (FIG. 3C). The resistance value at this time was obtained from the characteristics of the first quadrant. By this method, resistance components other than the contact resistance are canceled out, and only a change in contact resistance is obtained. A negative value of ΔR means that the contact resistance is reduced as compared with the conventional device. As is apparent from FIG. 4, this minus region corresponds to the range of 25 to 90 seconds in immersion time, that is, the remaining oxide film thickness of 2.25 nm to 0.3 nm.
[0011]
FIG. 5 shows a device structure for examining whether the contact resistance is improved when the oxidation method is an O 2 plasma irradiation method and the substrate is 2 mΩcm. The silicon substrate used was an n + silicon substrate 6 having a resistivity of 2 mΩcm (impurity concentration: 8 × 10 19 cm −3 ). In order to fabricate this structure, first, the silicon substrate was washed with dilute boiling acid for 1 minute, and then the silicon was irradiated with oxygen plasma with a microwave plasma irradiation apparatus. That is, only the front side of the silicon substrate was irradiated with oxygen plasma and oxidized. The plasma power was 1000 W, the oxygen pressure was 0.5 Torr, and the irradiation time was 2 minutes. At this time, the thickness of the oxide film was 2.5 nm. Next, in order to change the thickness of the oxide film, it is immersed in a dilute boiling acid (HF: H 2 O = 1: 100) solution for a certain period of time, and further, silicon is formed to form the upper electrode 4. A titanium film was deposited on the film to a thickness of 500 nm by sputtering, and then patterned into a 0.9 mm square using a photolithography technique. Diluted acid was used for the chemical etching of titanium. The etching time is 2.5 minutes. The photoresist was removed using boiling nitric acid. Finally, 100 nm of titanium, 500 nm of nickel, and 100 nm of silver were vacuum deposited on the back side of the silicon substrate to form the lower electrode 7. The lower electrode 7 is an ohmic junction electrode.
[0012]
FIG. 6 shows the current-voltage characteristic of the device (FIG. 5) with respect to the oxide film thickness. This characteristic is drawn in the first quadrant when the upper electrode 4 is positive and the lower electrode 7 is negative in FIG. 5, and the opposite case is drawn in the third quadrant. When HF immersion is not performed (oxide film thickness: 2.5 nm), current does not flow in both forward and reverse directions (A). When the HF immersion was performed for 30 seconds and the thickness of the oxide film was 1.6 nm, the current-voltage characteristic B was obtained. Furthermore, when the immersion time was 90 seconds and the oxide film was completely etched, the current-voltage characteristic was C. As is clear from FIG. 6, the resistance of the characteristic B obtained when the oxide film is left at 1.6 nm is lower than that of the characteristic C without the oxide film. The reason why the ohmic characteristic is obtained also in the characteristic C is that a substrate having a resistivity of 2 mΩcm is used. As a result, it was found that an ohmic characteristic with a lower contact resistance can be obtained by using an electrode structure with an oxide film interposed therebetween. In this example, the metal film of the upper electrode 4 was titanium, but the effect of the present invention was confirmed in the same manner for metal films other than titanium, such as chromium.
[0013]
FIG. 7 is an output characteristic diagram of a MOSFET applied to the drain electrode of a power MOSFET (60V, 40A class) in the electrode structure of the present invention. In the figure, characteristic B is a conventional example (no oxide film) and characteristic A is an example. The on-resistance of the output characteristic B of the drain electrode structure of the conventional example is 19.04 mΩ, whereas the on-resistance of the output characteristic A of the drain electrode structure through the oxide film is 16.31 mΩ, It was about 14.3% lower than the on-resistance of the output characteristics of the electrode structure not interposed. The MOSFET has an antimony-added resistivity of 17 mΩcm (impurity concentration of about 10 18 cm −3 ), and after forming active regions such as a source region, a drain region, and a gate on a silicon substrate, the back side of the wafer is shaved and thinned. A silicon oxide film having a thickness of 1.2 nm was formed on the back side of the silicon substrate. Thereafter, titanium was vacuum-deposited to a thickness of 100 nm, and subsequently nickel was vacuum-deposited to a thickness of 500 nm and silver to a thickness of 100 nm to form a drain electrode.
[0014]
【The invention's effect】
According to the present invention, a good ohmic contact electrode can be obtained by sandwiching a silicon sub-oxide film of 0.3 to 2.25 nm between a metal film and a silicon substrate, which is extremely effective for development of a high-performance device. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention. FIG. 2 is a structural diagram of a device for evaluating the effectiveness of the present invention. FIG. 3 is a voltage-current characteristic diagram of the evaluation device. FIG. 5 is a current-voltage characteristic diagram of another evaluation device. FIG. 6 is a current-voltage characteristic diagram of the evaluation device. FIG. 7 is an output characteristic diagram in which the present invention is applied to a MOSFET.
1, 6 Silicon substrate 2 Silicon sub-oxide film 3 Electrode metal 4, 7 Electrode 5 Epitaxial layer

Claims (2)

シリコン基板にオーミック性接合電極を設けた半導体装置において、
前記シリコン基板に対し、熱酸化法又はOプラズマ酸化法によって2酸化シリコンを形成し、該2酸化シリコンに対し、希沸酸を用いてエッチングを施して、前記2酸化シリコンおよび前記シリコン基板の界面に介在するシリコンサブ酸化膜を露出させ、該シリコンサブ酸化膜上に前記オーミック性接合電極を形成して成ることを特徴とする半導体装置。
In a semiconductor device in which an ohmic junction electrode is provided on a silicon substrate,
Silicon dioxide is formed on the silicon substrate by a thermal oxidation method or an O 2 plasma oxidation method, and the silicon dioxide is etched using a dilute boiling acid, and the silicon dioxide and the silicon substrate are etched. A semiconductor device comprising: exposing a silicon sub-oxide film interposed at an interface; and forming the ohmic junction electrode on the silicon sub-oxide film.
シリコン基板にオーミック性接合電極を設ける半導体装置の製造方法において、
前記シリコン基板に対し、熱酸化法又はOプラズマ酸化法によって2酸化シリコンを形成すること、
前記2酸化シリコンに対し希沸酸を用いてエッチングを施して、前記2酸化シリコンおよび前記シリコン基板の界面に介在するシリコンサブ酸化膜を露出させること、
前記シリコンサブ酸化膜上に前記オーミック性接合電極を形成することを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which an ohmic junction electrode is provided on a silicon substrate,
Forming silicon dioxide on the silicon substrate by a thermal oxidation method or an O 2 plasma oxidation method;
Etching the silicon dioxide with dilute acid to expose a silicon sub-oxide film interposed at an interface between the silicon dioxide and the silicon substrate;
A method of manufacturing a semiconductor device, wherein the ohmic junction electrode is formed on the silicon sub-oxide film.
JP34716297A 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP4067159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34716297A JP4067159B2 (en) 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34716297A JP4067159B2 (en) 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH11162874A JPH11162874A (en) 1999-06-18
JP4067159B2 true JP4067159B2 (en) 2008-03-26

Family

ID=18388340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34716297A Expired - Fee Related JP4067159B2 (en) 1997-12-01 1997-12-01 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4067159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727332B2 (en) 2018-09-07 2020-07-28 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833556B2 (en) * 2002-08-12 2004-12-21 Acorn Technologies, Inc. Insulated gate field effect transistor having passivated schottky barriers to the channel
US7084423B2 (en) 2002-08-12 2006-08-01 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
JP4884866B2 (en) * 2006-07-25 2012-02-29 三菱電機株式会社 Manufacturing method of nitride semiconductor device
KR101990622B1 (en) 2011-11-23 2019-06-18 아콘 테크놀로지스 인코포레이티드 Improving metal contacts to group iv semiconductors by inserting interfacial atomic monolayers
WO2015194590A1 (en) * 2014-06-18 2015-12-23 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US9620611B1 (en) 2016-06-17 2017-04-11 Acorn Technology, Inc. MIS contact structure with metal oxide conductor
WO2018094205A1 (en) 2016-11-18 2018-05-24 Acorn Technologies, Inc. Nanowire transistor with source and drain induced by electrical contacts with negative schottky barrier height

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727332B2 (en) 2018-09-07 2020-07-28 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JPH11162874A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JPS63308387A (en) Manufacture of semiconductor device
EP0013342B1 (en) Method of fabrication of self-aligned field-effect transistors of the metal-semiconductor type
JP4067159B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3412277B2 (en) Thin film transistor and method of manufacturing the same
JPS5873156A (en) Semiconductor device
JPS61110449A (en) Manufacture of semiconductor device
US4116722A (en) Method for manufacturing compound semiconductor devices
JPS63164477A (en) Manufacture of field effect transistor with self-aligning gate
JP3256941B2 (en) Compound semiconductor surface treatment method
JPS63221668A (en) Schottky barrier diode and manufacture thereof
JPH03257870A (en) Schottky barrier diode
JP2835398B2 (en) Manufacturing method of field effect transistor
JPS58199869A (en) Etching method
JPS6245078A (en) Field effect transistor and manufacture thereof
JP2002100640A (en) Field effect compound semiconductor device
JPS6151941A (en) Manufacture of electrode wiring film
JP2004349604A (en) Thin film transistor and its manufacturing method
JP3340868B2 (en) Superconducting base transistor and method of manufacturing the same
JPH04114476A (en) Semiconductor device and manufacture thereof
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH056344B2 (en)
JPS6292478A (en) Manufacture of semiconductor device
JPS62243372A (en) Manufacture of semiconductor device
JPH0564473B2 (en)
JPS62222672A (en) Schottky barrier type semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees