JP4066506B2 - A method for producing a carbonaceous material. - Google Patents

A method for producing a carbonaceous material. Download PDF

Info

Publication number
JP4066506B2
JP4066506B2 JP12720998A JP12720998A JP4066506B2 JP 4066506 B2 JP4066506 B2 JP 4066506B2 JP 12720998 A JP12720998 A JP 12720998A JP 12720998 A JP12720998 A JP 12720998A JP 4066506 B2 JP4066506 B2 JP 4066506B2
Authority
JP
Japan
Prior art keywords
carbonaceous
carbonaceous material
metal
electrode
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12720998A
Other languages
Japanese (ja)
Other versions
JPH11322322A (en
Inventor
聡 平原
公平 奥山
一志 松浦
光雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12720998A priority Critical patent/JP4066506B2/en
Publication of JPH11322322A publication Critical patent/JPH11322322A/en
Application granted granted Critical
Publication of JP4066506B2 publication Critical patent/JP4066506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To obtain a carbonaceous substance stable in air and exhibiting a low natural electric potential in an electrolyte solution, and to obtain an electric double layer capacitor using the carbonaceous substance as the electrode material of the capacitor and having improved electric voltage resistance, cycle durability, durability on the application of electric voltages, and energy density. SOLUTION: This carbonaceous substance contains elements comprising alkali metals, alkaline earth metals and rare earth metals in a total amount of 100-2,000 ppm, and has a natural electric potential of 1.50-2.85 V, when Li/Li<+> is used as a counter electrode in a nonaqueous electrolyte solution. The electric double layer capacitor using the nonaqueous electrolyte solution uses the carbonaceous substance as the main material of the electrodes.

Description

【0001】
【発明の属する技術分野】
本発明は、炭素質物質の製造方法に係わるものである。本発明により製造される炭素質物質は、非水系電解液中での自然電位が通常の炭素より低いため、耐電圧、充放電容量等が電極を構成する物質の電位に大きく影響を受ける電気二重層キャパシター、リチウムイオン二次電池、空気電池、ガスセンサー等の技術分野に好適である。
【0002】
【従来の技術】
活性炭、コークス、黒鉛、炭素繊維等の炭素質は、電気伝導度が高い、耐腐食性が高い、電気化学的に安定である、リチウムイオン等のイオン種を可逆的に吸蔵放出できる、重金属を含まない、安価である等の理由から、電気二重層キャパシター、リチウムイオン二次電池用負極、乾電池電極、製鋼用電極、センサー電極等の電極材料として広く利用されている。しかし、これらの炭素質の電解液中での自然電位は、すべて3.0V(対Li/Li + )であることから、使用可能な電位領域が制限されている。
【0003】
一方、大電流で充放電できる電気二重層キャパシターは、電気自動車、補助電源等の用途に有望である。そのために、エネルギー密度が高く、急速充放電が可能であり、高電圧印加時の耐久性及び充放電サイクル耐久性に優れた電気二重層キャパシターの実現が望まれている。
キャパシターのセルに蓄積されるエネルギーは、1/2 ・C・V2 で算出され、Cはセル当たりの静電容量(F)、Vはセルに印加可能な電圧(V)である。印加可能電圧Vは、その値の二乗がエネルギーに反映されるため、エネルギー密度の向上にはキャパシターに印加する電圧(耐電圧)を上げるの効果的であるが、大きな電圧では電解液の分解が起こることにより、内部抵抗の増加、静電容量の短時間での低下という問題があった。そのため、従来の電気二重層キャパシターでは使用する電解液の溶媒と溶質の種類にもよるが、単位セルあたりの耐電圧は、非水系電解液の電気二重層キャパシターの場合、約2.4Vであり(特開平7-145001号公報)、2.5V以上の高電圧で使用すると、内部直列抵抗の増加あるいは静電容量の減少が短時間で発生する。そこで、正負側の電極、セパレータ、電解液、容器等を詳細に検討し、2.5V〜2.8Vの電圧を印加することが試みられている。例えば、フェノール樹脂、石油コークス等をKOH 賦活して得られる活性炭を用いた電極を不活性雰囲気中で熱処理して耐久性を向上させる方法や、原料を選定した結果、フェノール樹脂、フラン樹脂、ポリアクリロニトリル樹脂の場合に耐久性がわずかに向上したこと(特開平8-162375号公報)、キャパシターの集電体に多孔質アルミニウムを用いて耐久性向上を図る手法(特開平8-339941号公報)等が知られている。
【0004】
エネルギー密度を大きくするため、印加電圧を3V以上にする方法としては、特開平8-107048号公報にリチウム箔を接触させてリチウムを吸蔵させた黒鉛電極を負極に、活性炭を正極に、リチウムイオンを溶質に含んだ電解液を用いたキャパシターや、特開平9-232190号公報では、活性炭粉末を含む分極性電極材料にステンレス鋼繊維の集電体が混在状態で組み合わされたものを正極としたキャパシターが提案されている。また、特開平9-205041号公報では、電解液に2−メチルスルホランを溶媒の主体とする電解液を用いて、耐電圧の向上を図っている。
【0005】
【発明が解決すべき課題】
しかしながらこれらの例は、いずれの程度の差こそあれ満足すべきものではなかった。例えば前述の、フェノール樹脂、石油コークス等をKOH 賦活して得られる活性炭を用いた電極を不活性雰囲気中で熱処理する方法では、同時に初期静電容量も小さくなるという問題があった。また、特開平8-162375号公報、特開平8-339941号公報の方法では、根本的には耐久性を改善することはできないと言ってよい。印加電圧を3V以上にすることによるエネルギー密度向上策として、特開平9-232190号公報、特開平9-205041号公報は、最大の印加電圧は3.3Vであり、それより大きい電圧を印加することができない。また、特開平8-107048号公報の方法では、電極−電解液間で酸化還元反応を伴うため、耐久性の問題がある。また、負極(非分極性電極)にリチウムを含有するため、未充電の状態ですでに正極(分極性電極)は約3Vであり、記載の実施例のように4.3Vまで電圧を印加した場合の充電による電位変化は1.3V程度となる。従って、キャパシターとして使用した場合のエネルギー密度は通常のキャパシターより小さくなる。
従来の電気二重層キャパシターの活性炭電極では、2.5Vを越える高電圧の連続印加によって、ガス発生あるいは分極性電極上への反応生成物の付着が発生していた。これが、原因となって、著しい内部抵抗の増加あるいは静電容量の減少を起こすという欠点を有していた。
【0006】
そこで、本発明者らは、特願平9 −183670号公報において、炭素質電極の自然電位を任意に調節して充電時の電位を、電解液の高電位側(酸化側)の実質的な分解開始電圧以下にすることにより、電解液の分解が抑制され、電気二重層キャパシターの印加可能電圧、及び耐久性が改善できることを提案してる。
これについて、簡単に説明する。電解液として代表的な非水系の電解液である4級アルキルアンモニウム塩のプロピレンカーボネート溶液を用い、電極として実質的に炭素質物質からなる電極を用いた場合、電解液の酸化側の分解開始電圧は4.4 V(対Li/Li + )付近であると言われている。一方、通常の炭素質電極の自然電位は3V(対Li/Li + )付近であり、キャパシターの印加電圧が2.8Vの場合、充電後の正極側の分極は約1.4 Vとなり、酸化側の電位は4.4V(対Li/Li + )以上を示し、電解液の電気化学的分解がおこると考えられる。その結果、従来の炭素質電極を用いた場合、その電解液の分解により発生するガス等により容量は低下するため、長期間使用した場合に耐久性が問題であった。従って、特願平9-183670号の発明では炭素質電極の自然電位を下げて充電後の正極側の電位が電解液の酸化分解開始電圧以下とすることによって、キャパシターの実質的な印加可能電圧が大幅に増加し、エネルギー密度を向上できることを提案している。
【0007】
しかしながら、従来の炭素質の自然電位は3V(対Li/Li + )付近であり、炭素質電極の自然電位を下げるには非水系電解液中で金属リチウム等の卑な金属を対極として炭素質電極中に電気化学的にリチウムイオンをドープする等の操作が必要であった。これらの電位制御の操作をすることなく、空気中で安定でかつ電解液中では低い自然電位を示す炭素質物質はこれまでに得られなかった。
【0008】
課題を解決するための手段】
そこで、本発明者らは、上記の課題を検討すべく鋭意検討した結果、結晶性の発達した炭素質原料を、卑な金属又は卑な金属を含有する化合物と混合し熱処理した後、水洗・乾燥することにより低い自然電位を示す炭素質物質が得られることを見出し、本発明に到達した。すなわち、本発明の目的は、電気二重層キャパシターの電極材料に用いた場合に、耐電圧、サイクル耐久性、電圧印加時の耐久性、及びエネルギー密度などの諸特性の向上した電気二重層キャパシターを与えることのできる空気中で安定かつ電解液中で低い自然電位を示す炭素質物質の製造方法を提供することにあり、この目的はX線回折で測定される面間隔d 002 が0.344nm以上0.365nm以下の炭素質原料と、アルカリ金属、アルカリ土類金属及び希土類金属から成る金属元素群から選ばれた金属又はこれらの金属を含有する化合物とを混合し、この混合物を熱処理したのち水洗・乾燥して、アルカリ金属、アルカリ土類金属及び希土類金属から成る金属元素群から選ばれた金属元素の合計含有量が100ppm以上2000ppm以下、かつLiBF4を1.0モル/Lで含有するプロピレンカーボネート溶液中でLiを対極とした場合の自然電位が1.50V以上2.85V以下の炭素質物質とすることにより達成される。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明方法によれば、金属カリウム、水酸化カリウム等のアルカリ金属、アルカリ土類金属及び希土類金属並びにこれらの金属を含有する化合物から選ばれる1つ以上の物質と結晶性の発達した炭素質原料との混合物を熱処理した後、水洗・乾燥することにより、アルカリ金属、アルカリ土類金属及び希土類金属から選ばれる1つ以上の元素を炭素質物質中に重量比で合計100ppm以上2000ppm以下含有し、空気中で安定かつ、非水系電解液中で、Li/Li+を対極とした場合の自然電位が、1.50V以上2.85V以下(対Li/Li+)である炭素質物質を製造することができる。
【0010】
素質原料として、植物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石炭、石油重質油、あるいはそれらを熱分解した石炭および石油系のタール及びピッチ、石油コークス、石炭コークス、タールピッチを紡糸した繊維、炭素繊維、カーボンブラック、カーボンアエロゲル、活性炭、合成高分子、フェノール樹脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリイミド樹脂、ポリアミド樹脂、液晶高分子、プラスチック廃棄物、廃タイヤ等の炭素化する物質を熱処理したものから選ばれる1つ以上の物質が好適である。
【0011】
黒鉛化が容易な易黒鉛化性炭素又は易黒鉛化性有機化合物の熱処理物が卑な金属を炭素中に安定した状態で吸蔵するため特に好ましい。易黒鉛化性有機化合物および炭素として、石炭及び石油等の多環芳香族環化合物であるタール、ピッチ、メソフェーズ、ポリイミド樹脂等、脂肪族化合物であるポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂等が挙げられる。易黒鉛化性炭素である、石油コークス、石炭コークス、流動性コークス、等の石油及び石炭を原料とする炭素質は、安価かつ結晶性が基本的に発達しているため特に好ましい。これらの炭素質をそのまま、または、炭化処理により更に結晶性を発達させることにより、本発明の製造方法に使用する炭素質原料とすることができる。
【0012】
石油コークス、石炭コークス等の易黒鉛化炭素で、900℃以上の高温で熱処理された炭素質は、さらに炭化処理を行う必要はない。それ以外の有機物またたは炭素質については、不活性雰囲気下で900℃以上の温度で炭化処理する必要がある。十分に結晶性を発達させるため、1300℃以上の高温で炭化処理を行ってもよい。また、フェノール樹脂、フラン樹脂等の難黒鉛化性有機化合物を使用しても、硬化条件を最適化して、かつ、1400℃以上で炭化処理して十分に結晶性を発達させることにより、本発明の製造方法に使用する炭素質原料とすることが可能である。これらの結晶性を発達させた炭素質のX線回折で測定される面間隔d002は、0.365nm以下であり、かつ結晶粒子のc軸方向のサイズLcが2.5nm以上であることが好ましい。炭素質の形状は、破砕、造粒、顆粒、繊維、フェルト、織物、シート状等各種の形状があるが、いずれも本発明に使用することができる。
【0013】
炭素質原料と混合する物質としては、アルカリ金属、アルカリ土類金属及び希土類金属、並びにこれらの金属を含有する化合物から選ばれる1つ以上の物質が好ましく、具体的には、カリウム、ナトリウム、リチウム、ルビジウム、マグネシウム、バリウム、イットリウム等の卑な金属、または、水酸化カリウム、水酸化ナトリウム、水酸化ルビジウム、炭酸カリウム、炭酸ナトリウム、リチウム−アルミニウム合金、リチウム−アルミ合金等の化合物が例示される。これらのうち、特に、金属カリウム、水酸化カリウム、炭酸カリウム、水酸化ルビジウムは炭素とともに熱処理することにより、カリウム、ルビジウムが炭素の結晶中に正イオンまたは原子の状態で吸蔵されやすいことから好ましい。これらの炭素中に吸蔵されたイオンまたは原子との電荷移動相互作用によって炭素相には負電荷が貯まり、その結果、炭素質の自然電位は下がると考えられる。
【0014】
炭素質原料と金属又は金属を含む化合物との混合物の熱処理は、通常窒素、アルゴン、キセノン等の不活性ガスまたはこれらの不活性ガス中に、酸素、二酸化炭素、水素、一酸化炭素等の酸化性または還元性のガスを含有した雰囲気下で、500℃〜1300℃の温度で10分間以上行う必要がある。例えば、金属カリウムと炭素質原料の混合物の場合、金属カリウムの炭素中への拡散速度を大きくするため、不活性雰囲気下、600℃以上で熱処理することが好ましい。また、水酸化カリウムとの場合、650℃以上で熱処理することにより、金属カリウム、カリウム酸化物、炭酸カリウム等が生成し、炭素質原料に導入されやすくなるので好ましい。
【0015】
熱処理後の生成物からは、水または沸騰水中での洗浄及び例えば塩酸等の酸による中和を繰り返して十分に不純物を取り除く。ここで、酸を過剰に添加し、その後の洗浄の濾過液がpH6以上となるまで水洗を繰り返すことが好ましい。その後、100℃以上で乾燥することにより、目的とする炭素質物質が得られる。該炭素質物質中の、原子吸光法等の分光分析装置等にて定量されるアルカリ土類金属、アルカリ金属、及び希土類金属の元素の含有量は、炭素質原料種、熱処理温度、炭素質原料と混合する物質の種類及び添加量等により異なるため一概には言えないが、通常100ppm以上2000ppm以下であり、500ppm以上1000ppm以下であることが好ましい。炭素質物質の自然電位を下げることに寄与していない余分なアルカリ金属、アルカリ土類金属及び希土類金属等の元素は、上記の洗浄及び塩酸中和操作の繰り返しにより、できるだけ取り除いておくことが望ましい。
【0016】
尚、従来、炭素材料にリチウムを吸蔵させたものを二次電池等の電極として用いることが知られているが、この場合炭素材料中のリチウムは可逆的に吸蔵・脱離しうる状態となっている。これに対し本発明の製造方法においては、洗浄及び塩酸中和操作を繰り返し行っているので、熱処理で得られた炭素質物質中にこのような状態で存在するリチウム等の元素は、最終的に得られる炭素質物質からは取り除かれていると考えられる。
【0017】
本発明の製造方法によって得られた炭素質物質の自然電位の測定は、通常の電気化学的手法を用いて行われる。非水系電解液中での電位測定は、水溶液での標準水素電極のような電位基準は厳密には定義されていないが、実際には、銀−塩化銀電極、白金電極、リチウム電極等の電極を用いて一般に広く行われている。本発明においても同様な方法で測定可能である。簡便な測定法として、非水系電解液中で、金属リチウムと該炭素質物質を主材料とする電極体との電位差を測定する方法がある。このような測定方法による該炭素質物質の非水系電解液中の自然電位は1.50V以上2.85V以下(対Li/Li+)である。
【0018】
本発明の製造方法によって得られた炭素質物質は、非水電解液を用いる電気二重層キャパシター用電極の主材料として用いることができる。炭素質物質を主体とする電極(炭素質電極)は、炭素質物質とバインダーから構成される。また、電極に導電性を付与するために、さらに導電性物質を添加しても良い。分極性電極は、従来より知られている方法により成形することが可能である。例えば、炭素質物質とアセチレンブラックの混合物に、ポリテトラフルオロエチレンを添加・混合した後、プレス成形して得られる。また、比較的軟化点の高い石炭ピッチをバインダーとして炭素質物質に添加・混合後、成型したものを、不活性雰囲気中でバインダーの熱分解温度以上まで焼成しても成型体を得ることができる。さらに、導電剤、バインダーを用いず、炭素質物質のみを焼結して分極性電極とすることも可能である。電極は、薄い塗布膜、シート状または板状の成形体、さらには複合物からなる板状成形体のいずれであっても良い。
【0019】
炭素質電極に用いられる導電剤として、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウム、ニッケル、ステンレス等の金属ファイバーからなる群より選ばれる少なくとも一種の導電剤が好ましい。少量で効果的に導電性が向上する点で、アセチレンブラック及びケッチェンブラックが特に好ましく、導電剤の配合量は、重量の10〜30%程度が好ましい。
バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリアクリル酸、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂のうち少なくとも1種類以上用いるのが好ましい。
【0020】
電気二重層キャパシターの集電体は電気化学的及び化学的に耐食性があればよく、特に限定するものではないが、例えば、正極ではステンレス、アルミニウム、チタン、タンタルがあり、負極では、ステンレス、ニッケル、銅等が好適に使用される。
電解液は非水系電解液が好ましい。非水系電解液の溶質は、R4 + 、R4 + (ただし、RはC n H2n+1 で示されるアルキル基)、トリエチルメチルアンモニウムイオン等でなる第4級オニウムカチオンと、BF4 - 、PF6 - 、ClO4 - 、SbF6 - またはCF3SO3 - なるアニオンとを組み合わせた塩、または、カチオンがリチウムイオンであるリチウム塩を用いる。リチウム塩は、LiBF4 ,LiClO4 ,LiPF6 ,LiSbF6 ,LiAsF6 ,LiCF3 SO3 ,LiC(CF3 SO2 3 ,LiB(C6 5 4 ,LiC4 9 SO3 ,LiC8 17SO3 ,LiB(C6 5 4 ,LiN(CF3 SO2 2 から選ばれる1つ以上の物質が好ましい。特に、電気導電性、安定性、及び低コスト性という点から、カチオンが、R4 + (ただし、RはC n H2n+1 で示されるアルキル基)及びトリエチルメチルアンモニウムイオン、アニオンが、BF4 - 、PF6 - 、ClO4 - 、及びSbF6 - を組み合わせた塩が好ましい。
【0021】
これらの非水系電解液中の溶質濃度は電気二重層キャパシターの特性が十分引き出せるように、0.5 〜2.0 モル/リットルが好ましく、特に、0.7 モル/リットル以上1.9 モル/リットルの濃度では、高い電気導電性が得られて好ましい。非水系電解液の溶媒は特に限定するものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、スルホラン、メチルスルホラン、γ−ブチロラクトン、γ−バレロラクトン、N-メチルオキサゾリジノン、ジメチルスルホキシド、及びトリメチルスルホキシドから選ばれる1種類以上からなる有機溶媒が好ましい。電気化学的及び化学的安定性、電気伝導性に優れる点から、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、スルホラン、メチルスルホラン、γ−ブチロラクトンから選ばれる1種類以上の有機溶媒が特に好ましい。ただし、エチレンカーボネート等の高融点溶媒は、単独では低温下では固体となるため使用できず、プロピレンカーボネート等との低融点溶媒との混合溶媒とする必要がある。
非水系電解液中の水分は、高い耐電圧が得られるように200ppm以下、さらには50ppm 以下が好ましい。
【0022】
本発明の製造方法によって得られた炭素質物質を主原料とする分極性電極は電気二重層キャパシターの両極に用いてもよいし、一方の極のみに用いてもよい。例えば、正極を活性炭等の炭素を主材料とする分極性電極、負極を金属リチウム、リチウム合金、またはリチウムイオンを可逆的に吸蔵、脱離しうる炭素材料に予めリチウムイオンを吸蔵させたものを主材料とする非分極性電極、及びリチウム塩を含有する非水系電解液で構成される電気二重層キャパシターにおいて、活性炭等を主材料とする分極性電極の代わりに本発明の製造方法で得られた炭素質物質を正極材料として使用することが可能である。本発明の製造方法で得られた炭素質物質を使用することにより、従来の活性炭を正極材料とした場合より、印加可能電圧を大きくすることが可能なため電気二重層キャパシターのエネルギー密度を大幅に増加できる。
【0023】
また、上記の炭素質電極に電気化学的にリチウムイオンを少量ドープする等の手法により、電極の非水系電解液中での自然電位をさらに調節したものを、電気二重層キャパシター用電極として用いることもできる。また室温下で高容量を発現する、フェノール樹脂熱分解物、石油コークス等を原料としたKOH賦活品等の比表面積が300m2/g以上の活性炭粉末を、本発明の製造方法で得られた炭素質物質に10重量%〜70重量%程度添加・成型したものを、電気二重層キャパシター用電極として用いることもできる。
【0024】
このように本発明の製造方法で得られた炭素質物質及びその成型体は、非水系電解液中での自然電位が通常の炭素より低いため、耐電圧、充放電容量等が電極を構成する物質の電位に大きく影響を受ける電気二重層キャパシター、リチウムイオン二次電池、空気電池、ガスセンサー等の技術分野に使用でき、特に、高い耐電圧、高エネルギー密度、充放電サイクル耐久性、電圧印加時の耐久性等が強く要求される電気二重層キャパシターには好適に使用できる。
【0025】
【実施例】
以下、本発明を具体的な実施例で説明するが、本発明は以下の実施例により限定されない。
【0026】
(実施例1)
石炭ピッチを1500℃で4時間熱処理した後、これをボールミルで粉砕して、平均粒径が約20μmの炭素質原料を得た。炭素質原料のX線回折パターンを図1に示す。X線回折パターンで測定される面間隔d002は、0.344nmであった。この炭素質原料に重量比で2倍の粒状の水酸化カリウムを加えて混合した後、ニッケル製のるつぼに入れ、窒素気流中で、800℃で2時間熱処理した。冷却後の生成物を1回水洗後、10%の塩酸水溶液中で1時間煮沸した後、洗浄後の濾過液のpHが6以上となるまで水洗を繰り返した。その後、115℃で乾燥して炭素質物質を得た。炭素質物質中のカリウムの含有量を発光分光分析装置にて定量したところ、660ppmであった。
【0027】
(参考例1)
炭素質物質80重量%、アセチレンブラック10重量%、ポリテトラフルオロエチレン10重量%からなる混合物を混練した後、日本分光製錠剤成型器を用い、油圧プレスで直径10.5mm、厚さ0.5mmとなるように50kgf/cm2の圧力で加圧成形して円盤状の成型体を作製した。この成型体を0.1torr以下の真空中、300℃で3時間乾燥した後、アルゴン雰囲気下のグローブボックス中へ移した。この成型体を正極の電極体とし、これをステンレス316L製コインセルの内底の中心部に接着した。次に、厚さ0.5mmの金属リチウムのシートを直径13mmの円形に打ち抜いてこれを負極とした。作製した正極と負極の間にポリエチレン製セパレータを挟み込んで、両極を対向させた後、1.0モル/リットルの濃度のLiBF4を含むプロピレンカーボネート溶液を両極中に含浸した。その後、ポリプロピレン製の絶縁ガスケットとステンレス304製のコインセルの上蓋を用いて、コインセルをかしめ封口した。得たコインセルの正極(炭素質物質電極)と負極(金属リチウム)との間に電圧計を接続して測定した炭素質物質電極の自然電位は2.79V(対Li/Li+)であった。図2において、1はステンレス製容器のケース、2は正極、3はガスケット、4はセパレータ、5は負極、6はステンレス容器の上蓋である。
【0028】
(参考例
参考例1で作製した炭素質物質成型体2枚を0.1torr以下の真空中、300℃で3時間乾燥後した後、これらの成型体を正極及び負極の電極体とした電気二重層キャパシターの組立を窒素雰囲気下のグローブボックス中で行った。得た2枚の成型体を正負極の電極とし、及び1.3モル/リットル濃度のトリエチルメチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液を両極に含浸して、参考例1と同様なコインセルを組み立てて電気二重層キャパシターを得た。得た電気二重層キャパシターに、室温下で、2.8Vまたは3.8Vの電圧を1時間印加した後、1.16mAの定電流で1.0Vまで放電して求めた初期静電容量は、2.8V印加の場合、1.03F、3.8V印加の場合、1.33Fであった。また、室温下で3.8Vの電圧を800時間印加した後の静電容量の変化率は、−15%であった。
【0029】
(実施例2)
キノリン不溶成分を取り除いたコールタールピッチを回転キルンにて900℃で3時間熱処理した後、粉砕して得た面間隔d002が、0.349nmである炭素質原料を用いたこと以外は、実施例1と同様にして炭素質物質を得た。この炭素質物質中のカリウム含有量は780ppmであった。また、この炭素質物質を用いたこと以外は参考例1と同様にしてコインセルを製造し、炭素質物質電極の自然電位を測定したところ2.80V(Li/Li+)であった。
【0030】
(参考例
実施例2で得た炭素質物質成型体2枚を電気二重層キャパシターの電極体とした以外は参考例2と同様な電気二重層キャパシターを構成した。得た電気二重層キャパシターの初期静電容量は、2.8V印加の場合、1.11F、3.8V印加の場合、1.38Fであった。また、室温下で3.8Vの電圧を800時間印加した後の静電容量の変化率は、−12%であった。
【0031】
(参考例
参考例1の炭素質物質を、やしがらを水蒸気賦活した後、水洗及び酸中和を繰り返して得られた活性炭粉末(カリウム含有量:25ppm、平均粒子径:約20μm、比表面積1680m2/g、)をとした以外は、参考例1と同様なコインセルを構成した。正極である炭素質物質電極の自然電位は3.01V(対Li/Li+)であった。
【0032】
(参考例
参考例で得た活性炭成型体2枚を電気二重層キャパシターの電極体とした以外は参考例2と同様な電気二重層キャパシターを構成した。得た電気二重層キャパシターの初期静電容量は、2.8V印加の場合、1.19F、3.8V印加の場合、1.36Fであった。また、室温下で3.8Vの電圧を800時間印加した後の静電容量の変化率は、−39%であった。
【0033】
(比較例
コールタールピッチを500℃で2時間熱処理後、粉砕して得た。面間隔d002が0.372nmである石炭ピッチ粉末に重量比2.3倍の粒状の水酸化カリウムを加えて混合した後、ニッケル製のるつぼに入れ、窒素気流中で、650℃で1時間熱処理した。冷却後、実施例1と同様に洗浄・乾燥した後、窒素気流中で1000℃で1時間熱処理して活性炭粉末を得た。この活性炭粉末中のカリウム含有量は30ppmであった。次に、この活性炭粉末を用いて、参考例1と同様なコインセルを得た。炭素質物質電極の自然電位は3.08V(対Li/Li+)であった。
【0034】
(参考例
比較例1で得た活性炭成型体2枚を電気二重層キャパシターの電極体とした以外は参考例2と同様な電気二重層キャパシターを構成した。得た電気二重層キャパシターの初期静電容量は、2.8V印加の場合、1.19F、3.8V印加の場合、1.35Fであった。また、室温下で3.8Vの電圧を800時間印加した後の静電容量の変化率は、−65%であった。
【図面の簡単な説明】
【図1】 実施例1の炭素質原料のX線パターンを示す図である。
【図2】 本発明の参考例及び比較例で用いたコイン型セルの説明図である。
【符号の説明】
1:ステンレス製容器のケース
2:正極
3:ガスケット
4:セパレータ
5:負極
6:ステンレス製容器の上蓋
[0001]
BACKGROUND OF THE INVENTION
The present invention is related to method for manufacturing a carbonaceous material quality. The carbonaceous material produced by the present invention has a natural potential in a non-aqueous electrolyte lower than that of normal carbon. It is suitable for technical fields such as multilayer capacitors, lithium ion secondary batteries, air batteries, and gas sensors.
[0002]
[Prior art]
Carbonaceous materials such as activated carbon, coke, graphite, and carbon fiber are heavy metals that have high electrical conductivity, high corrosion resistance, are electrochemically stable, and can reversibly occlude and release ionic species such as lithium ions. They are widely used as electrode materials for electric double layer capacitors, negative electrodes for lithium ion secondary batteries, dry battery electrodes, steelmaking electrodes, sensor electrodes and the like because they are not included or are inexpensive. However, since the natural potentials in these carbonaceous electrolytes are all 3.0 V (vs. Li / Li + ), the usable potential range is limited.
[0003]
On the other hand, electric double layer capacitors that can be charged and discharged with a large current are promising for applications such as electric vehicles and auxiliary power supplies. Therefore, it is desired to realize an electric double layer capacitor having a high energy density, capable of rapid charge / discharge, and excellent durability during high voltage application and charge / discharge cycle durability.
The energy stored in the capacitor cell is calculated by 1/2 · C · V 2 , where C is the capacitance per cell (F), and V is the voltage (V) that can be applied to the cell. Since the square of the value of the applicable voltage V is reflected in the energy, it is effective to increase the voltage (withstand voltage) applied to the capacitor in order to improve the energy density. As a result, there was a problem that the internal resistance increased and the capacitance decreased in a short time. Therefore, the withstand voltage per unit cell is about 2.4V in the case of a non-aqueous electrolyte electric double layer capacitor, although it depends on the type of solvent and solute of the electrolyte used in the conventional electric double layer capacitor ( (Japanese Unexamined Patent Publication No. 7-50001), when used at a high voltage of 2.5 V or more, an increase in internal series resistance or a decrease in capacitance occurs in a short time. Therefore, it is attempted to apply a voltage of 2.5V to 2.8V by examining in detail the positive and negative electrodes, separator, electrolyte, container, and the like. For example, as a result of selecting a method for improving durability by heat-treating an electrode using activated carbon obtained by KOH activation of phenol resin, petroleum coke, etc. in an inert atmosphere, and selecting raw materials, phenol resin, furan resin, In the case of acrylonitrile resin, the durability was slightly improved (Japanese Patent Laid-Open No. 8-16375), and a method for improving the durability by using porous aluminum for the current collector of the capacitor (Japanese Patent Laid-Open No. 8-339941) Etc. are known.
[0004]
In order to increase the energy density, the applied voltage is set to 3 V or more as disclosed in Japanese Patent Application Laid-Open No. Hei 8-07048, in which a lithium electrode is contacted and a graphite electrode occluded lithium is used as a negative electrode, activated carbon is used as a positive electrode, lithium ion Capacitors using electrolytes containing solutes in the solute, and Japanese Patent Application Laid-Open No. 9-232190, a positive electrode is a combination of a polarizable electrode material containing activated carbon powder and a collector of stainless steel fibers in a mixed state Capacitors have been proposed. In Japanese Patent Laid-Open No. 9-205041, the withstand voltage is improved by using an electrolytic solution mainly composed of 2-methylsulfolane as the electrolytic solution.
[0005]
[Problems to be Solved by the Invention]
However, these examples were not satisfactory to any extent. For example, the above-described method of heat-treating an electrode using activated carbon obtained by KOH activation of phenol resin, petroleum coke or the like in an inert atmosphere has a problem that the initial capacitance is simultaneously reduced. Further, it can be said that the durability cannot be fundamentally improved by the methods disclosed in JP-A-8-16375 and JP-A-8-339941. As a measure for improving the energy density by increasing the applied voltage to 3 V or higher, Japanese Patent Laid-Open No. 9-232190 and Japanese Patent Laid-Open No. 9-205041 disclose that the maximum applied voltage is 3.3 V and a voltage higher than that is applied. I can't. In addition, the method disclosed in Japanese Patent Application Laid-Open No. 8-1007048 has a problem of durability because it involves an oxidation-reduction reaction between the electrode and the electrolytic solution. In addition, since the negative electrode (nonpolarizable electrode) contains lithium, the positive electrode (polarizable electrode) is already about 3 V in an uncharged state, and when a voltage of up to 4.3 V is applied as in the example described The potential change due to charging is about 1.3V. Therefore, the energy density when used as a capacitor is smaller than that of a normal capacitor.
In a conventional activated carbon electrode of an electric double layer capacitor, gas is generated or a reaction product is deposited on a polarizable electrode by continuous application of a high voltage exceeding 2.5 V. This has the disadvantage of causing a significant increase in internal resistance or a decrease in capacitance.
[0006]
In view of this, the present inventors have disclosed in Japanese Patent Application No. 9-183670 that the natural potential of the carbonaceous electrode is arbitrarily adjusted so that the potential during charging is substantially equal to the high potential side (oxidation side) of the electrolyte. It has been proposed that the decomposition of the electrolytic solution can be suppressed and the voltage that can be applied and the durability of the electric double layer capacitor can be improved by making the decomposition start voltage or less.
This will be briefly described. When a propylene carbonate solution of a quaternary alkyl ammonium salt, which is a typical non-aqueous electrolyte, is used as the electrolyte, and an electrode substantially made of a carbonaceous material is used as the electrode, the decomposition start voltage on the oxidation side of the electrolyte Is said to be around 4.4 V (vs. Li / Li + ). On the other hand, the natural potential of a normal carbonaceous electrode is around 3 V (vs. Li / Li + ). When the applied voltage of the capacitor is 2.8 V, the polarization on the positive electrode side after charging is about 1.4 V, and the potential on the oxidation side Is 4.4 V (vs. Li / Li + ) or more, and it is considered that the electrolytic decomposition of the electrolyte occurs. As a result, when the conventional carbonaceous electrode is used, the capacity is reduced due to gas generated by the decomposition of the electrolytic solution, so that durability is a problem when used for a long time. Therefore, in the invention of Japanese Patent Application No. Hei 9-183670, by reducing the natural potential of the carbonaceous electrode so that the potential on the positive electrode side after charging is equal to or lower than the oxidative decomposition starting voltage of the electrolyte, It has been proposed that the energy density can be improved significantly.
[0007]
However, the natural potential of conventional carbonaceous materials is around 3 V (vs. Li / Li + ), and in order to lower the natural potential of carbonaceous electrodes, carbonaceous materials with a base metal such as metallic lithium as a counter electrode in a non-aqueous electrolyte are used. An operation such as electrochemical doping of lithium ions into the electrode is required. A carbonaceous material that is stable in the air and exhibits a low natural potential in the electrolytic solution has not been obtained so far without performing these potential control operations.
[0008]
[Means for Solving the Problems ]
Therefore, as a result of intensive studies to examine the above-mentioned problems, the present inventors mixed a carbonaceous raw material having developed crystallinity with a base metal or a compound containing a base metal, and after heat treatment, It has been found that a carbonaceous material exhibiting a low natural potential can be obtained by drying, and the present invention has been achieved. That is, an object of the present invention is to provide an electric double layer capacitor having improved characteristics such as withstand voltage, cycle durability, durability during voltage application, and energy density when used as an electrode material of an electric double layer capacitor. is to provide a method for manufacturing a carbonaceous substance showing a low self-potential in a stable and electrolyte in the air which can provide, this object is plane spacing d 002 as measured by X-ray diffraction is more than 0.344nm A carbonaceous raw material of 0.365 nm or less is mixed with a metal selected from the group of metal elements consisting of alkali metals, alkaline earth metals, and rare earth metals, or a compound containing these metals, and the mixture is heat-treated and then washed with water. · dried, an alkali metal, the total content of metal elements selected from the metallic element group consisting of alkaline earth metals and rare earth metals 100ppm or 2000p achieved by pm hereinafter, self-potential in the case of a counter electrode of Li in propylene carbonate solution containing on whether One LiBF 4 1.0 mol / L is to 2.85V less carbonaceous material above 1.50V Is done.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. According to the method of the present invention, one or more substances selected from alkali metals such as metal potassium and potassium hydroxide, alkaline earth metals and rare earth metals and compounds containing these metals, and a carbonaceous raw material having developed crystallinity. After heat-treating the mixture, and washing and drying, the carbonaceous material contains one or more elements selected from alkali metals, alkaline earth metals and rare earth metals in a weight ratio of 100 ppm or more and 2000 ppm or less in total, A carbonaceous material that is stable in air and has a natural potential of 1.50 V or more and 2.85 V or less (vs. Li / Li + ) when Li / Li + is used as a counter electrode in a non-aqueous electrolyte solution is produced. be able to.
[0010]
The coal quality raw material, wood of the plant, sawdust, coconut shells, pulp waste, coal fossil fuel-based, petroleum heavy oil, or tar and pitch thereof pyrolyzed coal and petroleum, petroleum coke, Carbon fiber, carbon fiber, carbon black, carbon aerogel, activated carbon, synthetic polymer, phenol resin, furan resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyimide resin, polyamide resin, liquid crystal high molecule, plastic wastes, it is preferable one or more substances which also chosen pressurized et al was heat-treated material to carbonization, such as waste tires.
[0011]
A heat-treated product of graphitizable carbon or graphitizable organic compound that is easy to graphitize is particularly preferable because the base metal is occluded in a stable state in the carbon. Examples of graphitizable organic compounds and carbon include tar, pitch, mesophase, and polyimide resins that are polycyclic aromatic ring compounds such as coal and petroleum, and polyvinyl chloride resins and polyvinylidene chloride resins that are aliphatic compounds. It is done. Carbonaceous materials made from petroleum and coal such as petroleum coke, coal coke, and fluid coke, which are graphitizable carbon, are particularly preferred because they are inexpensive and have basically developed crystallinity. These carbonaceous materials can be used as the carbonaceous raw material used in the production method of the present invention as they are or by further developing crystallinity by carbonization treatment.
[0012]
Carbonaceous materials that have been heat-treated at a high temperature of 900 ° C. or higher with graphitizable carbon such as petroleum coke and coal coke do not need to be further carbonized. Other organic substances or carbonaceous materials need to be carbonized at a temperature of 900 ° C. or higher under an inert atmosphere. In order to sufficiently develop crystallinity, carbonization may be performed at a high temperature of 1300 ° C. or higher. Further, even if a non-graphitizable organic compound such as a phenol resin or a furan resin is used, the present invention can be achieved by optimizing the curing conditions and carbonizing at 1400 ° C. or higher to sufficiently develop crystallinity. It can be used as a carbonaceous raw material used in the production method . The interplanar spacing d 002 measured by X-ray diffraction of the carbonaceous material having developed crystallinity is 0.365 nm or less, and the size Lc in the c-axis direction of the crystal particles is 2.5 nm or more. preferable. The carbonaceous shape includes various shapes such as crushing, granulation, granule, fiber, felt, woven fabric, and sheet shape, any of which can be used in the present invention.
[0013]
The substance mixed with the carbonaceous raw material is preferably one or more substances selected from alkali metals, alkaline earth metals and rare earth metals, and compounds containing these metals. Specifically, potassium, sodium, lithium And base metals such as rubidium, magnesium, barium, yttrium, or compounds such as potassium hydroxide, sodium hydroxide, rubidium hydroxide, potassium carbonate, sodium carbonate, lithium-aluminum alloy, lithium-aluminum alloy, etc. . Of these, metal potassium, potassium hydroxide, potassium carbonate, and rubidium hydroxide are particularly preferable because potassium and rubidium are easily occluded in the form of positive ions or atoms in the carbon crystal by heat treatment with carbon. It is considered that a negative charge is stored in the carbon phase by the charge transfer interaction with ions or atoms occluded in these carbons, and as a result, the natural potential of the carbonaceous material is lowered.
[0014]
Heat treatment of a mixture of a carbonaceous raw material and a metal or a compound containing a metal is usually performed by oxidizing oxygen, carbon dioxide, hydrogen, carbon monoxide, or the like in an inert gas such as nitrogen, argon, xenon, or the like. For 10 minutes or more at a temperature of 500 ° C. to 1300 ° C. in an atmosphere containing a reductive or reducing gas. For example, in the case of a mixture of potassium metal and a carbonaceous raw material, it is preferable to perform heat treatment at 600 ° C. or higher in an inert atmosphere in order to increase the diffusion rate of metal potassium into carbon. Further, in the case of potassium hydroxide, it is preferable to heat-treat at 650 ° C. or higher because metal potassium, potassium oxide, potassium carbonate and the like are generated and easily introduced into the carbonaceous raw material.
[0015]
Impurities are sufficiently removed from the product after the heat treatment by repeatedly washing with water or boiling water and neutralizing with an acid such as hydrochloric acid. Here, it is preferable that the acid is added excessively and the water washing is repeated until the filtrate of the subsequent washing has a pH of 6 or more. Then, the target carbonaceous substance is obtained by drying at 100 degreeC or more. The content of alkaline earth metal, alkali metal, and rare earth metal elements quantified by a spectroscopic analyzer such as atomic absorption method in the carbonaceous material is the carbonaceous raw material species, heat treatment temperature, carbonaceous raw material. Since it differs depending on the type of substance to be mixed and the amount added, etc., it cannot be generally stated, but it is usually 100 ppm or more and 2000 ppm or less, preferably 500 ppm or more and 1000 ppm or less. It is desirable to remove as much as possible extra elements such as alkali metals, alkaline earth metals and rare earth metals that do not contribute to lowering the natural potential of the carbonaceous material by repeating the above washing and hydrochloric acid neutralization operations. .
[0016]
Conventionally, it is known that a carbon material in which lithium is occluded is used as an electrode for a secondary battery or the like. In this case, lithium in the carbon material can be reversibly occluded and desorbed. Yes. On the other hand, in the production method of the present invention , since washing and hydrochloric acid neutralization operations are repeated, elements such as lithium existing in such a state in the carbonaceous material obtained by the heat treatment are finally It is thought that it was removed from the carbonaceous material obtained .
[0017]
Measurement of the natural potential of the carbonaceous material obtained by the production method of the present invention is performed using a normal electrochemical technique. The potential measurement in the non-aqueous electrolyte is not strictly defined as a potential reference such as a standard hydrogen electrode in an aqueous solution, but in reality, electrodes such as silver-silver chloride electrodes, platinum electrodes, lithium electrodes, etc. In general, it is widely used. In the present invention, it can be measured by the same method. As a simple measuring method, there is a method of measuring a potential difference between metallic lithium and an electrode body mainly composed of the carbonaceous substance in a nonaqueous electrolytic solution. The natural potential of the carbonaceous material in the non-aqueous electrolyte by such a measuring method is 1.50 V or more and 2.85 V or less (vs. Li / Li + ).
[0018]
The carbonaceous material obtained by the production method of the present invention can be used as a main material of an electrode for an electric double layer capacitor using a nonaqueous electrolytic solution. An electrode mainly composed of a carbonaceous material (carbonaceous electrode) is composed of a carbonaceous material and a binder. Further, a conductive substance may be further added to impart conductivity to the electrode. The polarizable electrode can be formed by a conventionally known method. For example, it can be obtained by adding and mixing polytetrafluoroethylene to a mixture of a carbonaceous material and acetylene black and then press molding. Also, a molded product can be obtained by adding and mixing a coal pitch with a relatively high softening point to a carbonaceous material as a binder and then firing the molded product in an inert atmosphere to a temperature higher than the thermal decomposition temperature of the binder. . Furthermore, it is possible to sinter only a carbonaceous material without using a conductive agent and a binder to form a polarizable electrode. The electrode may be a thin coating film, a sheet-shaped or plate-shaped molded body, or a plate-shaped molded body made of a composite.
[0019]
As a conductive agent used for carbonaceous electrodes, carbon black such as acetylene black and ketjen black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, aluminum, nickel, stainless steel, etc. At least one conductive agent selected is preferred. Acetylene black and ketjen black are particularly preferable in that the conductivity is effectively improved with a small amount, and the blending amount of the conductive agent is preferably about 10 to 30% of the weight.
As the binder, at least one of polytetrafluoroethylene, polyvinylidene fluoride, carboxymethylcellulose, fluoroolefin copolymer crosslinked polymer, polyvinyl alcohol, polyacrylic acid, polyimide, petroleum pitch, coal pitch, and phenol resin is used. preferable.
[0020]
The current collector of the electric double layer capacitor may be electrochemically and chemically resistant as long as it is not particularly limited. For example, the positive electrode includes stainless steel, aluminum, titanium, and tantalum, and the negative electrode includes stainless steel and nickel. Copper or the like is preferably used.
The electrolyte is preferably a non-aqueous electrolyte. The solute of the non-aqueous electrolyte is R 4 N + , R 4 P + (where R is an alkyl group represented by C n H 2n + 1 ), quaternary onium cation such as triethylmethylammonium ion, and BF A salt in combination with an anion of 4 , PF 6 , ClO 4 , SbF 6 or CF 3 SO 3 or a lithium salt whose cation is a lithium ion is used. Lithium salt, LiBF 4, LiClO 4, LiPF 6, LiSbF 6, LiAsF 6, LiCF 3 SO 3, LiC (CF 3 SO 2) 3, LiB (C 6 H 5) 4, LiC 4 F 9 SO 3, LiC One or more substances selected from 8 F 17 SO 3 , LiB (C 6 H 5 ) 4 and LiN (CF 3 SO 2 ) 2 are preferred. In particular, from the viewpoint of electrical conductivity, stability, and low cost, the cation is R 4 N + (where R is an alkyl group represented by C n H 2n + 1 ), triethylmethylammonium ion, and anion, A salt in which BF 4 , PF 6 , ClO 4 , and SbF 6 are combined is preferable.
[0021]
The solute concentration in these non-aqueous electrolytes is preferably 0.5 to 2.0 mol / liter so that the characteristics of the electric double layer capacitor can be sufficiently extracted, and particularly at a concentration of 0.7 mol / liter to 1.9 mol / liter, high electrical conductivity It is preferable because of the property. The solvent of the non-aqueous electrolyte is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, sulfolane, methyl sulfolane, γ-butyrolactone, γ-valerolactone, N- An organic solvent composed of one or more selected from methyl oxazolidinone, dimethyl sulfoxide, and trimethyl sulfoxide is preferable. One or more kinds selected from propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, sulfolane, methyl sulfolane, and γ-butyrolactone from the viewpoint of excellent electrochemical and chemical stability and electrical conductivity The organic solvent is particularly preferred. However, a high-melting-point solvent such as ethylene carbonate cannot be used alone because it becomes a solid at a low temperature, and must be a mixed solvent with a low-melting-point solvent such as propylene carbonate.
The water content in the non-aqueous electrolyte solution is preferably 200 ppm or less, more preferably 50 ppm or less so that a high withstand voltage can be obtained.
[0022]
A polarizable electrode made mainly of a carbonaceous material obtained by the production method of the present invention may be used for both electrodes of an electric double layer capacitor or only for one electrode. For example, a polarizable electrode mainly composed of carbon such as activated carbon as the positive electrode, and a negative electrode composed mainly of lithium metal, lithium alloy, or a carbon material that can reversibly absorb and desorb lithium ions in advance. In an electric double layer capacitor composed of a non-polarizable electrode as a material and a non-aqueous electrolyte containing a lithium salt, it was obtained by the production method of the present invention instead of a polarizable electrode mainly composed of activated carbon or the like . A carbonaceous material can be used as the positive electrode material. By using the carbonaceous material obtained by the production method of the present invention, it is possible to increase the voltage that can be applied compared to the case where conventional activated carbon is used as the positive electrode material, so that the energy density of the electric double layer capacitor is greatly increased. Can be increased.
[0023]
Further, those obtained by further regulating the natural potential of the electrochemically lithium ions carbonaceous electrode of the by a technique such as to lightly doped, with a non-aqueous electrolyte solution in electrodes, is used as an electric double layer capacitor electrode You can also. In addition , activated carbon powder having a specific surface area of 300 m 2 / g or more, such as a KOH-activated product using phenol resin pyrolyzate or petroleum coke as a raw material, which exhibits high capacity at room temperature, was obtained by the production method of the present invention . What added and shape | molded about 10 to 70 weight% to the carbonaceous substance can also be used as an electrode for electric double layer capacitors .
[0024]
As described above, since the carbonaceous material obtained by the production method of the present invention and the molded body thereof have a lower natural potential in the non-aqueous electrolyte than ordinary carbon, the withstand voltage, charge / discharge capacity, etc. constitute the electrode. Can be used in technical fields such as electric double layer capacitors, lithium ion secondary batteries, air batteries, gas sensors, etc., which are greatly affected by the potential of the material, especially high withstand voltage, high energy density, charge / discharge cycle durability, voltage application It can be suitably used for electric double layer capacitors that are strongly required to be durable.
[0025]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated with a specific Example, this invention is not limited by a following example.
[0026]
Example 1
The coal pitch was heat treated at 1500 ° C. for 4 hours and then pulverized with a ball mill to obtain a carbonaceous raw material having an average particle size of about 20 μm. An X-ray diffraction pattern of the carbonaceous raw material is shown in FIG. Plane spacing d 002 as measured by X-ray diffraction pattern was 0.344 nm. The carbonaceous raw material was mixed with granular potassium hydroxide having a weight ratio of 2 times, mixed, then placed in a nickel crucible and heat-treated at 800 ° C. for 2 hours in a nitrogen stream. The cooled product was washed once with water, boiled in a 10% aqueous hydrochloric acid solution for 1 hour, and then repeatedly washed with water until the pH of the filtrate after washing was 6 or more. Then, to obtain a coal quality material was dried at 115 ° C.. When the content of potassium in the carbonaceous material was quantified with an emission spectroscopic analyzer, it was 660 ppm.
[0027]
(Reference Example 1)
A mixture of 80% by weight of carbonaceous material, 10% by weight of acetylene black and 10% by weight of polytetrafluoroethylene was kneaded, and then using a tablet press made by JASCO, the diameter was 10.5 mm and the thickness was 0.5 mm. Thus, a disk-shaped molded body was produced by pressure molding at a pressure of 50 kgf / cm 2 . The molded body was dried at 300 ° C. for 3 hours in a vacuum of 0.1 torr or less, and then transferred to a glove box under an argon atmosphere. This molded body was used as a positive electrode body, and this was bonded to the center of the inner bottom of a stainless steel 316L coin cell. Next, a metal lithium sheet having a thickness of 0.5 mm was punched into a circle having a diameter of 13 mm, and this was used as a negative electrode. A polyethylene separator was sandwiched between the produced positive electrode and negative electrode, and both electrodes were made to face each other. Then, a propylene carbonate solution containing LiBF 4 having a concentration of 1.0 mol / liter was impregnated into both electrodes. Thereafter, the coin cell was caulked and sealed using an insulating gasket made of polypropylene and an upper cover of a coin cell made of stainless steel 304. The natural potential of the carbonaceous material electrode measured by connecting a voltmeter between the positive electrode (carbonaceous material electrode) and the negative electrode (metallic lithium) of the obtained coin cell was 2.79 V (vs. Li / Li + ). . In FIG. 2, 1 is a case of a stainless steel container, 2 is a positive electrode, 3 is a gasket, 4 is a separator, 5 is a negative electrode, and 6 is an upper lid of the stainless steel container.
[0028]
(Reference Example 2 )
The two carbonaceous material molded bodies prepared in Reference Example 1 were dried in a vacuum of 0.1 torr or less at 300 ° C. for 3 hours, and then the molded bodies were used as positive and negative electrode bodies. Assembly was performed in a glove box under a nitrogen atmosphere. The obtained two molded bodies were used as positive and negative electrodes, and a coin cell similar to that of Reference Example 1 was assembled by impregnating both electrodes with a propylene carbonate solution of triethylmethylammonium tetrafluoroborate having a concentration of 1.3 mol / liter. An electric double layer capacitor was obtained. The initial capacitance obtained by applying a voltage of 2.8 V or 3.8 V to the obtained electric double layer capacitor at room temperature for 1 hour and then discharging to 1.0 V at a constant current of 1.16 mA is as follows: In the case of 2.8V application, it was 1.03F, and in the case of 3.8V application, it was 1.33F. Moreover, the change rate of the electrostatic capacitance after applying a voltage of 3.8 V at room temperature for 800 hours was −15%.
[0029]
(Example 2)
Except for using a carbonaceous raw material having an interplanar spacing d 002 of 0.349 nm after heat treatment of a coal tar pitch from which quinoline-insoluble components have been removed at 900 ° C. for 3 hours in a rotary kiln, to obtain a carbonaceous material quality in the same manner as in example 1. Potassium content of the carbonaceous substance was Tsu 780ppm der. Further, the except for the use of carbonaceous materials to produce a coin cell in the same manner as in Reference Example 1, was 2.80V was measured natural potential of the carbonaceous material electrodes (Li / Li +).
[0030]
(Reference Example 3 )
An electric double layer capacitor similar to Reference Example 2 was constructed except that the two carbonaceous material molded bodies obtained in Example 2 were used as electrode bodies for the electric double layer capacitor. The initial capacitance of the obtained electric double layer capacitor was 1.11F when 2.8V was applied and 1.38F when 3.8V was applied. Moreover, the change rate of the electrostatic capacitance after applying a voltage of 3.8 V at room temperature for 800 hours was −12%.
[0031]
(Reference Example 4 )
Activated carbon powder (potassium content: 25 ppm, average particle size: about 20 μm, specific surface area: 1680 m 2 / specifically obtained by repeating water washing and acid neutralization of the carbonaceous material of Reference Example 1 after steam activation. A coin cell similar to that in Reference Example 1 was constructed except that g,) was used. The natural potential of the carbonaceous material electrode as the positive electrode was 3.01 V (vs. Li / Li + ).
[0032]
(Reference Example 5 )
An electric double layer capacitor similar to that of Reference Example 2 was constructed except that the two activated carbon molded bodies obtained in Reference Example 4 were used as electrode bodies for the electric double layer capacitor. The initial capacitance of the obtained electric double layer capacitor was 1.19F when 2.8V was applied and 1.36F when 3.8V was applied. Moreover, the change rate of the electrostatic capacitance after applying a voltage of 3.8 V for 800 hours at room temperature was -39%.
[0033]
(Comparative Example 1 )
A coal tar pitch was obtained by heat treatment at 500 ° C. for 2 hours and then pulverization. After adding and mixing 2.3 times the weight ratio of granular potassium hydroxide to coal pitch powder with an interplanar spacing d 002 of 0.372 nm, it is placed in a nickel crucible and placed in a nitrogen stream at 650 ° C. for 1 hour. Heat treated. After cooling, washing and drying were carried out in the same manner as in Example 1, followed by heat treatment at 1000 ° C. for 1 hour in a nitrogen stream to obtain activated carbon powder. The potassium content in the activated carbon powder was 30 ppm. Next, a coin cell similar to that of Reference Example 1 was obtained using this activated carbon powder. The natural potential of the carbonaceous material electrode was 3.08 V (vs. Li / Li + ).
[0034]
(Reference Example 6 )
An electric double layer capacitor similar to Reference Example 2 was constructed except that the two activated carbon molded bodies obtained in Comparative Example 1 were used as electrode bodies of an electric double layer capacitor. The initial capacitance of the obtained electric double layer capacitor was 1.19F when 2.8V was applied and 1.35F when 3.8V was applied. Moreover, the change rate of the electrostatic capacitance after applying a voltage of 3.8 V at room temperature for 800 hours was −65%.
[Brief description of the drawings]
1 is a diagram showing an X-ray pattern of a carbonaceous raw material of Example 1. FIG.
FIG. 2 is an explanatory diagram of coin-type cells used in reference examples and comparative examples of the present invention.
[Explanation of symbols]
1: Stainless steel container case 2: Positive electrode 3: Gasket 4: Separator 5: Negative electrode 6: Upper cover of stainless steel container

Claims (7)

X線回折で測定される面間隔d002が0.344nm以上0.365nm以下の炭素質原料と、アルカリ金属、アルカリ土類金属及び希土類金属から成る金属元素群から選ばれた金属又はこれらの金属を含有する化合物とを混合し、この混合物を熱処理したのち水洗・乾燥することを特徴とする、アルカリ金属、アルカリ土類金属及び希土類金属から成る金属元素群から選ばれた金属元素の合計含有量が100ppm以上2000ppm以下、かつLiBF 4 を1.0モル/Lで含有するプロピレンカーボネート溶液中で
Liを対極とした場合の自然電位が1.50V以上2.85V以下である炭素質物質の製造方法。
Metal selected from a carbonaceous raw material having an interplanar spacing d 002 of 0.344 nm or more and 0.365 nm or less measured by X-ray diffraction, and a metal element group consisting of alkali metal, alkaline earth metal and rare earth metal, or these metals The total content of metal elements selected from the group of metal elements consisting of alkali metals, alkaline earth metals and rare earth metals , characterized in that the mixture is mixed with a compound containing, and the mixture is heat-treated and then washed and dried. In a propylene carbonate solution containing 100 ppm to 2000 ppm and containing LiBF 4 at 1.0 mol / L
A method for producing a carbonaceous material having a natural potential of 1.50 V or more and 2.85 V or less when Li is used as a counter electrode .
炭素質原料がX線回折で測定される面間隔が0.344nm以上0.349nm以下のものであることを特徴とする請求項記載の炭素質物質の製造方法。Method for producing a carbonaceous material of claim 1, wherein the spacings carbonaceous feedstock is measured by X-ray diffraction are: 0.349nm than 0.344 nm. 炭素質原料と混合するアルカリ金属、アルカリ土類金属及び希土類金属より成る金属元素群から選ばれた金属元素又はこれらの金属元素を含有する化合物が、金属カリウム、水酸化カリウム、炭酸カリウム及び水酸化ルビジウムより成る群から選ばれるものであることを特徴とする請求項又はに記載の炭素質物質の製造方法。Metal elements selected from the group of metal elements consisting of alkali metals, alkaline earth metals and rare earth metals mixed with carbonaceous raw materials or compounds containing these metal elements are metal potassium, potassium hydroxide, potassium carbonate and hydroxide 3. The method for producing a carbonaceous material according to claim 1, wherein the carbonaceous material is selected from the group consisting of rubidium. 熱処理を、混合物を500〜1300℃に10分間以上保持することにより行うことを特徴とする請求項ないしのいずれかに記載の炭素質物質の製造方法。The method for producing a carbonaceous material according to any one of claims 1 to 3 , wherein the heat treatment is performed by holding the mixture at 500 to 1300 ° C for 10 minutes or more. 水洗が、熱処理を経た混合物を酸水溶液と接触させたのち、洗液がpH6以上となるまで水洗する工程を含むことを特徴とする請求項ないしのいずれかに記載の炭素質物質の製造方法。5. The production of a carbonaceous material according to any one of claims 1 to 4 , wherein the water washing includes a step of bringing the heat-treated mixture into contact with an acid aqueous solution and then washing with water until the washing solution has a pH of 6 or more. Method. 炭素質原料の結晶子のC軸方向の大きさLcが2.5nm以上であることを特徴とする請求項1ないし5のいずれかに記載の炭素質物質の製造方法。The method for producing a carbonaceous material according to any one of claims 1 to 5, wherein the size Lc in the C-axis direction of the crystallite of the carbonaceous raw material is 2.5 nm or more. アルカリ金属、アルカリ土類金属及び希土類金属から成る金属原子群から選ばれた金属元素の合計含有量が500ppm以上1000ppm以下である炭素質物質が生成するように混合、熱処理及び水洗・乾燥を行うことを特徴とする請求項1ないし6のいずれかに記載の炭素質物質の製造方法。Mixing, heat treatment, washing with water and drying so as to produce a carbonaceous material having a total content of metal elements selected from the group of metal atoms consisting of alkali metals, alkaline earth metals and rare earth metals of 500 ppm or more and 1000 ppm or less A method for producing a carbonaceous material according to any one of claims 1 to 6.
JP12720998A 1998-05-11 1998-05-11 A method for producing a carbonaceous material. Expired - Fee Related JP4066506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12720998A JP4066506B2 (en) 1998-05-11 1998-05-11 A method for producing a carbonaceous material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12720998A JP4066506B2 (en) 1998-05-11 1998-05-11 A method for producing a carbonaceous material.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007236774A Division JP2008050258A (en) 2007-09-12 2007-09-12 Carbonaceous substance and electrical double layer capacitor using the same

Publications (2)

Publication Number Publication Date
JPH11322322A JPH11322322A (en) 1999-11-24
JP4066506B2 true JP4066506B2 (en) 2008-03-26

Family

ID=14954431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12720998A Expired - Fee Related JP4066506B2 (en) 1998-05-11 1998-05-11 A method for producing a carbonaceous material.

Country Status (1)

Country Link
JP (1) JP4066506B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618929B2 (en) * 2000-05-09 2011-01-26 三菱化学株式会社 Activated carbon for electric double layer capacitors
JP2006012939A (en) * 2004-06-23 2006-01-12 Mitsubishi Gas Chem Co Inc Carbon material for electric double-layer capacitor electrode and manufacturing method thereof
JP2006351915A (en) * 2005-06-17 2006-12-28 Japan Carlit Co Ltd:The Electric-double-layer capacitor and electrolyte therefor
JP2008007383A (en) * 2006-06-30 2008-01-17 Tokyo Yogyo Co Ltd Method of manufacturing ceramic structure and ceramic structure
JP5261959B2 (en) * 2007-03-30 2013-08-14 日本ケミコン株式会社 Carbon material for electrode of electrochemical device, method for producing the same, and electrode for electrochemical device
JP2008050258A (en) * 2007-09-12 2008-03-06 Mitsubishi Chemicals Corp Carbonaceous substance and electrical double layer capacitor using the same

Also Published As

Publication number Publication date
JPH11322322A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
US6094338A (en) Electric double-layer capacitor
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP3800799B2 (en) Electric double layer capacitor
EP1211702B1 (en) Activated carbon for electric double layer capacitor
KR100317697B1 (en) Carbonaceous electrode material for non-aqueous secondary battery
US20060035785A1 (en) Active carbon, production method thereof and polarizable electrode
JP5931326B2 (en) Activated carbon for electric double layer capacitors
JP3846022B2 (en) Electric double layer capacitor
JP4066506B2 (en) A method for producing a carbonaceous material.
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP3812098B2 (en) Electric double layer capacitor
JP3807854B2 (en) Electric double layer capacitor
JP3837866B2 (en) Electric double layer capacitor
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP2004247433A (en) Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP2006059923A (en) Original composition of carbon material for electrode of electric double-layer capacitor
JP3800810B2 (en) Electric double layer capacitor
JP2008050258A (en) Carbonaceous substance and electrical double layer capacitor using the same
JP3837880B2 (en) Electric double layer capacitor
JP2005243933A (en) Electric double-layer capacitor
JP3843558B2 (en) Electric double layer capacitor
JP2018056401A (en) Nonaqueous lithium power storage element
JPH11297580A (en) Electric double-layer capacitor
JP2018056434A (en) Nonaqueous lithium power storage element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees