JP4066404B2 - Manufacturing method and manufacturing apparatus for deformed pipe - Google Patents

Manufacturing method and manufacturing apparatus for deformed pipe Download PDF

Info

Publication number
JP4066404B2
JP4066404B2 JP2000064594A JP2000064594A JP4066404B2 JP 4066404 B2 JP4066404 B2 JP 4066404B2 JP 2000064594 A JP2000064594 A JP 2000064594A JP 2000064594 A JP2000064594 A JP 2000064594A JP 4066404 B2 JP4066404 B2 JP 4066404B2
Authority
JP
Japan
Prior art keywords
roll
tube
pipe
forming
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000064594A
Other languages
Japanese (ja)
Other versions
JP2001252715A (en
Inventor
淳 黒部
武文 仲子
努 東
博 朝田
松一 鴨田
博志 橋本
研一 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHIN KOKAN CO., LTD.
Nippon Steel Nisshin Co Ltd
Original Assignee
NISSHIN KOKAN CO., LTD.
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHIN KOKAN CO., LTD., Nippon Steel Nisshin Co Ltd filed Critical NISSHIN KOKAN CO., LTD.
Priority to JP2000064594A priority Critical patent/JP4066404B2/en
Publication of JP2001252715A publication Critical patent/JP2001252715A/en
Application granted granted Critical
Publication of JP4066404B2 publication Critical patent/JP4066404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、円周方向に複数の凹凸部をつけた異形管を製造する方法及び装置に関する。
【0002】
【従来の技術】
異形管は、形状に由来する意匠性や差別性を活用し、従来の円形パイプに代わる装飾用建材として使用されている。この種の異形管には、円周方向に複数の凹凸部を形成した異形管,管軸と平行な凹凸部を付けた異形管,管軸方向に関して螺旋状の凹凸部を形成した異形管等が知られている。
円周方向に複数の凹凸部をもつ異形管は、ダイスを用いた抽伸法やロール成形法等、従来から種々の方法で製造されている。ダイスで素管を抽伸する方法(特開昭63−248515号公報)では、良好な断面形状の異形管が製造されるものの、寸法や異形管の形状に応じてダイスの変更が必要とされるため生産性が低い。
【0003】
孔型ロールやフラットロールを組み合わせた圧延機で異形管を製造するロール成形法(特開昭57−142715号公報)は生産性が高く、圧延機出側に設けたスパイラル状のガイドやダイスにより管軸方向に関して螺旋状のウネリを付けた複数の凹凸をもつ異形管も製造できる。しかし、成形ロール1の隙間Gに素管Mの材料を流入させて凸部を成形している(図1a)ため、素管Mを製造している造管ラインに組み込んだインライン成形に適用すると、未溶接部分で成形ロール1の隙間Gに材料が流入し、溶接部分が成形スタンドを通過しても、断面形状が崩れ、必要形状の凹凸が成形できないことがある(図1b)。また、螺旋状模様をつける場合、ガイドやダイスが磨耗しやすいことも欠点である。
【0004】
【発明が解決しようとする課題】
円周方向に複数の凹凸部をもつ異形管を生産性の高いロール成形法で製造する場合、未溶接部成形時の変形(図1b)を考慮すると、素管Mの円周方向全長にわたって隙間Gが小さくなるロール配置が好ましい。そこで、円周方向に8組の凹凸部をつけた異形管の製造では、凹部に対応する突起をロール周面に付けた成形ロール1を使用し、成形ロール1を180度分割(図2a)又は90度分割(図2b)で素管Mの円周方向に2個又は4個配置している。
しかし、ロールギャップDに比較して素管Mの直径が大きいため、ロールギャップDに素管Mを挿入すると、成形ロール1の間に隙間Gが発生する。隙間Gは、180度分割(図3a)及び90度分割(図3b)で組み合わせた成形ロール1では、素管Mの変形量が最も多くなる凸部pの頂点tに当たる位置で発生する。そのため、隙間Gに材料が集中的に流れ込み、必要形状をもつ異形管の製造が困難になる。
【0005】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、狭い隙間で素管円周方向に配置した複数本の成形ロールを予備成形スタンド及び仕上げ成形スタンドで素管を成形することにより、断面形状の崩れを発生させることなく、対称性に優れた良好な断面形状をもつ異形管を製造することを目的とする。
【0006】
本発明は、その目的を達成するため、円周方向に関し複数組の凹部及び凸部をもつ異形管を円筒状の素管から製造する際、素管の円周方向に配置され、前記凹部の個数に相当する合計個数の隆起部をもち、隆起部間がロール底部となっている複数本の予備成形ロールを、或る予備成形ロールのロール底部と隣り合う予備成形ロールの隆起部との境にロール分割位置を設定して素管の円周方向に配置した予備成形スタンドで素管を予備成形して前記凹部に対応する凹部を素管につけた後、同様な隆起部をもち同様なロール分割位置で配置した複数本の仕上げ成形ロールを備えた仕上げ成形スタンドで目標形状に素管を仕上げ成形することを特徴とする。
素管の管軸に直交する面に対して所定の螺旋角度でロール軸を傾斜させた予備成形ロール及び仕上げ成形ロールで素管を成形するとき、管軸方向に関して螺旋状のウネリを付けた異形管が製造される。
【0007】
異形管製造装置は、少なくとも予備成形スタンド及び仕上げ成形スタンドをもつ多段配置の成形スタンドを備えている。予備成形スタンド及び仕上げ成形スタンドは、素管に付ける凹部と同じ合計個数の隆起部がロール周面に形成され、隆起部の間がロール底部になっている複数本の成形ロールを、或る成形のロール底部と隣り合う成形ロールの隆起部との境にロール分割位置を設定して狭い隙間で素管の円周方向に配置している。螺旋状のウネリを付けた異形管の製造用には、成形ロールのロール軸を素管の管軸に直交する面に対し所定の螺旋角度で傾斜させる。
【0008】
【実施の形態】
本発明に従った異形管の製造には、複数の成形スタンドをタンデムに配置した装置が使用されるが、ここでは成形スタンドを2段配置した装置(図4)を例にとって説明する。
素管Mは、予備成形スタンド10で予備成形された後、仕上げ成形スタンド20で目標形状の異形管Pに成形される。予備成形スタンド10と仕上げ成形スタンド20との間には、更に第3,第4の成形スタンドを配置しても良い。
予備成形スタンド10は、各ロール間の隙間Gが非常に狭くなる配置で4本の予備成形ロール11〜14を組み合わせている(図5a)。予備成形ロール11〜14の周面には、目標異形管Pの周面にある凹数に相当する数(図5の場合には8個)の隆起部11p〜14pが形成されている。各予備成形ロール11〜14の分割位置は、予備成形ロール11,12のロール底部11b,12bと隣り合う予備成形ロール13,14の隆起部13p,14pとの境に設定されている。
【0009】
仕上げ成形スタンド20も、同様に狭い隙間Gで4本の仕上げ成形ロール21〜24を配置している(図5b)。成形ロール21〜24の周面にも、目標異形管Pの周面にある凹数に相当する数の隆起部21p〜24pが形成されている。各成形ロール21〜24の分割位置は、予備成形スタンド10と同様に仕上げ成形ロール21,22のロール底部21b,22bと隣り合う仕上げ成形ロール23,24の隆起部23p,23pとの境に設定されている。
予備成形スタンド10,仕上げ成形スタンド20共に、同様なロール支持機構30(図6)で各ロール11〜14,21〜24を回転支持する。このロール支持機構30は、各ロール11〜14,21〜24のロール軸31を回転可能に支持するロールチョック32を備えている。ロールチョック32は、各ロール11〜14,21〜24に対応して素管Mの円周方向に4組配置されており、素管Mの中心に向けて移動可能になっている。ロールチョック32の移動量を圧下スクリュー33で調節することにより、素管Mの圧下量が設定される。
【0010】
このように予備成形ロール11〜14を組み合わせた予備成形スタンド10に素管Mを通過させると、異形管Pの凸部pに当たる部分がロール底部11b〜14bで予備成形され、凹部に当たる部分が隆起部11p〜14pで予備成形される。予備成形スタンド10から仕上げ成形スタンド20に素管Mが送られると、ロール底部11b〜14bで予備成形された部分が仕上げ成形ロール21〜24のロール底部21b〜24bで仕上げ成形されて凸部pになり、隆起部11p〜14pで予備成形された部分が仕上げ成形ロール21〜24の隆起部21p〜24pで成形されて凹部bになる。
予備成形及び仕上げ成形の何れにおいても、予備成形ロール11〜14、仕上げ成形ロール21〜24の間に隙間Gが発生する。しかし、素管Mの変形量が最も多い凸部pの頂点t(図3)で各ロール11〜14,21〜24が分割されておらず、しかも各段で素管Mの圧下量を少なくできる多段成形のため隙間Gを狭くできる。したがって、隙間Gへの材料流入が抑えられ、形状精度の良好な異形管P(図7)が製造される。
【0011】
この方法は、通常の造管ラインに組み込んで異形管Pを製造するインライン成形でも有効である。すなわち、各スタンド10,20の圧下量が少なく、且つ各ロール11〜14,21〜24の隙間Gが狭いことから、予備成形スタンド10で板端部eが重なり合っても高低差の小さな8組の凹凸が素管Mにつけられる(図8)。素管Mの未溶接部分では、凹凸部の形成により素管Mの変形方向が凹凸部に定まるため、素管Mの溶接部分が予備成形スタンド10に達しても素管Mの円周方向に8組の凹凸部が形成されることになる。形成された凹凸部は、仕上げ成形スタンド20でそれぞれ凹部b及び凸部pに仕上げ成形される。
管軸方向に平行な凹凸を付けた異形管Pでは、素管Mの管軸に直交する方向と平行にロール軸31を保持したロール支持機構30(図6)が使用される。このロール支持機構30に代え、管軸方向に所定の螺旋角度θでロール軸45を傾斜支持するロール支持機構40(図9)を使用するとき、管軸方向に沿って螺旋状にうねった凹凸のある異形管Pが製造される。
【0012】
ロール支持機構40は、ロール収容空間41を素管Mの管軸方向に対し螺旋角度θで、ロール軸孔42を素管Mの管軸に直交する方向に対し螺旋角度θで傾斜させたロールチョック43を備えている。ロール11〜14,21〜24とロールチョック43の間にカラー44を介在させ、カラー44によりロール11〜14,21〜24を位置決めする。ロール11〜14,21〜24のロール軸45をロールチョック43で支持することにより、素管Mに対してロール11〜14,21〜24が螺旋角度θで押し付けられ、螺旋角度θで凸部p及び凹部bがうねった異形管Pが製造される。なお、ロール支持機構40を造管ラインに組み込んで異形管Pをインライン成形する場合には、素管Mの円周方向に予備成形スタンド10,仕上げ成形スタンド20を回転させる。
【0013】
以上は、8組の凹凸部を付けた異形管Pの製造を説明したが、本発明はこれに拘束されるものではなく、複数の凹凸部が円周方向にある異形管Pに対して同様に適用される。螺旋角度θは,過度に大きくとるとロール11〜14,21〜24の回転や素管M又は異形管Pの走行に支障をきたすため,45度以下に設定することが好ましい。また、各成形スタンド10,20とも、4本のロール11〜14,21〜24に代え、3本又は5本以上の成形ロールを組み込むことができる。
【0014】
【実施例1】
板厚1.6mmの鋼帯STKM13Bからロールフォーミング法で外径54mmの素管Mを製造し、同じ造管ラインに配置された成形装置(図4)に送り込んだ。各スタンド10,20では、成形ロール11,12及び21,22のロール底部11b,12bと隣り合う成形ロール13,14及び23,24の隆起部13p,14p及び23p,24pとの境にロール分割位置を設定し、全体で8個の隆起部11p〜14p,21p〜24pをもつロール11〜14,21〜24を使用した。素管Mの円周方向に等間隔で凹凸部を形成するため、ロール11、12及び21,24の素管Mに対する開き角度α(図5a)を120度に設定した。
【0015】
予備成形スタンド10の成形ロール11〜14の圧下量を1.5mm,仕上げ成形スタンド20の成形ロール21〜24の圧下量を2mmに設定し、70m/分の速度で送られてくる素管Mに凹凸を付けた。成形ロール11〜14,21〜24の回転は、素管Mとの摺擦による従動回転とした。
成形された異形管Pの形状を測定したところ、深さ3mmの凹凸が円周方向に8組付けられた外径50.8mmの異形管であり、凹凸の対称性も良好であった。
【0016】
【実施例2】
螺旋角度θ=5度で成形ロール11〜14,21〜24をロールチョック43(図9)に取り付け、予備成形スタンド10及び仕上げ成形スタンド20を回転させながら素管Mを成形する以外は、実施例1と同じ条件下で異形管Pを製造した。得られた異形管Pは、螺旋角度5度,深さ3mmの凹凸が円周方向に8組付けられた外径50.8mmの異形管であり、凹凸の対称性も良好であった。
【0017】
【比較例】
素管Mの円周方向に関して90度分割した4本の成形ロール1(図2b)を用いて素管Mを成形する以外は,実施例1と同じ条件下で異形管Pを製造した。この場合、4本の成形ロール1が90度分割であるため、素管Pの未溶接部分がロール底部2の中央にロール分割位置が取られた。この場合には、素管Pの未溶接部分が仕上げ成形スタンド20を通過するとき、素管Mの変形量が最も多い凸部pの頂点tにロール分割位置があるため、隙間Gに流入する材料が多く(図3b)、素管Mの形状が崩れた。形状の崩れは、素管Mの溶接部分がスタンド10,20を通過した後でも続いた。その結果、良好な断面形状をもつ異形管Pを製造できなかった。
【0018】
【発明の効果】
以上に説明したように、本発明においては、目標異形管の凹凸個数と同じ個数の凹部を素管の円周方向に予備成形した後、成形ロールのロール底部と隣り合う成形ロールのロール隆起部との境にロール分割位置を設定した成形ロールで凹部を圧下する仕上げ成形を行っている。しかも、成形スタンドを多段配置しているため、各段の圧下量を小さくできることから各ロールの隙間を狭くできる。この方法によるとき、予備成形で付けた凹部により素管の変形方向が規制されるため断面形状が大きく崩れることなく、対称性の高い複数の凹凸部を円周方向につけた異形管が高生産性で製造される。
【図面の簡単な説明】
【図1】 8組の凹凸を付けた異形管を製造する際に使用される従来の成形ロール組合せ(a)及び従来法で異形管をインライン製造する場合に生じがちな不良な断面形状(b)
【図2】 従来の180度分割(a)又は90度分割(b)した成形ロールの配置
【図3】 従来のロール配置で異形管Pを製造した場合に形状崩れが生じることを示した説明図
【図4】 本発明に従った製造装置の概略側面図
【図5】 予備成形スタンド(a)及び仕上げ成形スタンド(b)の成形ロールを素管の管軸方向から見た概略図
【図6】 素管の中心に対して成形ロールを前進及び後退可能にするロール支持機構の概略図
【図7】 良好な断面形状をもつ異形管が製造されることを示す説明図
【図8】 板端部が重なり合った素管の断面形状
【図9】 管軸方向に関して螺旋状になった凹凸部をつけた異形管の製造に使用されるロール支持機構
【符号の説明】
10:予備成形スタンド 20:仕上げ成形スタンド 11〜14,21〜24:成形ロール 11p〜14p,21〜24p:成形ロールに付けた隆起部
11b〜14b,21b〜24b:隆起部間のロール底部
M:素管 P:異形管 p:凸部 b:凹部 θ:螺旋角度 D:ロールギャップ
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for manufacturing a deformed pipe having a plurality of uneven portions in the circumferential direction.
[0002]
[Prior art]
The deformed pipe is used as a decorative building material in place of the conventional circular pipe, utilizing the design and the distinctiveness derived from the shape. This type of deformed tube includes a deformed tube with a plurality of uneven portions in the circumferential direction, a deformed tube with uneven portions parallel to the tube axis, a deformed tube with a spiral uneven portion in the tube axis direction, etc. It has been known.
A deformed pipe having a plurality of uneven portions in the circumferential direction has been conventionally produced by various methods such as a drawing method using a die and a roll forming method. In the method of drawing a raw tube with a die (Japanese Patent Laid-Open No. 63-248515), a deformed tube having a good cross-sectional shape is manufactured, but the die needs to be changed according to the dimensions and the shape of the deformed tube. Therefore, productivity is low.
[0003]
A roll forming method (Japanese Patent Laid-Open No. 57-142715) for producing a deformed tube with a rolling mill combined with a perforated roll or a flat roll is highly productive, and it is possible to use a spiral guide or die provided on the outlet side of the rolling mill. It is also possible to manufacture a deformed pipe having a plurality of projections and depressions with a spiral undulation in the pipe axis direction. However, since the convex portion is formed by allowing the material of the raw tube M to flow into the gap G of the forming roll 1 (FIG. 1a), when applied to in-line forming incorporated in the pipe making line where the raw tube M is manufactured. Even if the material flows into the gap G of the forming roll 1 at the unwelded portion and the welded portion passes through the forming stand, the cross-sectional shape may be lost, and the unevenness of the required shape may not be formed (FIG. 1b). In addition, when a spiral pattern is applied, it is a disadvantage that the guide and the die are easily worn.
[0004]
[Problems to be solved by the invention]
When manufacturing a deformed pipe having a plurality of concave and convex portions in the circumferential direction by a highly productive roll forming method, considering the deformation at the time of forming the unwelded portion (FIG. 1b), the gap across the entire circumferential length of the base pipe M A roll arrangement in which G is small is preferable. Therefore, in the manufacture of a deformed pipe with eight sets of concave and convex portions in the circumferential direction, the forming roll 1 with protrusions corresponding to the concave portions attached to the roll peripheral surface is used, and the forming roll 1 is divided by 180 degrees (FIG. 2a). Alternatively, two or four pieces are arranged in the circumferential direction of the raw tube M in a 90-degree division (FIG. 2b).
However, since the diameter of the raw tube M is larger than that of the roll gap D, when the raw tube M is inserted into the roll gap D, a gap G is generated between the forming rolls 1. The gap G is generated at a position corresponding to the apex t of the convex portion p where the deformation amount of the raw tube M is the largest in the forming roll 1 combined in the 180 degree division (FIG. 3a) and the 90 degree division (FIG. 3b). Therefore, the material flows into the gap G in a concentrated manner, making it difficult to manufacture a deformed pipe having a required shape.
[0005]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and a plurality of forming rolls arranged in a circumferential direction of a raw tube with a narrow gap are formed into a raw tube using a preforming stand and a finish forming stand. Accordingly, an object of the present invention is to produce a deformed tube having a good cross-sectional shape with excellent symmetry without causing the cross-sectional shape to collapse.
[0006]
In order to achieve the object, the present invention, when manufacturing a deformed tube having a plurality of sets of recesses and projections in the circumferential direction from a cylindrical tube, is arranged in the circumferential direction of the tube, A plurality of preformed rolls having a total number of raised portions corresponding to the number and having a roll bottom between the raised portions are separated from a roll bottom of a certain preformed roll and a raised portion of an adjacent preformed roll. After the preform tube is preformed with a preforming stand that is set in the circumferential direction of the workpiece tube and the concave portion corresponding to the recess is attached to the blank tube, a similar roll having a similar raised portion is provided. It is characterized in that the blank pipe is finished and formed into a target shape by a finish forming stand provided with a plurality of finish forming rolls arranged at the division positions.
When forming a raw pipe with a preforming roll and a finish-forming roll in which the roll axis is inclined at a predetermined helical angle with respect to a plane perpendicular to the pipe axis of the raw pipe, a variant with a spiral undulation in the pipe axis direction. A tube is manufactured.
[0007]
The modified pipe manufacturing apparatus includes a multi-stage forming stand having at least a preforming stand and a finish forming stand. The preforming stand and the finish forming stand are formed by molding a plurality of forming rolls in which the same total number of raised portions as the concave portions to be attached to the raw tube are formed on the roll peripheral surface, and between the raised portions is the bottom of the roll. A roll dividing position is set at the boundary between the bottom of the roll and the raised portion of the adjacent forming roll, and the rolls are arranged in a circumferential direction with a narrow gap. For the production of a deformed pipe with a helical undulation, the roll axis of the forming roll is inclined at a predetermined helical angle with respect to a plane perpendicular to the pipe axis of the raw pipe.
[0008]
Embodiment
In manufacturing the deformed pipe according to the present invention, an apparatus in which a plurality of molding stands are arranged in tandem is used. Here, an apparatus having two stages of molding stands (FIG. 4) will be described as an example.
The raw tube M is preformed by the preforming stand 10 and then formed into a deformed tube P having a target shape by the finish molding stand 20. Between the preforming stand 10 and the finish forming stand 20, third and fourth forming stands may be further arranged.
The preforming stand 10 combines four preforming rolls 11 to 14 in an arrangement in which the gap G between the rolls is very narrow (FIG. 5a). On the peripheral surface of the preforming rolls 11-14, a number of raised portions 11p-14p (eight in the case of FIG. 5) corresponding to the number of recesses on the peripheral surface of the target deformed pipe P are formed. The division positions of the preforming rolls 11 to 14 are set at the boundary between the roll bottom portions 11b and 12b of the preforming rolls 11 and 12 and the raised portions 13p and 14p of the preforming rolls 13 and 14 adjacent to each other.
[0009]
Similarly, the finishing molding stand 20 is also provided with four finishing molding rolls 21 to 24 with a narrow gap G (FIG. 5b). The number of raised portions 21p to 24p corresponding to the number of recesses on the peripheral surface of the target deformed pipe P is also formed on the peripheral surfaces of the forming rolls 21 to 24. The dividing positions of the forming rolls 21 to 24 are set at the boundary between the roll bottom portions 21b and 22b of the finish forming rolls 21 and 22 and the raised portions 23p and 23p of the adjacent finish forming rolls 23 and 24 in the same manner as the preforming stand 10. Has been.
Both the preforming stand 10 and the finish forming stand 20 rotate and support the rolls 11 to 14 and 21 to 24 with the same roll support mechanism 30 (FIG. 6). The roll support mechanism 30 includes a roll chock 32 that rotatably supports the roll shafts 31 of the rolls 11 to 14 and 21 to 24. Four sets of roll chock 32 are arranged in the circumferential direction of the pipe M corresponding to each of the rolls 11 to 14 and 21 to 24, and are movable toward the center of the pipe M. By adjusting the amount of movement of the roll chock 32 with the reduction screw 33, the reduction amount of the raw tube M is set.
[0010]
When the raw tube M is passed through the preforming stand 10 in which the preforming rolls 11 to 14 are combined in this way, the portion corresponding to the convex portion p of the deformed tube P is preformed by the roll bottom portions 11b to 14b, and the portion corresponding to the concave portion is raised. It is preformed at the portions 11p to 14p. When the blank tube M is sent from the preforming stand 10 to the finish forming stand 20, the parts preformed by the roll bottom portions 11b to 14b are finish-molded by the roll bottom portions 21b to 24b of the finish forming rolls 21 to 24, and the convex portion p is formed. Then, the part preformed by the raised portions 11p to 14p is formed by the raised portions 21p to 24p of the finish forming rolls 21 to 24 to become the recess b.
In both the preliminary molding and the finish molding, a gap G is generated between the preforming rolls 11 to 14 and the finishing molding rolls 21 to 24. However, each roll 11-14, 21-24 is not divided | segmented by the vertex t (FIG. 3) of the convex part p with the largest deformation amount of the raw pipe M, and also the amount of rolling down of the raw pipe M is reduced at each step. The gap G can be narrowed because of the multistage molding that can be performed. Therefore, the material inflow to the gap G is suppressed, and the deformed pipe P (FIG. 7) with good shape accuracy is manufactured.
[0011]
This method is also effective in in-line molding in which a modified pipe P is manufactured by being incorporated in a normal pipe making line. That is, since the rolling amount of each of the stands 10 and 20 is small and the gap G between the rolls 11 to 14 and 21 to 24 is narrow, even if the plate end portion e overlaps with the preforming stand 10, eight sets with a small difference in height. Are provided on the tube M (FIG. 8). In the unwelded portion of the raw tube M, the deformation direction of the raw tube M is determined by the uneven portion due to the formation of the concavo-convex portion. Therefore, even if the welded portion of the raw tube M reaches the preforming stand 10, Eight sets of uneven portions are formed. The formed concavo-convex portions are finish-molded into the concave portion b and the convex portion p, respectively, by the finish molding stand 20.
In the deformed pipe P provided with irregularities parallel to the pipe axis direction, a roll support mechanism 30 (FIG. 6) holding the roll axis 31 in parallel with the direction perpendicular to the pipe axis of the base pipe M is used. In place of the roll support mechanism 30, when using a roll support mechanism 40 (FIG. 9) that supports the roll shaft 45 at a predetermined spiral angle θ in the tube axis direction, the irregularities spirally wavy along the tube axis direction. A deformed pipe P having the following structure is manufactured.
[0012]
The roll support mechanism 40 has a roll chock in which the roll housing space 41 is inclined at a helical angle θ with respect to the tube axis direction of the raw tube M and the roll shaft hole 42 is inclined at a helical angle θ with respect to the direction orthogonal to the tube axis of the raw tube M. 43. A collar 44 is interposed between the rolls 11 to 14 and 21 to 24 and the roll chock 43, and the rolls 11 to 14 and 21 to 24 are positioned by the collar 44. By supporting the roll shaft 45 of the rolls 11 to 14 and 21 to 24 with the roll chock 43, the rolls 11 to 14 and 21 to 24 are pressed against the base tube M at the spiral angle θ, and the convex portion p at the spiral angle θ. And the deformed pipe P in which the recessed part b wave | undulated is manufactured. When the roll support mechanism 40 is incorporated in the pipe making line and the deformed pipe P is formed in-line, the preforming stand 10 and the finish forming stand 20 are rotated in the circumferential direction of the raw pipe M.
[0013]
The above has described the production of the deformed pipe P with eight sets of uneven portions, but the present invention is not limited to this, and the same applies to the deformed tube P having a plurality of uneven portions in the circumferential direction. Applies to The spiral angle θ is preferably set to 45 degrees or less in order to hinder the rotation of the rolls 11 to 14 and 21 to 24 and the travel of the raw tube M or the deformed tube P if excessively large. Further, each of the molding stands 10 and 20 can incorporate three or five or more molding rolls instead of the four rolls 11 to 14 and 21 to 24.
[0014]
[Example 1]
A raw tube M having an outer diameter of 54 mm was manufactured from a steel strip STKM13B having a plate thickness of 1.6 mm by a roll forming method, and fed to a forming apparatus (FIG. 4) arranged in the same pipe forming line. Each of the stands 10 and 20 is divided into rolls at the boundary between the roll bottoms 11b and 12b of the forming rolls 11 and 12 and 21 and 22 and the raised portions 13p and 14p and 23p and 24p of the adjacent forming rolls 13, 14, and 23, 24. The positions were set, and rolls 11 to 14 and 21 to 24 having eight raised portions 11p to 14p and 21p to 24p as a whole were used. In order to form uneven portions at equal intervals in the circumferential direction of the tube M, the opening angle α (FIG. 5a) of the rolls 11, 12, 21, and 24 with respect to the tube M was set to 120 degrees.
[0015]
The rolling tube M that is sent at a speed of 70 m / min is set with a reduction amount of the forming rolls 11 to 14 of the preforming stand 10 set to 1.5 mm and a reduction amount of the forming rolls 21 to 24 of the finish forming stand 20 set to 2 mm. The surface was uneven. The rotation of the forming rolls 11 to 14 and 21 to 24 was driven rotation by rubbing with the raw tube M.
When the shape of the formed deformed tube P was measured, it was a deformed tube having an outer diameter of 50.8 mm in which 8 mm unevenness with a depth of 3 mm was assembled in the circumferential direction, and the unevenness symmetry was also good.
[0016]
[Example 2]
Example except that the forming rolls 11 to 14 and 21 to 24 are attached to the roll chock 43 (FIG. 9) at a spiral angle θ = 5 degrees, and the raw tube M is formed while the preforming stand 10 and the finish forming stand 20 are rotated. A modified tube P was produced under the same conditions as in 1. The obtained deformed pipe P was a deformed pipe having an outer diameter of 50.8 mm, in which unevenness having a helical angle of 5 degrees and a depth of 3 mm was assembled in the circumferential direction, and the symmetry of the unevenness was also good.
[0017]
[Comparative example]
A deformed pipe P was manufactured under the same conditions as in Example 1 except that the raw pipe M was formed using four forming rolls 1 (FIG. 2 b) divided 90 degrees with respect to the circumferential direction of the raw pipe M. In this case, since the four forming rolls 1 were divided by 90 degrees, the unwelded portion of the raw pipe P was positioned at the center of the roll bottom 2. In this case, when the unwelded portion of the raw pipe P passes through the finishing molding stand 20, the roll splitting position is located at the apex t of the convex portion p where the deformation amount of the raw pipe M is the largest, and therefore flows into the gap G. There was much material (FIG. 3b), and the shape of the raw tube M collapsed. The collapse of the shape continued even after the welded portion of the base tube M passed through the stands 10 and 20. As a result, a deformed pipe P having a good cross-sectional shape could not be manufactured.
[0018]
【The invention's effect】
As described above, in the present invention, after forming the same number of concave portions as the number of concave and convex portions of the target deformed pipe in the circumferential direction of the raw pipe, the roll raised portion of the forming roll adjacent to the roll bottom of the forming roll Finishing molding is performed in which the concave portion is reduced with a forming roll having a roll dividing position set at the boundary. In addition, since the forming stands are arranged in multiple stages, the amount of reduction at each stage can be reduced, so that the gap between the rolls can be reduced. When this method is used, the deformation direction of the raw tube is regulated by the recesses formed by preforming, so that the deformed tube with a plurality of highly symmetrical uneven portions in the circumferential direction is highly productive without greatly losing the cross-sectional shape. Manufactured by.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional cross section of rolls (b) used when manufacturing irregularly shaped pipes with 8 sets of irregularities and a defective cross-sectional shape (b) that tends to occur when an irregularly shaped pipe is manufactured in-line by a conventional method. )
[Fig. 2] Arrangement of forming rolls divided by conventional 180 degree division (a) or 90 degree division (b) [Fig. 3] Description showing that shape deformation occurs when deformed pipe P is manufactured by conventional roll arrangement FIG. 4 is a schematic side view of the production apparatus according to the present invention. FIG. 5 is a schematic view of the forming rolls of the preforming stand (a) and the finish forming stand (b) as seen from the tube axis direction of the raw pipe. 6] Schematic diagram of a roll support mechanism that enables the forming roll to move forward and backward with respect to the center of the raw pipe. [FIG. 7] An explanatory view showing that a deformed pipe having a good cross-sectional shape is manufactured. [FIG. Cross-sectional shape of element tube with overlapping ends [Fig. 9] Roll support mechanism used for manufacturing deformed tube with irregularities spiraled in the tube axis direction
10: preformed Stand 20: finish forming stand 11-14: forming roll 11 p ~14 p, 21~24 p: ridges 11b~14b imparted to the forming roll, 21b to 24b: between ridges Roll bottom M: Elementary pipe P: Deformed pipe p: Convex part b: Concave part θ: Spiral angle D: Roll gap

Claims (4)

円周方向に関し複数組の凹部及び凸部をもつ異形管を円筒状の素管から製造する際、素管の円周方向に配置され、前記凹部の個数に相当する合計個数の隆起部をもち、隆起部間がロール底部となっている複数本の予備成形ロールを、或る予備成形ロールのロール底部と隣り合う予備成形ロールの隆起部との境にロール分割位置を設定して素管の円周方向に配置した予備成形スタンドで素管を予備成形して前記凹部に対応する凹部を素管につけた後、同様な隆起部をもち同様なロール分割位置で配置した複数本の仕上げ成形ロールを備えた仕上げ成形スタンドで目標形状に素管を仕上げ成形することを特徴とする異形管の製造方法。When manufacturing a deformed tube having a plurality of sets of recesses and projections in the circumferential direction from a cylindrical tube, it is arranged in the circumferential direction of the tube and has a total number of raised portions corresponding to the number of the recesses. A plurality of preformed rolls having a roll bottom between the ridges are set at the boundary between the roll bottom of a certain preform roll and the ridge of the adjacent preform roll, and the raw tube A plurality of finish forming rolls having the same raised portion and arranged at the same roll dividing position after preforming the preform tube with a preforming stand arranged in the circumferential direction and attaching a recess corresponding to the recess to the elementary tube. A method for producing a deformed pipe, comprising finish-molding an element pipe into a target shape with a finish-forming stand having a shape. 素管の管軸に直交する面に対して所定の螺旋角度でロール軸を傾斜させた予備成形ロール及び仕上げ成形ロールで素管を成形する請求項1記載の製造方法。The manufacturing method of Claim 1 which shape | molds a raw material pipe | tube with the preforming roll and inclination molding roll which inclined the roll axis | shaft with the predetermined spiral angle with respect to the surface orthogonal to the pipe axis of a raw material pipe | tube. 素管に付ける凹部と同じ合計個数の隆起部がロール周面に形成され、隆起部の間がロール底部になっている複数本の予備成形ロールを、或る予備成形のロール底部と隣り合う予備成形の隆起部との境にロール分割位置を設定して狭い隙間で素管の円周方向に配置した予備成形スタンドと、同じ合計個数の隆起部がロール周面に形成され、隆起部の間がロール底部になっている複数本の仕上げ成形ロールを、或る仕上げ成形ロールのロール底部と隣り合う仕上げ成形ロールの隆起部との境にロール分割位置を設定して狭い間隙で素管の円周方向に沿って配置した仕上げ成形スタンドとを備えている異形管の製造装置。A plurality of preformed rolls, in which the same total number of raised portions as the concave portions to be attached to the raw tube are formed on the peripheral surface of the roll and the gaps between the raised portions are the roll bottom, are preliminarily adjacent to the roll bottom of a certain preform. A pre-molding stand that is positioned in the circumferential direction of the blank tube with a narrow gap set at the boundary with the forming ridge, and the same total number of ridges are formed on the roll peripheral surface. A plurality of finish forming rolls with a roll bottom, and a roll splitting position is set at the boundary between the roll bottom of one finish forming roll and the ridges of the adjacent finish forming roll, and the circular tube of the blank tube is narrow. An apparatus for manufacturing a deformed pipe, comprising a finishing molding stand arranged along a circumferential direction. 予備成形ロール及び仕上げ成形ロールのロール軸が素管の管軸に直交する面に対し所定の螺旋角度で傾斜している請求項3記載の製造装置。The manufacturing apparatus according to claim 3, wherein the roll axes of the preforming roll and the finish forming roll are inclined at a predetermined spiral angle with respect to a plane perpendicular to the tube axis of the raw pipe.
JP2000064594A 2000-03-09 2000-03-09 Manufacturing method and manufacturing apparatus for deformed pipe Expired - Fee Related JP4066404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064594A JP4066404B2 (en) 2000-03-09 2000-03-09 Manufacturing method and manufacturing apparatus for deformed pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064594A JP4066404B2 (en) 2000-03-09 2000-03-09 Manufacturing method and manufacturing apparatus for deformed pipe

Publications (2)

Publication Number Publication Date
JP2001252715A JP2001252715A (en) 2001-09-18
JP4066404B2 true JP4066404B2 (en) 2008-03-26

Family

ID=18584272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064594A Expired - Fee Related JP4066404B2 (en) 2000-03-09 2000-03-09 Manufacturing method and manufacturing apparatus for deformed pipe

Country Status (1)

Country Link
JP (1) JP4066404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674987B2 (en) * 2001-03-30 2011-04-20 日新製鋼株式会社 Manufacturing method and manufacturing apparatus for deformed pipe

Also Published As

Publication number Publication date
JP2001252715A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
KR900008284B1 (en) Device for forming asymmetrical articles by rolling
JP4674987B2 (en) Manufacturing method and manufacturing apparatus for deformed pipe
JP4066404B2 (en) Manufacturing method and manufacturing apparatus for deformed pipe
JPH10314837A (en) Helical deformed tube, method for forming and device therefor
GB2411183A (en) Bar for reinforced concrete
JPH10230325A (en) Method for forming irregular shaped tube
KR20160120765A (en) Die structure for form rolling of double-threaded body, method for form rolling of double-threaded body, and thread material for form rolling of double-threaded body
JP2001191111A (en) Method and device for in-line manufacturing special shaped tube
JP3267198B2 (en) Method and apparatus for manufacturing metal material having circular cross section
JP2681536B2 (en) Channel rolling mill row
JP3585547B2 (en) Manufacturing method of strip with irregular cross section and roll with ridges
JP2002113516A (en) Method and apparatus for manufacturing special shape tube with helical rugged pattern
JPH06297003A (en) Manufacture of wide flange shape having round corners at the tip of flange and line of hot rolling devices therefor
KR102412105B1 (en) Apparatus for roll stamping
JPS60247404A (en) Continuous pipe drawing rolling mill
RU2043804C1 (en) Method of making bent sections of metallic strip and pair of rolls of section bending mill for performing the method
JPS60106605A (en) Continuous reducing mill of pipe
JP2001062517A (en) Forming method and equipment for ribbed plate material
JPS62114704A (en) Production of channel steel
JPS62282707A (en) Rolling device train for flanged shapes
JP5929542B2 (en) Rolling method and rolling equipment for channel steel
JPS5950902A (en) Rolling method of deformed steel bar
RU2188092C1 (en) Method for straightening round rolled pieces
JPS62279008A (en) Three rolls squeeze rolling method for round tube
JPH0123201B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees