JP4066631B2 - Low temperature fired ceramic material and low temperature fired ceramic substrate - Google Patents

Low temperature fired ceramic material and low temperature fired ceramic substrate Download PDF

Info

Publication number
JP4066631B2
JP4066631B2 JP2001306733A JP2001306733A JP4066631B2 JP 4066631 B2 JP4066631 B2 JP 4066631B2 JP 2001306733 A JP2001306733 A JP 2001306733A JP 2001306733 A JP2001306733 A JP 2001306733A JP 4066631 B2 JP4066631 B2 JP 4066631B2
Authority
JP
Japan
Prior art keywords
weight
low
glass powder
fired ceramic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001306733A
Other languages
Japanese (ja)
Other versions
JP2003112965A (en
Inventor
和則 赤穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001306733A priority Critical patent/JP4066631B2/en
Publication of JP2003112965A publication Critical patent/JP2003112965A/en
Application granted granted Critical
Publication of JP4066631B2 publication Critical patent/JP4066631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、SiO2−CaO−B23−Al23 系のガラス粉末を含む低温焼成セラミック材料及び低温焼成セラミック基板に関するものである。
【0002】
【従来の技術】
従来より、セラミック基板として最も多く用いられているアルミナ基板は、誘電率が高く、しかも、1500℃以上の高温で焼成する必要があるため、同時焼成する配線導体としてMo,W等の抵抗値の高い高融点金属を使用せざるを得ない。このため、近年の信号処理の高速化・高周波化の要求に対して、アルミナ基板ではパッケージ設計が困難になってきている。
【0003】
このような事情から、近年、800〜1000℃で焼成可能な低温焼成セラミック基板の需要が急速に拡大している。この低温焼成セラミック基板は、同時焼成する配線導体として、Ag、Ag−Pd、Au、Cu等の低抵抗導体の使用が可能で、且つ、セラミックの誘電率が低く、信号処理の高速化・高周波化に対応できるという特長がある。
【0004】
現在、開発又は実用化されている低温焼成セラミック材料は、結晶化ガラス系や非ガラス系といった単一組成のものもあるが、多くは、ガラスと骨材(結晶質フィラー)との混合物からなるガラス複合系のものである。このガラス複合系の低温焼成セラミック材料としては、例えばSiO2−CaO−B23 −Al23系のガラス粉末とAl23粉末(アルミナ粉末)との混合物がある。
【0005】
【発明が解決しようとする課題】
ところで、信号処理の高速化・高周波化への適応性を表す指標としてQf値があり、このQf値が高いほど、高速化・高周波化への対応が容易である。上述した従来のガラス複合系の低温焼成セラミック材料は、Qf値が2000GHz程度であるが、最近の目覚ましく発展する高速化・高周波化に対応するためには、3000GHz以上の高いQf値を持つ低温焼成セラミック材料を新たに開発する必要がある。また、低温焼成セラミック基板とチップとの接続信頼性等を確保するためには、低温焼成セラミック基板の抗折強度等の機械的強度を確保する必要がある。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、従来より高いQf値と信頼性確保に必要な基板強度を兼ね備えた低温焼成セラミック材料及び低温焼成セラミック基板を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に記載の低温焼成セラミック材料は、Al23(アルミナ)を主成分とする骨材:35〜40重量%と、SiO2−CaO−B23−Al23系のガラス粉末:60〜65重量%とを混合した低温焼成セラミック材料であり、その骨材は、低温焼成セラミック材料総重量に対して、BaOを0.5〜2.0重量%含有し、前記ガラス粉末は、該ガラス粉末総重量に対して、SiO 2 :45〜55重量%、CaO:15〜21重量%、B 2 3 :6.5〜7.7重量%、Al 2 3 :4.2〜5.1重量%、BaO:6.4〜18重量%、ZnO:1.5〜2.5重量%、SnO 2 :2〜4重量%、不純物:2重量%以下を含有することを特徴とするものである。
つまり、骨材とガラス粉末との両方に適量のBaOを添加したところに特徴がある。BaOを添加して作製したBaO−SiO2−CaO−B23−Al23系のガラス粉末は、焼成工程で結晶化すると、Qf値が高くなる特性がある。更に、骨材にBaOを添加すると、焼成工程で、上記のBaO−SiO2−CaO−B23−Al23系のガラスの結晶が析出しやすくなり、そのガラス析出量が増加する傾向がある。これにより、低温焼成セラミック材料のQf値を3000GHz以上に高めることができる。
【0008】
この場合、骨材のBaO添加量が0.5重量%よりも少ないと、添加効果が少なく、ガラス析出量が少ない。反対に、骨材のBaO添加量が2.0重量%よりも多いと、後述する試験結果から、抗折強度が低下することが判明している。従って、骨材のBaO添加量の適正範囲は、0.5〜2.0重量%と考えられる。
【0009】
また、ガラス粉末のBaO添加量が6.4重量%よりも少ないと、BaOの添加効果が少なく、Qf値の向上幅が少ない。反対に、ガラス粉末のBaO添加量が18重量%よりも多いと、ガラス化しにくくなる。従って、ガラス粉末のBaO添加量の適正範囲は、6.4〜18重量%と考えられる。
【0010】
また、低温焼成セラミック材料中の骨材が35重量%よりも少ないと(ガラス粉末が65重量%よりも多いと)、骨材が不足して、抗折強度が弱くなり、反対に、骨材が40重量%よりも多いと(ガラス粉末が60重量%よりも少ないと)、ガラスが不足して、焼結不良が発生する可能性がある。従って、骨材を35〜40重量%とし、BaO−SiO2−CaO−B23−Al23系のガラス粉末を60〜65重量%とすれば、実用に耐え得る抗折強度と焼結性とを確保することができる。
【0011】
また、ガラス原料に、BaOの他に、適量のZnOとSnO2を添加して作ったBaO−SiO2−CaO−B23−Al23−ZnO−SnO2系のガラスは、ZnOを添加しないガラスと比較して、Qf値が高くなると共に、ZnOがガラスの融点を低下させる役割を果たす。また、ガラス粉末を製造する際に、SnO2を添加すると、SnO2を添加し無い場合と比較して、ガラスの融点を30〜50℃低下させることができ、ガラス粉末の製造が容易となる。
【0012】
この場合、ガラス粉末中のZnOが1.5重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、ZnOが2.5重量%よりも多いと、ガラス化しにくくなる。従って、ZnOを1.5〜2.5重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0013】
また、ガラス粉末中のSnO2が2重量%よりも少ないと、電気的特性が悪くなり、また、SnO2が4重量%よりも多いと、熱膨張が大きくなる。従って、SnO2を2〜4重量%とすれば、電気的特性、熱膨張特性が良くなる。
【0014】
また、ガラス粉末中のCaOが15重量%よりも少ないと、nSiO2・CaO・Al23系の結晶の析出が少なくなり、必要な強度が得られない。反対に、CaOが21重量%よりも多いと、ガラス融点が低くなり過ぎる。従って、CaOを15〜21重量%とすれば、高強度で適度に低いガラス融点とすることができる。
【0015】
また、ガラス粉末中のSiO2が45重量%よりも少ないと、nSiO2・CaO系又はBaO・SiO2系の結晶の析出が少なくなり、必要な強度が得られない。反対に、SiO2が55重量%よりも多いと、ガラス化しにくくなる。従って、SiO2を45〜55重量%とすれば、強度を確保しながら、ガラス化を容易にすることができる。
【0016】
一般に、SiO2とCaOとBaOだけでは、融点の高いガラスになるため、融点を低下させる添加剤としてB23を添加する必要がある。ガラス粉末中のB23が6.5重量%よりも少ないと、1400℃以下ではガラス化しにくくなる。反対に、B23が7.7重量%よりも多いと、必要な強度が得られない。従って、B23が6.5〜7.7重量%とすれば、ガラス融点を適度に下げながら、必要な強度を確保することができる。
【0017】
また、ガラス粉末中のAl23は、ガラスの融点を下げる役割を果たすため、Al23が4.2重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、Al23が5.1重量%よりも多いと、ガラス化しにくくなる。従って、Al23が4.2〜5.1重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0018】
また、請求項のように、低温焼成セラミック材料の骨材は、低温焼成セラミック材料総重量に対してAl23を33〜39.5重量%含有するようにすると良い。つまり、Al23が33重量%よりも少ないと、抗折強度が弱くなり、反対に、Al23 が39.5重量%よりも多いと、焼結不良が発生する。従って、Al23を33〜39.5重量%とすれば、実用に耐え得る抗折強度と焼結性を確保することができる。
【0019】
また、請求項のように、上述した組成の低温焼成セラミック材料を用いて形成したセラミック生基板を800〜1000℃で焼成して低温焼成セラミック基板を製造するようにすると良い。これにより、最近の高速化・高周波化に対応できる高いQf値と信頼性確保に必要な基板強度を兼ね備えた高品質の低温焼成セラミック基板を製造することができる。
【0020】
以上説明した請求項1〜では、低温焼成セラミック材料の骨材とガラス粉末との両方に適量のBaOを添加したが、請求項のように、低温焼成セラミック材料の骨材のみにBaOを添加し、ガラス粉末には、BaOの代わりにSrOを添加しても良い。
【0021】
請求項に記載の低温焼成セラミック材料は、Al23(アルミナ)を主成分とする骨材:35〜40重量%と、SiO2−CaO−B23−Al23系のガラス粉末:60〜65重量%とを混合した低温焼成セラミック材料であり、その骨材は、低温焼成セラミック材料総重量に対して、BaOを0.5〜2.0重量%含有し、前記ガラス粉末は、該ガラス粉末総重量に対して、SiO 2 :47〜55重量%、CaO:10〜14.4重量%、B 2 3 :6.5〜7.2重量%、Al 2 3 :4.2〜5.0重量%、SrO:11〜18.8重量%、ZnO:4.5〜5.5重量%、SnO 2 :2.0〜4.3重量%、不純物:2重量%以下を含有することを特徴とするものである。このようにSrOを添加して作製したSrO−SiO2−CaO−B23−Al23系のガラス粉末は、焼成工程で結晶化すると、抗折強度が高くなる特性がある。更に、骨材にBaOを添加すると、焼成工程で、BaO−SrO−SiO2系のガラスの結晶が析出しやすくなり、そのガラス析出量が増加する傾向がある。これにより、低温焼成セラミック材料のQf値を3000GHz以上に高めることができる。
【0022】
この場合、骨材のBaO添加量が0.5重量%よりも少ないと、添加効果が少なく、ガラス析出量が少ない。反対に、骨材のBaO添加量が2.0重量%よりも多いと、後述する試験結果から、抗折強度が低下することが判明している。従って、骨材のBaO添加量の適正範囲は、0.5〜2.0重量%と考えられる。
【0023】
また、ガラス粉末のSrO添加量が11重量%よりも少ないと、SrOの添加効果が少なく、抗折強度の向上幅が少ない。反対に、ガラス粉末のSrO添加量が18.8重量%よりも多いと、ガラス化しにくくなる。従って、ガラス粉末のSrO添加量の適正範囲は、11〜18.8重量%と考えられる。
【0024】
また、低温焼成セラミック材料中の骨材が35重量%よりも少ないと(ガラス粉末が65重量%よりも多いと)、骨材が不足して、抗折強度が弱くなり、反対に、骨材が40重量%よりも多いと(ガラス粉末が60重量%よりも少ないと)、ガラスが不足して、焼結不良が発生する可能性がある。従って、骨材を35〜40重量%とし、SrO−SiO2−CaO−B23−Al23系のガラス粉末を60〜65重量%とすれば、実用に耐え得る抗折強度と焼結性とを確保することができる。
【0025】
また、ガラス原料に、SrOの他に、適量のZnOとSnO2を添加して作ったSrO−SiO2−CaO−B23−Al23−ZnO−SnO2系のガラスは、ZnOを添加しないガラスと比較して、Qf値が高くなると共に、ZnOがガラスの融点を低下させる役割を果たす。また、ガラス粉末を製造する際に、SnO2を添加すると、SnO2を添加し無い場合と比較して、ガラスの融点を30〜50℃低下させることができ、ガラス粉末の製造が容易となる。
【0026】
この場合、ガラス粉末中のZnOが4.5重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、ZnOが5.5重量%よりも多いと、ガラス化しにくくなる。従って、ZnOを4.5〜5.5重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0027】
また、ガラス粉末中のSnO2が2重量%よりも少ないと、電気的特性が悪くなり、また、SnO2が4.3重量%よりも多いと、熱膨張が大きくなる。従って、SnO2を2〜4.3重量%とすれば、電気的特性及び熱膨張特性が良くなる。
【0028】
また、ガラス粉末中のCaOが10重量%よりも少ないと、nSiO2・CaO・Al23系の結晶の析出が少なくなり、必要な強度が得られない。反対に、CaOが14.4重量%よりも多いと、ガラス融点が低くなり過ぎる。従って、CaOを10〜14.4重量%とすれば、高強度で適度に低いガラス融点とすることができる。
【0029】
また、ガラス粉末中のSiO2が47重量%よりも少ないと、nSiO2・CaO系又はSrO・SiO2系の結晶の析出が少なくなり、必要な強度が得られない。反対に、SiO2が55重量%よりも多いと、ガラス化しにくくなる。従って、SiO2を47〜55重量%とすれば、強度を確保しながら、ガラス化を容易にすることができる。
【0030】
一般に、SiO2とCaOとSrOだけでは、融点の高いガラスになるため、融点を低下させる添加剤としてB23を添加する必要がある。ガラス粉末中のB23が6.5重量%よりも少ないと、1400℃以下ではガラス化しにくくなる。反対に、B23が7.2重量%よりも多いと、必要な強度が得られない。従って、B23が6.5〜7.2重量%とすれば、ガラス融点を適度に下げながら、必要な強度を確保することができる。
【0031】
また、ガラス粉末中のAl23は、ガラスの融点を下げる役割を果たすため、Al23が4.2重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、Al23が5.0重量%よりも多いと、ガラス化しにくくなる。従って、Al23が4.2〜5.0重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0032】
また、請求項のように、低温焼成セラミック材料の骨材は、低温焼成セラミック材料総重量に対してAl23を33〜39.5重量%含有するようにすると良い。つまり、Al23が33重量%よりも少ないと、抗折強度が弱くなり、反対に、Al23が39.5重量%よりも多いと、焼結不良が発生する。従って、Al23を33〜39.5重量%とすれば、実用に耐え得る抗折強度と焼結性を確保することができる。
【0033】
また、請求項のように、上述した組成の低温焼成セラミック材料を用いて形成したセラミック生基板を800〜1000℃で焼成して低温焼成セラミック基板を製造するようにすると良い。これにより、最近の高速化・高周波化に対応できる高いQf値と信頼性確保に必要な基板強度を兼ね備えた高品質の低温焼成セラミック基板を製造することができる。
【0034】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1に基づいて説明する。低温焼成セラミック多層基板は、低温焼成セラミック材料で形成した複数枚のグリーンシート11a,11b,11cを積層して800〜1000℃で焼成したものである。この場合、低温焼成セラミック材料は、Al23(アルミナ)を主成分とする骨材:35〜40重量%とSiO2−CaO−B23−Al23系のガラス粉末:60〜65重量%とを混合したものを使用する。
【0035】
低温焼成セラミック材料の骨材は、低温焼成セラミック材料総重量に対して、BaO:0.5〜2.0重量%とAl23:33〜39.5重量%を含有している。
【0036】
ガラス粉末は、該ガラス粉末総重量に対して、SiO2:45〜55重量%、CaO:15〜21重量%、B23:6.5〜7.7重量%、Al23:4.2〜5.1重量%、BaO:6.4〜18重量%、ZnO:1.5〜2.5重量%、SnO2:2〜4重量%、不純物:2重量%以下を含有するBaO−SiO2−CaO−B23−Al23−ZnO−SnO2系のガラス粉末を用いる。
【0037】
グリーンシート11a,11b,11cは、上記組成の低温焼成セラミック材料に、バインダー(例えばアクリル系樹脂、ブチラール樹脂)、溶剤(例えばトルエン、キシレン、ブタノール等)及び可塑剤を配合して、十分に撹拌混合してスラリーを作製し、このスラリーを用いてドクターブレード法等でテープ成形したものである。
【0038】
各層のグリーンシート11a,11b,11cを積層する前に、各層のグリーンシート11a,11bにパンチング加工されたビアホール12に、ビア導体13を充填する。各層のビア導体13は、例えば、Ag、Ag/Pd、Ag/Pt、Ag/Au等を主に含むAg系導体ペーストの印刷により形成されている。尚、各層のビア導体13は、Ag系導体ペーストに代えて、Au系、Cu系等の低融点金属のペーストを用いても良い。更に、2層目以下のグリーンシート11b,11cには、ビア導体13と同種の低融点金属の導体ペーストを使用して内層配線導体14をスクリーン印刷する。
【0039】
また、1層目(最上層)のグリーンシート11aには、パッドや配線パターン等の表層配線導体15を上述したAg系、Au系、Cu系等の低融点金属の導体ペーストを使用してスクリーン印刷する。尚、表層配線導体15は、基板焼成後に、後付けで印刷・焼成するようにしても良い。
【0040】
印刷工程後に、各層のグリーンシート11a,11b,11cを積層して加熱圧着して一体化して低温焼成セラミック生基板を作製する。そして、この低温焼成セラミック生基板を800〜1000℃(好ましくは900℃以下)で焼成して、各層のグリーンシート11a,11b,11cとビア導体13、内層配線導体14及び表層配線導体15を同時焼成して、低温焼成セラミック多層基板を製造する。
【0041】
焼成後の低温焼成セラミック多層基板の組成は、SiO2:27〜35.8重量%、CaO:9〜13.7重量%、B23:3.9〜5重量%、Al23:36〜42.8重量%、BaO:4.3〜13.7重量%、ZnO:0.9〜1.6重量%、SnO2:1.2〜2.6重量%である。
【0042】
以上説明した本実施形態(1)では、グリーンシート11a,11b,11cを形成する低温焼成セラミック材料のガラス粉末と骨材の両方に適量のBaOを添加したところに特徴があり、更に、ガラス粉末に適量のZnOとSnO2を添加したところにも特徴がある。
【0043】
BaOを添加したガラス粉末は、焼成工程で結晶化すると、Qf値が高くなる特性がある。更に、骨材に適量のBaOを添加すると、焼成工程で、BaO−SiO2−CaO−B23−Al23系のガラスの結晶が析出しやくなり、そのガラス析出量が増加する傾向がある。これにより、低温焼成セラミック材料のQf値を3000GHz以上に高めることが可能となる。
【0044】
また、ガラス原料に、BaOの他に、適量のZnOとSnO2を添加して作ったBaO−SiO2−CaO−B23−Al23−ZnO−SnO2 系のガラスは、ZnOを添加しないガラスと比較して、Qf値が高くなると共に、ZnOがガラスの融点を低下させる役割を果たす。また、ガラス粉末を製造する際に、SnO2を添加すると、SnO2を添加し無い場合と比較して、ガラスの融点を30〜50℃低下させることができ、ガラス粉末の製造が容易となる。
【0045】
【実施例】
本発明者は、ガラス粉末の組成と、骨材のBaO添加量、ガラス粉末と骨材の配合比の適正範囲を評価する試験を行ったので、その試験結果を次の表1、表2に示す。
【0046】
【表1】

Figure 0004066631
【0047】
【表2】
Figure 0004066631
【0048】
この評価試験では、表1に示す4種類の組成(1)(4)のガラス粉末を作製した。このガラス粉末の製造方法は、表1の組成の混合物を溶融してガラス化して急冷し、これを粉砕して平均粒径が10μm程度のガラス粉末を作製した。
【0049】
この試験に用いた骨材は、BaOを添加しないAl23のみの骨材と、低温焼成セラミック材料総重量に対するBaO添加量が0.5重量%、1.0重量%、1.5重量%、2.0重量%、3.0重量%の骨材を使用した。
【0050】
そして、これらのガラス粉末と骨材とを表2に示す配合比で混合して低温焼成セラミック材料を作製し、この低温焼成セラミック材料に溶剤とアクリル系樹脂(バインダー)と可塑剤を配合して、十分に撹拌混合してスラリーを作製し、このスラリーをドクターブレード法でテープ成形して乾燥させ、厚さ0.1mmのグリーンシートを作製した。
【0051】
その後、このグリーンシートを12枚積層して熱圧着した後、これを10.0mm×50.0mmのサイズに切断してサンプル基板を作製した。そして、このサンプル基板を大気中で900℃、30分ホールドの条件で焼成し、焼結の良否を評価した。更に、焼結したサンプル基板については、曲げ試験によりサンプル基板の抗折強度を測定した。その結果、表2に示すように、17種類のサンプル#1〜#17の焼結性と抗折強度の測定値が得られた。
【0052】
一方、各サンプル#1〜#17のQf値の測定は、次のようにして行った。各サンプル#1〜#17の組成の低温焼成セラミック材料を金型プレスにより直径15mmの円柱状に成形してサンプルを作製し、このサンプルを大気中で930℃、30分ホールドの条件で焼成した。そして、焼結したサンプルを用いて、誘電体共振法により、Q値と共振周波数fを測定し、Qf値を算出した。このQf値は、信号処理の高速化・高周波化への適応性を表す指標となり、Qf値が高いほど、高速化・高周波化への対応が容易である。従来のガラス複合系の低温焼成セラミック材料は、Qf値が2000GHz程度であるが、最近の目覚ましく発展する高速化・高周波化に対応するためには、3000GHz以上の高いQf値を持つことが好ましい。
【0053】
この評価試験における合格基準は、焼結性が良で、且つ、抗折強度が170MPa以上で、且つ、Qf値が3000GHz以上であることであり、これら3つの条件が全て満たされた場合に合格(○)と評価し、いずれか1つでも満たさない条件があれば不合格(×)と評価した。
【0054】
表1の組成(1)のガラス粉末を用いたサンプル#1、#2は、いずれも、不合格(×)となった。また、組成(2)(4)のガラス粉末を用いたサンプル#3〜#17は、骨材のBaO添加量、ガラス粉末と骨材の配合比によって合格(○)と不合格(×)とに評価が分かれた。
【0055】
この事から、ガラス粉末の組成については、表1の(2)(4)の範囲内が適正であることが判明した。表1の(2)(4)のガラス粉末の組成は、該ガラス粉末総重量に対して、SiO2 :45〜55重量%、CaO:15〜21重量%、B2 O3 :6.5〜7.7重量%、Al2 O3 :4.2〜5.1重量%、BaO:6.4〜18重量%、ZnO:1.5〜2.5重量%、SnO2 :2〜4重量%の範囲内である。
【0056】
この場合、ガラス粉末のBaO添加量が6.4重量%よりも少ないと、BaOの添加効果が少なく、Qf値の向上幅が少ない。反対に、ガラス粉末のBaO添加量が18重量%よりも多いと、ガラス化しにくくなる。従って、ガラス粉末のBaO添加量の適正範囲は、6.4〜18重量%と考えられる。
【0057】
また、ガラス粉末中のZnOは、Qf値を高くすると共に、ガラスの融点を低下させる役割を果たす。ガラス粉末中のZnOが1.5重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、ZnOが2.5重量%よりも多いと、ガラス化しにくくなる。従って、ZnOを1.5〜2.5重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0058】
また、ガラス粉末中のSnO2が2重量%よりも少ないと、電気的特性が悪くなり、また、SnO2が4重量%よりも多いと、熱膨張が大きくなる。従って、SnO2を2〜4重量%とすれば、電気的特性、熱膨張特性が良くなる。
【0059】
また、ガラス粉末中のCaOが15重量%よりも少ないと、nSiO2・CaO・Al23系の結晶の析出が少なくなり、必要な強度が得られない。反対に、CaOが21重量%よりも多いと、ガラス融点が低くなり過ぎる。従って、CaOを15〜21重量%とすれば、高強度で適度に低いガラス融点とすることができる。
【0060】
また、ガラス粉末中のSiO2が45重量%よりも少ないと、nSiO2・CaO系又はBaO・SiO2系の結晶の析出が少なくなり、必要な強度が得られない。反対に、SiO2が55重量%よりも多いと、ガラス化しにくくなる。従って、SiO2を45〜55重量%とすれば、強度を確保しながら、ガラス化を容易にすることができる。
【0061】
一般に、SiO2とCaOとBaOだけでは、融点の高いガラスになるため、融点を低下させる添加剤としてB23を添加する必要がある。ガラス粉末中のB23が6.5重量%よりも少ないと、1400℃以下ではガラス化しにくくなる。反対に、B23が7.7重量%よりも多いと、必要な強度が得られない。従って、B23が6.5〜7.7重量%とすれば、ガラス融点を適度に下げながら、必要な強度を確保することができる。
【0062】
また、ガラス粉末中のAl23は、ガラスの融点を下げる役割を果たすため、Al23が4.2重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、Al23が5.1重量%よりも多いと、ガラス化しにくくなる。従って、Al23が4.2〜5.1重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0063】
次に、骨材のBaO添加量の適正範囲を考察する。BaOを添加しないAl23のみの骨材を用いたサンプルは、Qf値が3000GHz未満又は焼結不良となり、不合格(×)と評価された。また、骨材のBaO添加量が0.5重量%、1.0重量%、2.0重量%のサンプルは、いずれも、Qf値が3000GHz以上、焼結性良好、抗折強度が170MPa以上となり、合格(○)と評価された。しかし、骨材のBaO添加量が3.0重量%のサンプル#7は、抗折強度が165MPaに低下して合格基準(170MPa以上)を満たさず、不合格(×)と評価された。この事から、骨材のBaO添加量の適正範囲は、0.5〜2.0重量%と考えられる。
【0064】
次に、ガラス粉末と骨材の配合比の適正範囲を考察する。この試験では、ガラス粉末の配合比を55〜70重量%、骨材を30〜45重量%に設定した。ガラス粉末:55重量%、骨材:45重量%のサンプルは、いずれも、ガラスが不足して、焼結不良となり、不合格(×)と評価された。また、ガラス粉末:70重量%、骨材:30重量%のサンプルは、いずれも、骨材が不足して、抗折強度が150MPa以下に低下して合格基準(170MPa以上)を満たさず、不合格(×)と評価された。
【0065】
これに対し、ガラス粉末:60〜65重量%、骨材:35〜40重量%の場合は、骨材のBaO添加量が適正範囲(0.5〜2.0重量%)のサンプルについては、合格基準(焼結性:良、抗折強度>170MPa、Qf値>3000GHz)の条件を満たし、合格(○)と評価された。この事から、ガラス粉末と骨材の配合比の適正範囲は、ガラス粉末:60〜65重量%、骨材:35〜40重量%と考えられる。
【0066】
[実施形態(2)]前記実施形態(1)では、低温焼成セラミック材料の骨材とガラス粉末との両方に適量のBaOを添加したが、以下に説明する実施形態(2)では、低温焼成セラミック材料の骨材のみにBaOを添加し、ガラス粉末には、BaOの代わりにSrOを添加し、それに伴い、ガラス粉末の各成分の配合比を調整している。
【0067】
本実施形態(2)においても、グリーンシートを成形する低温焼成セラミック材料は、Al23(アルミナ)を主成分とする骨材:35〜40重量%とSiO2−CaO−B23−Al23系のガラス粉末:60〜65重量%とを混合したものを使用する。
【0068】
低温焼成セラミック材料の骨材は、低温焼成セラミック材料総重量に対して、BaO:0.5〜2.0重量%とAl23:33〜39.5重量%を含有している。
【0069】
ガラス粉末は、該ガラス粉末総重量に対して、SiO2:47〜55重量%、CaO:10〜14.4重量%、B23:6.5〜7.2重量%、Al23:4.2〜5.0重量%、SrO:11〜18.8重量%、ZnO:4.5〜5.5重量%、SnO2:2.0〜4.3重量%、不純物:2重量%以下を含有するSrO−SiO2−CaO−B23−Al23−ZnO−SnO2系のガラス粉末を用いる。
【0070】
この組成の低温焼成セラミック材料のスラリーを用いて、前記実施形態(1)と同様の方法でグリーンシートを成形し、導体パターン印刷、グリーンシート積層、焼成工程を順番に実行して、低温焼成セラミック多層基板を製造する。
【0071】
焼成後の低温焼成セラミック多層基板の組成は、SiO2:28.2〜35.8重量%、CaO:6.0〜9.4重量%、BaO:0.5〜2.0重量%、B23:3.9〜4.7重量%、Al23:32.5〜42.8重量%、SrO:6.6〜12.2重量%、ZnO:2.7〜3.6重量%、SnO2 :1.2〜2.8重量%である。
【0072】
以上説明した本実施形態(2)では、グリーンシートを形成する低温焼成セラミック材料の骨材のみにBaOを添加し、ガラス粉末には、BaOの代わりにSrOを添加したところに特徴があり、更にガラス粉末に適量のZnOとSnO2を添加したところにも特徴がある。
【0073】
SrOを添加したガラス粉末は、焼成工程で結晶化すると、抗折強度が高くなる特性がある。更に、骨材に適量のBaOを添加すると、焼成工程で、BaO−SrO−SiO2系のガラスの結晶が析出しやくなり、そのガラス析出量が増加する傾向がある。これにより、低温焼成セラミック材料のQf値を3000GHz以上に高めることが可能となる。
【0074】
また、ガラス原料に、SrOの他に、適量のZnOとSnO2を添加して作ったSrO−SiO2−CaO−B23−Al23−ZnO−SnO2 系のガラスは、ZnOを添加しないガラスと比較して、Qf値が高くなると共に、ZnOがガラスの融点を低下させる役割を果たす。また、ガラス粉末を製造する際に、SnO2を添加すると、SnO2を添加し無い場合と比較して、ガラスの融点を30〜50℃低下させることができ、ガラス粉末の製造が容易となる。
【0075】

【実施例】
本実施形態(2)の組成の低温焼成セラミック材料に関しても、本発明者は、ガラス粉末の組成と、骨材のBaO添加量、ガラス粉末と骨材の配合比の適正範囲を評価する試験を行ったので、その試験結果を次の表3、表4に示す。
【0076】
【表3】
Figure 0004066631
【0077】
【表4】
Figure 0004066631
【0078】
この評価試験では、表3に示す4種類の組成(1)(4)のガラス粉末を作製した。このガラス粉末の製造方法は、表3の組成の混合物を溶融してガラス化して急冷し、これを粉砕して平均粒径が10μm程度のガラス粉末を作製した。
【0079】
この試験に用いた骨材は、BaOを添加しないAl23のみの骨材と、低温焼成セラミック材料総重量に対するBaO添加量が0.5重量%、1.0重量%、1.5重量%、2.0重量%、3.0重量%の骨材を使用した。
【0080】
そして、これらのガラス粉末と骨材とを表4に示す配合比で混合して低温焼成セラミック材料を作製し、この低温焼成セラミック材料に溶剤とアクリル系樹脂(バインダー)と可塑剤を配合して、十分に撹拌混合してスラリーを作製し、このスラリーをドクターブレード法でテープ成形して乾燥させ、厚さ0.1mmのグリーンシートを作製した。
【0081】
その後、このグリーンシートを12枚積層して熱圧着した後、これを10.0mm×50.0mmのサイズに切断してサンプル基板を作製した。そして、このサンプル基板を大気中で900℃、30分ホールドの条件で焼成し、焼結の良否を評価した。更に、焼結したサンプル基板については、曲げ試験によりサンプル基板の抗折強度を測定した。その結果、表4に示すように、17種類のサンプル#21〜#37の焼結性と抗折強度の測定値が得られた。尚、各サンプル#21〜#37のQf値の測定方法は前記実施形態(1)と同じである。
【0082】
この評価試験における合格基準は、焼結性が良で、且つ、抗折強度が200MPa以上で、且つ、Qf値が3000GHz以上であることであり、これら3つの条件が全て満たされた場合に合格(○)と評価し、いずれか1つでも満たさない条件があれば不合格(×)と評価した。
【0083】
表3の組成(1)のガラス粉末を用いたサンプル#21、#22は、いずれも、不合格(×)となった。また、組成(2)(4)のガラス粉末を用いたサンプル#23〜#37は、骨材のBaO添加量、ガラス粉末と骨材の配合比によって合格(○)と不合格(×)とに評価が分かれた。
【0084】
この事から、ガラス粉末の組成については、表3の(2)(4)の範囲内が適正であることが判明した。表3の(2)(4)のガラス粉末の組成は、ガラス粉末総重量に対して、SiO2:47〜55重量%、CaO:10〜14.4重量%、B23:6.5〜7.2重量%、Al23:4.2〜5.0重量%、SrO:11〜18.8重量%、ZnO:4.5〜5.5重量%、SnO2:2〜4.3重量%の範囲内である。
【0085】
この場合、ガラス粉末のSrO添加量が11重量%よりも少ないと、SrOの添加効果が少なく、抗折強度の向上幅が少ない。反対に、ガラス粉末のSrO添加量が18.8重量%よりも多いと、ガラス化しにくくなる。従って、ガラス粉末のSrO添加量の適正範囲は、11〜18.8重量%と考えられる。
【0086】
また、ガラス粉末中のZnOは、Qf値を高くすると共に、ガラスの融点を低下させる役割を果たす。ガラス粉末中のZnOが4.5重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、ZnOが5.5重量%よりも多いと、ガラス化しにくくなる。従って、ZnOを4.5〜5.5重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0087】
また、ガラス粉末中のSnO2が2重量%よりも少ないと、電気的特性が悪くなり、また、SnO2が4.3重量%よりも多いと、熱膨張が大きくなる。従って、SnO2を2〜4.3重量%とすれば、電気的特性及び熱膨張特性が良くなる。
【0088】
また、ガラス粉末中のCaOが10重量%よりも少ないと、nSiO2・CaO・Al23系の結晶の析出が少なくなり、必要な強度が得られない。反対に、CaOが14.4重量%よりも多いと、ガラス融点が低くなり過ぎる。従って、CaOを10〜14.4重量%とすれば、高強度で適度に低いガラス融点とすることができる。
【0089】
また、ガラス粉末中のSiO2が47重量%よりも少ないと、nSiO2・CaO系又はSrO・SiO2系の結晶の析出が少なくなり、必要な強度が得られない。反対に、SiO2が55重量%よりも多いと、ガラス化しにくくなる。従って、SiO2を47〜55重量%とすれば、強度を確保しながら、ガラス化を容易にすることができる。
【0090】
一般に、SiO2とCaOとSrOだけでは、融点の高いガラスになるため、融点を低下させる添加剤としてB23を添加する必要がある。ガラス粉末中のB23が6.5重量%よりも少ないと、1400℃以下ではガラス化しにくくなる。反対に、B23が7.2重量%よりも多いと、必要な強度が得られない。従って、B23が6.5〜7.2重量%とすれば、ガラス融点を適度に下げながら、必要な強度を確保することができる。
【0091】
また、ガラス粉末中のAl23は、ガラスの融点を下げる役割を果たすため、Al23が4.2重量%よりも少ないと、ガラスの融点が1400℃以上となってしまう。反対に、Al23が5.0重量%よりも多いと、ガラス化しにくくなる。従って、Al23が4.2〜5.0重量%とすれば、ガラス融点を適度に下げてガラス化を容易にすることができる。
【0092】
次に、骨材のBaO添加量の適正範囲を考察する。BaOを添加しないAl23のみの骨材を用いたサンプルは、Qf値が3000GHz未満又は焼結不良となり、不合格(×)と評価された。また、骨材のBaO添加量が0.5重量%、1.0重量%、2.0重量%のサンプルは、いずれも、Qf値が3000GHz以上、焼結性良好、抗折強度が200MPa以上となり、合格(○)と評価された。しかし、骨材のBaO添加量が3.0重量%のサンプル#27は、抗折強度が170MPaに低下して合格基準(200MPa以上)を満たさず、不合格(×)と評価された。この事から、骨材のBaO添加量の適正範囲は、0.5〜2.0重量%と考えられる。
【0093】
次に、ガラス粉末と骨材の配合比の適正範囲を考察する。この試験では、ガラス粉末の配合比を55〜70重量%、骨材を30〜45重量%に設定した。ガラス粉末:55重量%、骨材:45重量%のサンプルは、いずれも、ガラスが不足して、焼結不良となり、不合格(×)と評価された。また、ガラス粉末:70重量%、骨材:30重量%のサンプルは、いずれも、骨材が不足して、抗折強度が150MPa以下に低下して合格基準(200MPa以上)を満たさず、不合格(×)と評価された。
【0094】
これに対し、ガラス粉末:60〜65重量%、骨材:35〜40重量%の場合は、骨材のBaO添加量が適正範囲(0.5〜2.0重量%)のサンプルについては、合格基準(焼結性:良、抗折強度>200MPa、Qf値>3000GHz)の条件を満たし、合格(○)と評価された。この事から、ガラス粉末と骨材の配合比の適正範囲は、ガラス粉末:60〜65重量%、骨材:35〜40重量%と考えられる。
【0095】
【発明の効果】
以上の説明から明らかなように、本発明の請求項1の低温焼成セラミック材料は、骨材とガラス粉末との両方に適量のBaOを添加したので、低温焼成セラミック材料のQf値を3000GHz以上に高めることができて、最近の目覚ましく発展する高速化・高周波化に対応することができると共に、基板の信頼性確保に必要な機械的な強度を持たせることができる。
【0096】
更に、ガラス原料に、BaOの他に、適量のZnOとSnO2を添加したので、Qf値を更に高くできると共に、ガラスの融点を低下させることができ、ガラス粉末の製造が容易となる。
【0097】
また、請求項では、骨材のAl23含有量を、低温焼成セラミック材料総重量に対して33〜39.5重量%としたので、実用に耐え得る抗折強度と焼結性を確保することができる。
【0098】
また、請求項では、上述した組成の低温焼成セラミック材料を用いて形成したセラミック生基板を800〜1000℃で焼成して低温焼成セラミック基板を製造するようにしたので、最近の高速化・高周波化に対応できる高いQf値と信頼性確保に必要な基板強度を兼ね備えた高品質の低温焼成セラミック基板を製造することができる。
【0099】
また、請求項では、低温焼成セラミック材料の骨材のみにBaOを添加し、ガラス粉末には、BaOの代わりにSrOを添加したので基板の機械的な強度を更に向上できると共に、低温焼成セラミック材料のQf値を3000GHz以上に高めることができて、最近の目覚ましく発展する高速化・高周波化に対応することができる。
【0100】
更に、ガラス原料に、適量のZnOとSnO2を添加したので、Qf値を更に高くできると共に、ガラスの融点を低下させることができ、ガラス粉末の製造が容易となる。
【0101】
また、請求項では、骨材のAl23含有量を、低温焼成セラミック材料総重量に対して33〜39.5重量%としたので、実用に耐え得る抗折強度と焼結性を確保することができる。
【0102】
また、請求項では、上述した組成の低温焼成セラミック材料を用いて形成したセラミック生基板を800〜1000℃で焼成して低温焼成セラミック基板を製造するようにしたので、最近の高速化・高周波化に対応できる高いQf値と信頼性確保に必要な基板強度を兼ね備えた高品質の低温焼成セラミック基板を製造することができる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)を示す低温焼成セラミック多層基板の縦断面図
【符号の説明】
11a,11b,11c...低温焼成セラミックのグリーンシート、12...ビアホール、13...ビア導体、14...内層配線導体、15...表層配線導体。[0001]
BACKGROUND OF THE INVENTION
The present invention provides SiO2-CaO-B2OThree-Al2OThree  The present invention relates to a low-temperature fired ceramic material and a low-temperature fired ceramic substrate containing a glass powder of the system.
[0002]
[Prior art]
Conventionally, the alumina substrate most frequently used as a ceramic substrate has a high dielectric constant and needs to be fired at a high temperature of 1500 ° C. or higher. A high refractory metal must be used. For this reason, package design has become difficult with alumina substrates in response to recent demands for higher speed and higher frequency of signal processing.
[0003]
Under such circumstances, in recent years, the demand for a low-temperature fired ceramic substrate that can be fired at 800 to 1000 ° C. is rapidly expanding. This low-temperature fired ceramic substrate can use a low-resistance conductor such as Ag, Ag-Pd, Au, Cu, etc. as a wiring conductor to be fired at the same time, and the dielectric constant of the ceramic is low. It has the feature that it can respond to conversion.
[0004]
Currently, low-temperature fired ceramic materials that have been developed or put into practical use include single crystal compositions such as crystallized glass and non-glass, but many are composed of a mixture of glass and aggregate (crystalline filler). Glass composite system. As this glass composite low-temperature fired ceramic material, for example, SiO2-CaO-B2OThree  -Al2OThreeGlass powder and Al2OThreeThere is a mixture with powder (alumina powder).
[0005]
[Problems to be solved by the invention]
By the way, there is a Qf value as an index indicating the adaptability to high speed and high frequency of signal processing. The higher this Qf value, the easier the response to high speed and high frequency. The above-mentioned conventional glass composite low-temperature fired ceramic material has a Qf value of about 2000 GHz. However, in order to cope with the recent rapid development of high speed and high frequency, low-temperature fired having a high Qf value of 3000 GHz or more. There is a need to develop new ceramic materials. Further, in order to ensure the connection reliability between the low-temperature fired ceramic substrate and the chip, it is necessary to ensure the mechanical strength such as the bending strength of the low-temperature fired ceramic substrate.
[0006]
The present invention has been made in view of such circumstances. Accordingly, the object of the present invention is to provide a low-temperature fired ceramic material and a low-temperature fired ceramic substrate having both a higher Qf value and a substrate strength necessary for ensuring reliability. There is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the low-temperature fired ceramic material according to claim 1 of the present invention is made of Al.2OThree(Alumina) -based aggregate: 35-40% by weight, SiO2-CaO-B2OThree-Al2OThreeGlass powder of the system: a low-temperature fired ceramic material mixed with 60 to 65% by weight, and the aggregate contains 0.5 to 2.0% by weight of BaO with respect to the total weight of the low-temperature fired ceramic material, The glass powder is based on the total weight of the glass powder.SiO 2 : 45-55 wt%, CaO: 15-21 wt%, B 2 O Three : 6.5 to 7.7% by weight, Al 2 O Three : 4.2-5.1 wt%, BaO: 6.4-18 wt%, ZnO: 1.5-2.5 wt%, SnO 2 : 2 to 4% by weight, impurities: 2% by weight or lessIt is characterized by this.
  That is, it is characterized in that an appropriate amount of BaO is added to both the aggregate and the glass powder. BaO-SiO prepared by adding BaO2-CaO-B2OThree-Al2OThreeThe glass powder of the system has a characteristic that the Qf value becomes high when crystallized in the firing step. Furthermore, when BaO is added to the aggregate, the BaO—SiO is used in the firing step.2-CaO-B2OThree-Al2OThreeThere is a tendency that the crystal of the glass of the system tends to precipitate and the amount of the deposited glass increases. Thereby, the Qf value of the low-temperature fired ceramic material can be increased to 3000 GHz or more.
[0008]
In this case, if the amount of BaO added to the aggregate is less than 0.5% by weight, the effect of addition is small and the amount of glass deposited is small. On the contrary, when the BaO addition amount of the aggregate is more than 2.0% by weight, it has been found from the test results described later that the bending strength is lowered. Therefore, the appropriate range of the BaO addition amount of the aggregate is considered to be 0.5 to 2.0% by weight.
[0009]
Further, when the BaO addition amount of the glass powder is less than 6.4% by weight, the effect of adding BaO is small and the Qf value is not improved. On the contrary, when the BaO addition amount of the glass powder is more than 18% by weight, vitrification becomes difficult. Therefore, the appropriate range of the BaO addition amount of the glass powder is considered to be 6.4 to 18% by weight.
[0010]
Also, if the aggregate in the low-temperature fired ceramic material is less than 35% by weight (if the glass powder is more than 65% by weight), the aggregate is insufficient and the bending strength is weakened. If it is more than 40% by weight (if the glass powder is less than 60% by weight), the glass may be insufficient and sintering failure may occur. Therefore, the aggregate is 35 to 40% by weight, BaO-SiO.2-CaO-B2OThree-Al2OThreeIf the glass powder of the system is 60 to 65% by weight, the bending strength and the sinterability that can withstand practical use can be ensured.
[0011]
Also,In addition to BaO, suitable amounts of ZnO and SnO2Made by adding BaO-SiO2-CaO-B2OThree-Al2OThree-ZnO-SnO2The system glass has a Qf value higher than that of glass not added with ZnO, and ZnO plays a role of lowering the melting point of the glass. In addition, when producing glass powder, SnO2When SnO is added2Compared with the case where no is added, the melting point of the glass can be lowered by 30 to 50 ° C., and the production of the glass powder becomes easy.
[0012]
In this case, if ZnO in the glass powder is less than 1.5% by weight, the melting point of the glass becomes 1400 ° C. or higher. On the other hand, when ZnO is more than 2.5% by weight, vitrification becomes difficult. Therefore, if ZnO is 1.5 to 2.5% by weight, the glass melting point can be lowered appropriately to facilitate vitrification.
[0013]
In addition, SnO in glass powder2Is less than 2% by weight, the electrical properties deteriorate, and SnO2When the amount is more than 4% by weight, the thermal expansion increases. Therefore, SnO2When the content is 2 to 4% by weight, electrical characteristics and thermal expansion characteristics are improved.
[0014]
If the CaO content in the glass powder is less than 15% by weight, nSiO2・ CaO ・ Al2OThreePrecipitation of crystals in the system is reduced and the required strength cannot be obtained. On the contrary, if the CaO content is more than 21% by weight, the glass melting point becomes too low. Accordingly, if CaO is 15 to 21% by weight, the glass melting point can be made high and moderately low.
[0015]
In addition, SiO in glass powder2Is less than 45% by weight, nSiO2・ CaO or BaO ・ SiO2Precipitation of crystals in the system is reduced and the required strength cannot be obtained. Conversely, SiO2When it is more than 55% by weight, vitrification becomes difficult. Therefore, SiO2If it is 45 to 55 weight%, vitrification can be made easy, ensuring intensity | strength.
[0016]
In general, SiO2And CaO and BaO alone result in a glass with a high melting point, so B as an additive to lower the melting point2OThreeNeed to be added. B in glass powder2OThreeIs less than 6.5% by weight, it becomes difficult to vitrify at 1400 ° C. or lower. Conversely, B2OThreeIs more than 7.7% by weight, the required strength cannot be obtained. Therefore, B2OThreeIs 6.5 to 7.7% by weight, the required strength can be ensured while the glass melting point is appropriately lowered.
[0017]
In addition, Al in glass powder2OThreePlays a role in lowering the melting point of glass, so Al2OThreeIf it is less than 4.2% by weight, the melting point of the glass becomes 1400 ° C. or higher. Conversely, Al2OThreeIs more than 5.1% by weight, it becomes difficult to vitrify. Therefore, Al2OThreeIf it is 4.2 to 5.1 weight%, glass melting point can be lowered | hung moderately and vitrification can be made easy.
[0018]
Claims2Thus, the aggregate of the low-temperature fired ceramic material is Al to the total weight of the low-temperature fired ceramic material.2OThreeIt is good to contain 33-39.5 weight%. That is, Al2OThreeIf it is less than 33% by weight, the bending strength is weakened.2OThree  If it is more than 39.5% by weight, sintering failure occurs. Therefore, Al2OThreeIf it is 33-39.5 weight%, the bending strength and sinterability which can be practically used can be ensured.
[0019]
Claims3As described above, a ceramic raw substrate formed using the low-temperature fired ceramic material having the above-described composition may be fired at 800 to 1000 ° C. to produce a low-temperature fired ceramic substrate. As a result, it is possible to manufacture a high-quality low-temperature fired ceramic substrate having both a high Qf value that can cope with the recent increase in speed and frequency and the substrate strength necessary for ensuring reliability.
[0020]
Claims 1 to 1 explained above3Then, an appropriate amount of BaO was added to both the aggregate of the low-temperature fired ceramic material and the glass powder.4As described above, BaO may be added only to the aggregate of the low-temperature fired ceramic material, and SrO may be added to the glass powder instead of BaO.
[0021]
Claim4The low-temperature fired ceramic material described in Al2OThree(Alumina) -based aggregate: 35-40% by weight, SiO2-CaO-B2OThree-Al2OThreeGlass powder of the system: a low-temperature fired ceramic material mixed with 60 to 65% by weight, and the aggregate contains 0.5 to 2.0% by weight of BaO with respect to the total weight of the low-temperature fired ceramic material, The glass powder is based on the total weight of the glass powder.SiO 2 : 47 to 55 wt%, CaO: 10 to 14.4 wt%, B 2 O Three : 6.5 to 7.2% by weight, Al 2 O Three : 4.2 to 5.0% by weight, SrO: 11 to 18.8% by weight, ZnO: 4.5 to 5.5% by weight, SnO 2 : 2.0 to 4.3 wt%, impurities: 2 wt% or lessIt is characterized by containing. SrO—SiO prepared by adding SrO in this way2-CaO-B2OThree-Al2OThreeWhen the glass powder of the system is crystallized in the firing process, it has a characteristic that the bending strength is increased. Furthermore, when BaO is added to the aggregate, BaO—SrO—SiO is used in the firing step.2There is a tendency that the crystal of the glass of the system tends to precipitate and the amount of the deposited glass increases. Thereby, the Qf value of the low-temperature fired ceramic material can be increased to 3000 GHz or more.
[0022]
In this case, if the amount of BaO added to the aggregate is less than 0.5% by weight, the effect of addition is small and the amount of glass deposited is small. On the contrary, when the BaO addition amount of the aggregate is more than 2.0% by weight, it has been found from the test results described later that the bending strength is lowered. Therefore, the appropriate range of the BaO addition amount of the aggregate is considered to be 0.5 to 2.0% by weight.
[0023]
On the other hand, when the SrO addition amount of the glass powder is less than 11% by weight, the effect of adding SrO is small, and the width of improvement in bending strength is small. On the contrary, when the SrO addition amount of the glass powder is more than 18.8% by weight, vitrification becomes difficult. Therefore, the appropriate range of the SrO addition amount of the glass powder is considered to be 11 to 18.8% by weight.
[0024]
Also, if the aggregate in the low-temperature fired ceramic material is less than 35% by weight (if the glass powder is more than 65% by weight), the aggregate is insufficient and the bending strength is weakened. If it is more than 40% by weight (if the glass powder is less than 60% by weight), the glass may be insufficient and sintering failure may occur. Therefore, the aggregate is 35 to 40% by weight, and SrO—SiO.2-CaO-B2OThree-Al2OThreeIf the glass powder of the system is 60 to 65% by weight, the bending strength and the sinterability that can withstand practical use can be ensured.
[0025]
  Also,In addition to SrO, suitable amounts of ZnO and SnO for glass raw materials2Made by adding SrO-SiO2-CaO-B2OThree-Al2OThree-ZnO-SnO2The system glass has a Qf value higher than that of glass not added with ZnO, and ZnO plays a role of lowering the melting point of the glass. In addition, when producing glass powder, SnO2When SnO is added2Compared with the case where no is added, the melting point of the glass can be lowered by 30 to 50 ° C., and the production of the glass powder becomes easy.
[0026]
In this case, if ZnO in the glass powder is less than 4.5% by weight, the melting point of the glass becomes 1400 ° C. or higher. On the other hand, when ZnO is more than 5.5% by weight, vitrification becomes difficult. Therefore, if ZnO is 4.5 to 5.5% by weight, the glass melting point can be lowered appropriately to facilitate vitrification.
[0027]
In addition, SnO in glass powder2Is less than 2% by weight, the electrical properties deteriorate, and SnO2When the amount is more than 4.3% by weight, the thermal expansion increases. Therefore, SnO2When the content is 2 to 4.3% by weight, the electrical characteristics and the thermal expansion characteristics are improved.
[0028]
Further, when CaO in the glass powder is less than 10% by weight, nSiO2・ CaO ・ Al2OThreePrecipitation of crystals in the system is reduced and the required strength cannot be obtained. On the contrary, when CaO is more than 14.4% by weight, the glass melting point becomes too low. Accordingly, if CaO is 10 to 14.4% by weight, the glass melting point can be made high and moderately low.
[0029]
In addition, SiO in glass powder2Is less than 47% by weight, nSiO2・ CaO or SrO ・ SiO2Precipitation of crystals in the system is reduced and the required strength cannot be obtained. Conversely, SiO2When it is more than 55% by weight, vitrification becomes difficult. Therefore, SiO2If it is 47 to 55 weight%, vitrification can be made easy, ensuring intensity | strength.
[0030]
In general, SiO2And CaO and SrO alone result in a glass with a high melting point, so B as an additive to lower the melting point2OThreeNeed to be added. B in glass powder2OThreeIs less than 6.5% by weight, it becomes difficult to vitrify at 1400 ° C. or lower. Conversely, B2OThreeIs more than 7.2% by weight, the required strength cannot be obtained. Therefore, B2OThreeIs 6.5 to 7.2% by weight, the required strength can be ensured while the glass melting point is appropriately lowered.
[0031]
In addition, Al in glass powder2OThreePlays a role in lowering the melting point of glass, so Al2OThreeIf it is less than 4.2% by weight, the melting point of the glass becomes 1400 ° C. or higher. Conversely, Al2OThreeWhen it is more than 5.0% by weight, vitrification becomes difficult. Therefore, Al2OThreeIf it is 4.2 to 5.0 weight%, glass melting point can be lowered | hung moderately and vitrification can be made easy.
[0032]
Claims5Thus, the aggregate of the low-temperature fired ceramic material is Al to the total weight of the low-temperature fired ceramic material.2OThreeIt is good to contain 33-39.5 weight%. That is, Al2OThreeIf it is less than 33% by weight, the bending strength is weakened.2OThreeIf it is more than 39.5% by weight, sintering failure occurs. Therefore, Al2OThreeIf it is 33-39.5 weight%, the bending strength and sinterability which can be practically used can be ensured.
[0033]
Claims6As described above, a ceramic raw substrate formed using the low-temperature fired ceramic material having the above-described composition may be fired at 800 to 1000 ° C. to produce a low-temperature fired ceramic substrate. As a result, it is possible to manufacture a high-quality low-temperature fired ceramic substrate having both a high Qf value that can cope with the recent increase in speed and frequency and the substrate strength necessary for ensuring reliability.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
  Hereinafter, embodiment (1) of this invention is described based on FIG. The low-temperature fired ceramic multilayer substrate is obtained by laminating a plurality of green sheets 11a, 11b, and 11c formed of a low-temperature fired ceramic material and firing them at 800 to 1000 ° C. In this case, the low-temperature fired ceramic material is Al2OThree(Alumina) -based aggregate: 35-40% by weight and SiO2-CaO-B2OThree-Al2OThreeGlass powder of the system: a mixture of 60 to 65% by weight is used.
[0035]
The aggregate of the low-temperature fired ceramic material is BaO: 0.5 to 2.0% by weight with respect to the total weight of the low-temperature fired ceramic material.2OThree: 33 to 39.5% by weight.
[0036]
The glass powder is composed of SiO2 with respect to the total weight of the glass powder.2: 45-55 wt%, CaO: 15-21 wt%, B2OThree: 6.5 to 7.7% by weight, Al2  OThree: 4.2-5.1 wt%, BaO: 6.4-18 wt%, ZnO: 1.5-2.5 wt%, SnO2: BaO-SiO containing 2 to 4% by weight, impurities: 2% by weight or less2-CaO-B2OThree-Al2OThree-ZnO-SnO2Glass powder of the system is used.
[0037]
The green sheets 11a, 11b, and 11c are mixed with a binder (for example, acrylic resin, butyral resin), a solvent (for example, toluene, xylene, butanol, etc.) and a plasticizer in the low-temperature fired ceramic material having the above composition, and sufficiently stirred. A slurry is prepared by mixing, and this slurry is tape-molded by the doctor blade method or the like.
[0038]
Before the green sheets 11a, 11b, and 11c of each layer are stacked, the via conductors 13 are filled into the via holes 12 punched in the green sheets 11a and 11b of the respective layers. The via conductors 13 in each layer are formed by printing an Ag-based conductor paste mainly containing Ag, Ag / Pd, Ag / Pt, Ag / Au, or the like, for example. The via conductors 13 in each layer may be made of a paste of low melting point metal such as Au or Cu instead of the Ag conductor paste. Further, the inner layer wiring conductor 14 is screen-printed on the second and lower green sheets 11b and 11c using a low-melting point metal conductor paste of the same type as the via conductor 13.
[0039]
Further, the first layer (uppermost layer) green sheet 11a is formed by using the above-described low melting point metal conductor paste such as Ag-based, Au-based, or Cu-based for the surface layer wiring conductor 15 such as a pad or a wiring pattern. Print. The surface layer wiring conductor 15 may be printed and fired after the substrate is fired.
[0040]
After the printing process, the green sheets 11a, 11b, and 11c of the respective layers are stacked and integrated by thermocompression bonding to produce a low-temperature fired ceramic raw substrate. Then, this low-temperature fired ceramic raw substrate is fired at 800 to 1000 ° C. (preferably 900 ° C. or less), and the green sheets 11a, 11b and 11c of each layer, the via conductor 13, the inner layer wiring conductor 14 and the surface layer wiring conductor 15 are simultaneously formed. Firing to produce a low-temperature fired ceramic multilayer substrate.
[0041]
The composition of the low-temperature fired ceramic multilayer substrate after firing is SiO2: 27 to 35.8% by weight, CaO: 9 to 13.7% by weight, B2OThree: 3.9 to 5% by weight, Al2OThree: 36 to 42.8 wt%, BaO: 4.3 to 13.7 wt%, ZnO: 0.9 to 1.6 wt%, SnO2: 1.2 to 2.6% by weight.
[0042]
The embodiment (1) described above is characterized in that an appropriate amount of BaO is added to both the glass powder and the aggregate of the low-temperature fired ceramic material forming the green sheets 11a, 11b, and 11c. Suitable amount of ZnO and SnO2It is also characterized by the addition of
[0043]
The glass powder to which BaO is added has a characteristic that the Qf value becomes high when crystallized in the firing step. Furthermore, when an appropriate amount of BaO is added to the aggregate, BaO—SiO is used in the firing step.2-CaO-B2OThree-Al2OThreeThere is a tendency that the crystal of the glass of the system tends to precipitate and the amount of the deposited glass increases. As a result, the Qf value of the low-temperature fired ceramic material can be increased to 3000 GHz or more.
[0044]
In addition to BaO, glass materials can contain appropriate amounts of ZnO and SnO.2Made by adding BaO-SiO2-CaO-B2OThree-Al2OThree-ZnO-SnO2  The system glass has a Qf value higher than that of glass not added with ZnO, and ZnO plays a role of lowering the melting point of the glass. In addition, when producing glass powder, SnO2When SnO is added2Compared with the case where no is added, the melting point of the glass can be lowered by 30 to 50 ° C., and the production of the glass powder becomes easy.
[0045]
【Example】
Since this inventor performed the test which evaluates the appropriate range of the composition of glass powder, the BaO addition amount of aggregate, and the compounding ratio of glass powder and aggregate, the test result is shown in the following Table 1 and Table 2. Show.
[0046]
[Table 1]
Figure 0004066631
[0047]
[Table 2]
Figure 0004066631
[0048]
In this evaluation test, four types of compositions shown in Table 1 were used.(1)~(4)A glass powder was prepared. In this glass powder production method, a mixture having the composition shown in Table 1 was melted, vitrified and rapidly cooled, and pulverized to produce a glass powder having an average particle size of about 10 μm.
[0049]
The aggregate used in this test is Al without adding BaO.2OThreeOnly aggregates and aggregates containing 0.5%, 1.0%, 1.5%, 2.0% and 3.0% by weight of BaO based on the total weight of the low-temperature fired ceramic material. used.
[0050]
These glass powders and aggregates are mixed at a blending ratio shown in Table 2 to produce a low-temperature fired ceramic material, and a solvent, an acrylic resin (binder), and a plasticizer are blended into the low-temperature fired ceramic material. The slurry was sufficiently mixed by stirring, and this slurry was tape-formed by the doctor blade method and dried to prepare a green sheet having a thickness of 0.1 mm.
[0051]
Thereafter, 12 green sheets were laminated and thermocompression bonded, and then cut into a size of 10.0 mm × 50.0 mm to prepare a sample substrate. And this sample board | substrate was baked on the conditions of 900 degreeC and a 30-minute hold | maintenance in air | atmosphere, and the quality of sintering was evaluated. Further, for the sintered sample substrate, the bending strength of the sample substrate was measured by a bending test. As a result, as shown in Table 2, measured values of sinterability and bending strength of 17 types of samples # 1 to # 17 were obtained.
[0052]
On the other hand, the Qf values of the samples # 1 to # 17 were measured as follows. A low-temperature fired ceramic material having the composition of each sample # 1 to # 17 was molded into a cylindrical shape having a diameter of 15 mm by a die press to prepare a sample, and this sample was fired in the atmosphere at 930 ° C. for 30 minutes. . Then, using the sintered sample, the Q value and the resonance frequency f were measured by the dielectric resonance method, and the Qf value was calculated. This Qf value serves as an index indicating the adaptability to signal processing at higher speeds and higher frequencies, and the higher the Qf value, the easier the response to higher speeds and higher frequencies. A conventional glass composite low-temperature fired ceramic material has a Qf value of about 2000 GHz, but preferably has a high Qf value of 3000 GHz or more in order to cope with the recent rapid development of high speed and high frequency.
[0053]
The acceptance criteria in this evaluation test are that the sinterability is good, the flexural strength is 170 MPa or more, and the Qf value is 3000 GHz or more. It evaluated as ((circle)), and if there was any condition which does not satisfy any one, it evaluated as disqualified (x).
[0054]
Composition of Table 1(1)Samples # 1 and # 2 using the glass powder of No. were both rejected (x). Also composition(2)~(4)Samples # 3 to # 17 using the glass powder of No. 2 were evaluated as acceptable (◯) and rejected (x) depending on the amount of BaO added to the aggregate and the mixing ratio of the glass powder and the aggregate.
[0055]
From this, the composition of the glass powder is shown in Table 1.(2)~(4)It was found that the range of was appropriate. Of Table 1(2)~(4)The composition of the glass powder was SiO2: 45-55 wt%, CaO: 15-21 wt%, B2O3: 6.5-7.7 wt%, Al2O3: 4. wt% with respect to the total weight of the glass powder. 2 to 5.1% by weight, BaO: 6.4 to 18% by weight, ZnO: 1.5 to 2.5% by weight, SnO2: 2 to 4% by weight.
[0056]
In this case, if the amount of BaO added to the glass powder is less than 6.4% by weight, the effect of adding BaO is small and the improvement in Qf value is small. On the contrary, when the BaO addition amount of the glass powder is more than 18% by weight, vitrification becomes difficult. Therefore, the appropriate range of the BaO addition amount of the glass powder is considered to be 6.4 to 18% by weight.
[0057]
In addition, ZnO in the glass powder serves to increase the Qf value and lower the melting point of the glass. When ZnO in the glass powder is less than 1.5% by weight, the melting point of the glass becomes 1400 ° C. or higher. On the other hand, when ZnO is more than 2.5% by weight, vitrification becomes difficult. Therefore, if ZnO is 1.5 to 2.5% by weight, the glass melting point can be lowered appropriately to facilitate vitrification.
[0058]
In addition, SnO in glass powder2Is less than 2% by weight, the electrical properties deteriorate, and SnO2When the amount is more than 4% by weight, the thermal expansion increases. Therefore, SnO2When the content is 2 to 4% by weight, electrical characteristics and thermal expansion characteristics are improved.
[0059]
If the CaO content in the glass powder is less than 15% by weight, nSiO2・ CaO ・ Al2OThreePrecipitation of crystals in the system is reduced and the required strength cannot be obtained. On the contrary, if the CaO content is more than 21% by weight, the glass melting point becomes too low. Accordingly, if CaO is 15 to 21% by weight, the glass melting point can be made high and moderately low.
[0060]
In addition, SiO in glass powder2Is less than 45% by weight, nSiO2・ CaO or BaO ・ SiO2Precipitation of crystals in the system is reduced and the required strength cannot be obtained. Conversely, SiO2When it is more than 55% by weight, vitrification becomes difficult. Therefore, SiO2If it is 45 to 55 weight%, vitrification can be made easy, ensuring intensity | strength.
[0061]
In general, SiO2And CaO and BaO alone result in a glass with a high melting point, so B as an additive to lower the melting point2OThreeNeed to be added. B in glass powder2OThreeIs less than 6.5% by weight, it becomes difficult to vitrify at 1400 ° C. or lower. Conversely, B2OThreeIs more than 7.7% by weight, the required strength cannot be obtained. Therefore, B2OThreeIs 6.5 to 7.7% by weight, the required strength can be ensured while the glass melting point is appropriately lowered.
[0062]
In addition, Al in glass powder2OThreePlays a role in lowering the melting point of glass, so Al2OThreeIf it is less than 4.2% by weight, the melting point of the glass becomes 1400 ° C. or higher. Conversely, Al2OThreeIs more than 5.1% by weight, it becomes difficult to vitrify. Therefore, Al2OThreeIf it is 4.2 to 5.1 weight%, glass melting point can be lowered | hung moderately and vitrification can be made easy.
[0063]
Next, an appropriate range of the BaO addition amount of the aggregate will be considered. Al without adding BaO2OThreeThe sample using only the aggregate had a Qf value of less than 3000 GHz or poor sintering, and was evaluated as rejected (x). In addition, the samples where the BaO addition amount of the aggregate is 0.5% by weight, 1.0% by weight, and 2.0% by weight all have a Qf value of 3000 GHz or more, good sinterability, and a bending strength of 170 MPa or more. It was evaluated as a pass (○). However, Sample # 7, in which the BaO addition amount of the aggregate was 3.0% by weight, was evaluated as rejected (x) because the bending strength decreased to 165 MPa and did not satisfy the acceptance criteria (170 MPa or more). From this, the appropriate range of the BaO addition amount of the aggregate is considered to be 0.5 to 2.0% by weight.
[0064]
Next, the appropriate range of the mixing ratio of glass powder and aggregate will be considered. In this test, the compounding ratio of the glass powder was set to 55 to 70% by weight, and the aggregate was set to 30 to 45% by weight. All of the samples of glass powder: 55 wt% and aggregate: 45 wt% were evaluated as rejected (x) due to lack of glass and poor sintering. In addition, the samples of glass powder: 70% by weight and aggregate: 30% by weight are not satisfactory because the aggregate is insufficient, the bending strength is reduced to 150 MPa or less, and the acceptance criteria (170 MPa or more) are not satisfied. It was evaluated as a pass (x).
[0065]
On the other hand, in the case of glass powder: 60 to 65% by weight and aggregate: 35 to 40% by weight, for the sample in which the BaO addition amount of the aggregate is in an appropriate range (0.5 to 2.0% by weight), The conditions of the acceptance criteria (sinterability: good, bending strength> 170 MPa, Qf value> 3000 GHz) were satisfied, and the product was evaluated as acceptable (◯). From this, it is considered that the appropriate ranges of the mixing ratio of the glass powder and the aggregate are glass powder: 60 to 65% by weight and aggregate: 35 to 40% by weight.
[0066]
[Embodiment (2)] In the embodiment (1), an appropriate amount of BaO is added to both the aggregate of the low-temperature fired ceramic material and the glass powder. However, in the embodiment (2) described below, the low-temperature fired ceramic material is used. BaO is added only to the aggregate of the ceramic material, SrO is added to the glass powder instead of BaO, and accordingly, the blending ratio of each component of the glass powder is adjusted.
[0067]
Also in this embodiment (2), the low-temperature fired ceramic material for forming the green sheet is Al.2OThree(Alumina) -based aggregate: 35-40% by weight and SiO2-CaO-B2OThree-Al2OThreeGlass powder of the system: a mixture of 60 to 65% by weight is used.
[0068]
The aggregate of the low-temperature fired ceramic material is BaO: 0.5 to 2.0% by weight with respect to the total weight of the low-temperature fired ceramic material.2OThree: 33 to 39.5% by weight.
[0069]
The glass powder is composed of SiO2 with respect to the total weight of the glass powder.2: 47 to 55 wt%, CaO: 10 to 14.4 wt%, B2OThree: 6.5 to 7.2% by weight, Al2OThree: 4.2 to 5.0% by weight, SrO: 11 to 18.8% by weight, ZnO: 4.5 to 5.5% by weight, SnO2: SrO-SiO containing 2.0 to 4.3 wt%, impurities: 2 wt% or less2-CaO-B2OThree-Al2OThree-ZnO-SnO2Glass powder of the system is used.
[0070]
Using the slurry of the low-temperature fired ceramic material having this composition, a green sheet is formed by the same method as in the embodiment (1), and the conductive pattern printing, green sheet lamination, and firing steps are sequentially performed, and the low-temperature fired ceramic is obtained. A multilayer substrate is manufactured.
[0071]
The composition of the low-temperature fired ceramic multilayer substrate after firing is SiO2: 28.2 to 35.8 wt%, CaO: 6.0 to 9.4 wt%, BaO: 0.5 to 2.0 wt%, B2OThree: 3.9 to 4.7% by weight, Al2OThree: 32.5 to 42.8% by weight, SrO: 6.6 to 12.2% by weight, ZnO: 2.7 to 3.6% by weight, SnO2  : 1.2 to 2.8% by weight.
[0072]
In this embodiment (2) described above, BaO is added only to the aggregate of the low-temperature fired ceramic material forming the green sheet, and the glass powder is characterized in that SrO is added instead of BaO. Appropriate amounts of ZnO and SnO in glass powder2It is also characterized by the addition of
[0073]
The glass powder to which SrO is added has a characteristic that the bending strength is increased when it is crystallized in the firing step. Furthermore, when an appropriate amount of BaO is added to the aggregate, BaO—SrO—SiO is used in the firing step.2There is a tendency that the crystal of the glass of the system tends to precipitate and the amount of the deposited glass increases. As a result, the Qf value of the low-temperature fired ceramic material can be increased to 3000 GHz or more.
[0074]
In addition to SrO, glass materials can contain appropriate amounts of ZnO and SnO.2Made by adding SrO-SiO2-CaO-B2OThree-Al2OThree-ZnO-SnO2  The system glass has a Qf value higher than that of glass not added with ZnO, and ZnO plays a role of lowering the melting point of the glass. In addition, when producing glass powder, SnO2When SnO is added2Compared with the case where no is added, the melting point of the glass can be lowered by 30 to 50 ° C., and the production of the glass powder becomes easy.
[0075]

【Example】
Regarding the low-temperature fired ceramic material having the composition of the present embodiment (2), the present inventor conducted a test for evaluating an appropriate range of the composition of the glass powder, the amount of BaO added to the aggregate, and the mixing ratio of the glass powder and the aggregate. The test results are shown in Tables 3 and 4 below.
[0076]
[Table 3]
Figure 0004066631
[0077]
[Table 4]
Figure 0004066631
[0078]
In this evaluation test, four types of compositions shown in Table 3 were used.(1)~(4)A glass powder was prepared. In this glass powder production method, a mixture having the composition shown in Table 3 was melted, vitrified and rapidly cooled, and pulverized to produce a glass powder having an average particle size of about 10 μm.
[0079]
The aggregate used in this test is Al without adding BaO.2OThreeOnly aggregates and aggregates containing 0.5%, 1.0%, 1.5%, 2.0% and 3.0% by weight of BaO based on the total weight of the low-temperature fired ceramic material. used.
[0080]
These glass powders and aggregates are mixed at a blending ratio shown in Table 4 to produce a low-temperature fired ceramic material. The low-temperature fired ceramic material is blended with a solvent, an acrylic resin (binder), and a plasticizer. The slurry was sufficiently mixed by stirring, and this slurry was tape-formed by the doctor blade method and dried to prepare a green sheet having a thickness of 0.1 mm.
[0081]
Thereafter, 12 green sheets were laminated and thermocompression bonded, and then cut into a size of 10.0 mm × 50.0 mm to prepare a sample substrate. And this sample board | substrate was baked on the conditions of 900 degreeC and a 30-minute hold | maintenance in air | atmosphere, and the quality of sintering was evaluated. Further, for the sintered sample substrate, the bending strength of the sample substrate was measured by a bending test. As a result, as shown in Table 4, measured values of sinterability and bending strength of 17 types of samples # 21 to # 37 were obtained. In addition, the measuring method of the Qf value of each sample # 21- # 37 is the same as the said embodiment (1).
[0082]
The acceptance criteria in this evaluation test are that the sinterability is good, the bending strength is 200 MPa or more, and the Qf value is 3000 GHz or more. It evaluated as ((circle)), and if there was any condition which does not satisfy any one, it evaluated as disqualified (x).
[0083]
Composition of Table 3(1)Samples # 21 and # 22 using the glass powder were rejected (x). Also composition(2)~(4)Samples # 23 to # 37 using the glass powder of No. 2 were evaluated as pass (◯) and fail (x) depending on the amount of BaO added to the aggregate and the mixing ratio of the glass powder and the aggregate.
[0084]
From this, the composition of the glass powder is shown in Table 3.(2)~(4)It was found that the range of was appropriate. Of Table 3(2)~(4)The composition of the glass powder is SiO, based on the total weight of the glass powder.2: 47 to 55 wt%, CaO: 10 to 14.4 wt%, B2OThree: 6.5 to 7.2% by weight, Al2OThree: 4.2 to 5.0% by weight, SrO: 11 to 18.8% by weight, ZnO: 4.5 to 5.5% by weight, SnO2: Within the range of 2 to 4.3% by weight.
[0085]
In this case, when the amount of SrO added to the glass powder is less than 11% by weight, the effect of adding SrO is small and the range of improvement in bending strength is small. On the contrary, when the SrO addition amount of the glass powder is more than 18.8% by weight, vitrification becomes difficult. Therefore, the appropriate range of the SrO addition amount of the glass powder is considered to be 11 to 18.8% by weight.
[0086]
In addition, ZnO in the glass powder serves to increase the Qf value and lower the melting point of the glass. If ZnO in the glass powder is less than 4.5% by weight, the melting point of the glass becomes 1400 ° C. or higher. On the other hand, when ZnO is more than 5.5% by weight, vitrification becomes difficult. Therefore, if ZnO is 4.5 to 5.5% by weight, the glass melting point can be lowered appropriately to facilitate vitrification.
[0087]
In addition, SnO in glass powder2Is less than 2% by weight, the electrical properties deteriorate, and SnO2When the amount is more than 4.3% by weight, the thermal expansion increases. Therefore, SnO2When the content is 2 to 4.3% by weight, the electrical characteristics and the thermal expansion characteristics are improved.
[0088]
Further, when CaO in the glass powder is less than 10% by weight, nSiO2・ CaO ・ Al2OThreePrecipitation of crystals in the system is reduced and the required strength cannot be obtained. On the contrary, when CaO is more than 14.4% by weight, the glass melting point becomes too low. Accordingly, if CaO is 10 to 14.4% by weight, the glass melting point can be made high and moderately low.
[0089]
In addition, SiO in glass powder2Is less than 47% by weight, nSiO2・ CaO or SrO ・ SiO2Precipitation of crystals in the system is reduced and the required strength cannot be obtained. Conversely, SiO2When it is more than 55% by weight, vitrification becomes difficult. Therefore, SiO2If it is 47 to 55 weight%, vitrification can be made easy, ensuring intensity | strength.
[0090]
In general, SiO2And CaO and SrO alone result in a glass with a high melting point, so B as an additive to lower the melting point2OThreeNeed to be added. B in glass powder2OThreeIs less than 6.5% by weight, it becomes difficult to vitrify at 1400 ° C. or lower. Conversely, B2OThreeIs more than 7.2% by weight, the required strength cannot be obtained. Therefore, B2OThreeIs 6.5 to 7.2% by weight, the required strength can be ensured while the glass melting point is appropriately lowered.
[0091]
In addition, Al in glass powder2OThreePlays a role in lowering the melting point of glass, so Al2OThreeIf it is less than 4.2% by weight, the melting point of the glass becomes 1400 ° C. or higher. Conversely, Al2OThreeWhen it is more than 5.0% by weight, vitrification becomes difficult. Therefore, Al2OThreeIf it is 4.2 to 5.0 weight%, glass melting point can be lowered | hung moderately and vitrification can be made easy.
[0092]
Next, an appropriate range of the BaO addition amount of the aggregate will be considered. Al without adding BaO2OThreeThe sample using only the aggregate had a Qf value of less than 3000 GHz or poor sintering, and was evaluated as rejected (x). In addition, the samples with the BaO addition amount of the aggregate of 0.5% by weight, 1.0% by weight, and 2.0% by weight all have a Qf value of 3000 GHz or more, good sinterability, and a bending strength of 200 MPa or more. And passed (○). However, Sample # 27, in which the BaO addition amount of the aggregate was 3.0% by weight, was evaluated as rejected (x) because the bending strength decreased to 170 MPa and did not satisfy the acceptance criteria (200 MPa or more). From this, the appropriate range of the BaO addition amount of the aggregate is considered to be 0.5 to 2.0% by weight.
[0093]
Next, the appropriate range of the mixing ratio of glass powder and aggregate will be considered. In this test, the compounding ratio of the glass powder was set to 55 to 70% by weight, and the aggregate was set to 30 to 45% by weight. All of the samples of glass powder: 55 wt% and aggregate: 45 wt% were evaluated as rejected (x) due to lack of glass and poor sintering. In addition, the samples of glass powder: 70% by weight and aggregate: 30% by weight are not satisfactory because the aggregate is insufficient, the bending strength is reduced to 150 MPa or less, and the acceptance criteria (200 MPa or more) are not satisfied. It was evaluated as a pass (x).
[0094]
On the other hand, in the case of glass powder: 60 to 65% by weight and aggregate: 35 to 40% by weight, for the sample in which the BaO addition amount of the aggregate is in an appropriate range (0.5 to 2.0% by weight), The conditions of the acceptance criteria (sinterability: good, bending strength> 200 MPa, Qf value> 3000 GHz) were satisfied, and the product was evaluated as acceptable (◯). From this, it is considered that the appropriate ranges of the mixing ratio of the glass powder and the aggregate are glass powder: 60 to 65% by weight and aggregate: 35 to 40% by weight.
[0095]
【The invention's effect】
As apparent from the above description, the low-temperature fired ceramic material according to claim 1 of the present invention has an appropriate amount of BaO added to both the aggregate and the glass powder. In addition to being able to cope with the recent rapid development of high speed and high frequency, the mechanical strength necessary for securing the reliability of the substrate can be provided.
[0096]
In addition to BaO, suitable amounts of ZnO and SnO are used as glass raw materials.2Thus, the Qf value can be further increased, the melting point of the glass can be lowered, and the production of the glass powder is facilitated.
[0097]
Claims2Then, the aggregate Al2OThreeSince the content is 33 to 39.5% by weight based on the total weight of the low-temperature fired ceramic material, it is possible to ensure the bending strength and sinterability that can withstand practical use.
[0098]
Claims3Then, since the ceramic raw substrate formed using the low-temperature fired ceramic material having the above-mentioned composition is fired at 800 to 1000 ° C. to produce the low-temperature fired ceramic substrate, it can cope with recent high speed and high frequency. A high-quality, low-temperature fired ceramic substrate having both the Qf value and the substrate strength necessary for ensuring reliability can be manufactured.
[0099]
Claims4Then, BaO is added only to the aggregate of the low-temperature fired ceramic material, and SrO is added to the glass powder instead of BaO, so that the mechanical strength of the substrate can be further improved, and the Qf value of the low-temperature fired ceramic material can be increased. The frequency can be increased to 3000 GHz or more, and it is possible to cope with recent high speed and high frequency.
[0100]
In addition, glass materials with appropriate amounts of ZnO and SnO2Thus, the Qf value can be further increased, the melting point of the glass can be lowered, and the production of the glass powder is facilitated.
[0101]
Claims5Then, the aggregate Al2OThreeSince the content is 33 to 39.5% by weight based on the total weight of the low-temperature fired ceramic material, it is possible to ensure the bending strength and sinterability that can withstand practical use.
[0102]
Claims6Then, since the ceramic raw substrate formed using the low-temperature fired ceramic material having the above-mentioned composition is fired at 800 to 1000 ° C. to produce the low-temperature fired ceramic substrate, it can cope with recent high speed and high frequency. A high-quality, low-temperature fired ceramic substrate having both the Qf value and the substrate strength necessary for ensuring reliability can be manufactured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a low-temperature fired ceramic multilayer substrate showing an embodiment (1) of the present invention.
[Explanation of symbols]
11a, 11b, 11c. . . Low temperature fired ceramic green sheet, 12. . . Via hole, 13. . . Via conductors, 14. . . Inner layer wiring conductor, 15. . . Surface wiring conductor.

Claims (6)

Al23を主成分とする骨材:35〜40重量%と、SiO2−CaO−B23−Al23系のガラス粉末:60〜65重量%とを混合してなる低温焼成セラミック材料において、前記骨材は、低温焼成セラミック材料総重量に対してBaOを0.5〜2.0重量%含有し、前記ガラス粉末は、該ガラス粉末総重量に対してSiO 2 :45〜55重量%、CaO:15〜21重量%、B23:6.5〜7.7重量%、Al23:4.2〜5.1重量%、BaO:6.4〜18重量%、ZnO:1.5〜2.5重量%、SnO2:2〜4重量%、不純物:2重量%以下を含有することを特徴とする低温焼成セラミック材料。Aggregate mainly composed of Al 2 O 3 : 35 to 40% by weight and SiO 2 —CaO—B 2 O 3 —Al 2 O 3 glass powder: 60 to 65% by weight firing the ceramic material, the aggregate, the BaO against low-temperature co-fired ceramic material total weight containing 0.5 to 2.0 wt%, the glass powder, SiO 2 and with respect to the glass powder to the total weight: 45 55 wt%, CaO: 15 to 21 wt%, B 2 O 3: 6.5~7.7 wt%, Al 2 O 3: 4.2~5.1 wt%, BaO: 6.4~18 A low-temperature fired ceramic material comprising: wt%, ZnO: 1.5 to 2.5 wt%, SnO 2 : 2 to 4 wt%, impurities: 2 wt% or less. 前記骨材は、低温焼成セラミック材料総重量に対してAl23 を33〜39.5重量%含有することを特徴とする請求項1に記載の低温焼成セラミック材料。The low-temperature fired ceramic material according to claim 1, wherein the aggregate contains 33 to 39.5 wt% of Al 2 O 3 with respect to the total weight of the low-temperature fired ceramic material. 請求項1または2に記載の低温焼成セラミック材料を用いて形成したセラミック生基板を800〜1000℃で焼成してなる低温焼成セラミック基板。A low-temperature fired ceramic substrate obtained by firing a ceramic raw substrate formed using the low-temperature fired ceramic material according to claim 1 or 2 at 800 to 1000 ° C. Al23を主成分とする骨材:35〜40重量%と、SiO2−CaO−B23−Al23系のガラス粉末:60〜65重量%とを混合してなる低温焼成セラミック材料において、前記骨材は、低温焼成セラミック材料総重量に対してBaOを0.5〜2.0重量%含有し、前記ガラス粉末は、該ガラス粉末総重量に対してSiO 2:47〜55重量%、CaO:10〜14.4重量%、SrO:11〜18.8重量%、B23:6.5〜7.2重量%、Al23:4.2〜5.0重量%、ZnO:4.5〜5.5重量%、SnO2:2.0〜4.3重量%、不純物:2重量%以下を含有することを特徴とする低温焼成セラミック材料。Aggregate mainly composed of Al 2 O 3 : 35 to 40% by weight and SiO 2 —CaO—B 2 O 3 —Al 2 O 3 glass powder: 60 to 65% by weight firing the ceramic material, the aggregate, the BaO against low-temperature co-fired ceramic material total weight containing 0.5 to 2.0 wt%, the glass powder, SiO 2 for the said glass powder total weight: 47 55 wt%, CaO: 10 to 14.4 wt%, SrO: 11 to 18.8 wt%, B 2 O 3: 6.5~7.2 wt%, Al 2 O 3: 4.2~5 A low-temperature fired ceramic material comprising: 0.0 wt%, ZnO: 4.5 to 5.5 wt%, SnO 2 : 2.0 to 4.3 wt%, impurities: 2 wt% or less. 前記骨材は、低温焼成セラミック材料総重量に対してAl23を33〜39.5重量%含有することを特徴とする請求項に記載の低温焼成セラミック材料。The aggregate, low temperature co-fired ceramic material according to claim 4, wherein the containing Al 2 O 3 with respect to low-temperature co-fired ceramic material total weight from 33 to 39.5 wt%. 請求項4または5に記載の低温焼成セラミック材料を用いて形成したセラミック生基板を800〜1000℃で焼成してなる低温焼成セラミック基板。A low-temperature fired ceramic substrate obtained by firing a ceramic raw substrate formed using the low-temperature fired ceramic material according to claim 4 or 5 at 800 to 1000 ° C.
JP2001306733A 2001-10-02 2001-10-02 Low temperature fired ceramic material and low temperature fired ceramic substrate Expired - Fee Related JP4066631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306733A JP4066631B2 (en) 2001-10-02 2001-10-02 Low temperature fired ceramic material and low temperature fired ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306733A JP4066631B2 (en) 2001-10-02 2001-10-02 Low temperature fired ceramic material and low temperature fired ceramic substrate

Publications (2)

Publication Number Publication Date
JP2003112965A JP2003112965A (en) 2003-04-18
JP4066631B2 true JP4066631B2 (en) 2008-03-26

Family

ID=19126327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306733A Expired - Fee Related JP4066631B2 (en) 2001-10-02 2001-10-02 Low temperature fired ceramic material and low temperature fired ceramic substrate

Country Status (1)

Country Link
JP (1) JP4066631B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187062B (en) * 2020-01-13 2022-03-01 杭州电子科技大学 CaSnSiO5-K2MoO4Base composite ceramic microwave material and preparation method thereof

Also Published As

Publication number Publication date
JP2003112965A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
JP3358589B2 (en) Composition for ceramic substrate, green sheet and ceramic circuit component
US5262595A (en) Dielectric ceramic body including TiO2 dispersion in crystallized cordierite matrix phase, method of producing the same, and circuit board using the same
US6372676B1 (en) Ceramic substrate composition and ceramic circuit component
JP3042441B2 (en) Low temperature fired glass-ceramic substrate and its manufacturing method
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JP2001287984A (en) Glass ceramic composition
JP3678260B2 (en) Glass ceramic composition
JP4066631B2 (en) Low temperature fired ceramic material and low temperature fired ceramic substrate
JP3890779B2 (en) Glass ceramic composition
JP2657008B2 (en) Metallized composition for ceramics
JPH0758454A (en) Glass ceramic multilayered substrate
JPH0723252B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JP4202117B2 (en) Low-frequency fired porcelain composition for high frequency and manufacturing method thereof
JP4358480B2 (en) Dielectric porcelain
CN114206794A (en) Glass powder, dielectric material, sintered body, and high-frequency circuit member
JPH0517211A (en) Substrate material and circuit substrate
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
JP2964725B2 (en) Composition for ceramic substrate
US6534161B1 (en) Crystallized glass composition, sintered crystallized glass compact, and circuit substrate using the same
JP3125500B2 (en) Ceramic substrate
JPH0738214A (en) Glass ceramic board and manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees