JP4674987B2 - Manufacturing method and manufacturing apparatus for deformed pipe - Google Patents

Manufacturing method and manufacturing apparatus for deformed pipe Download PDF

Info

Publication number
JP4674987B2
JP4674987B2 JP2001098960A JP2001098960A JP4674987B2 JP 4674987 B2 JP4674987 B2 JP 4674987B2 JP 2001098960 A JP2001098960 A JP 2001098960A JP 2001098960 A JP2001098960 A JP 2001098960A JP 4674987 B2 JP4674987 B2 JP 4674987B2
Authority
JP
Japan
Prior art keywords
roll
pipe
tube
forming
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001098960A
Other languages
Japanese (ja)
Other versions
JP2002292425A (en
Inventor
淳 黒部
武文 仲子
努 東
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001098960A priority Critical patent/JP4674987B2/en
Publication of JP2002292425A publication Critical patent/JP2002292425A/en
Application granted granted Critical
Publication of JP4674987B2 publication Critical patent/JP4674987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、円周方向に複数の凹凸部をつけた異形管を製造する方法及び装置に関する。
【0002】
【従来の技術】
異形管は、形状に由来する意匠性や差別性を活用し、従来の円形パイプに代わる装飾用建材として使用されている。この種の異形管には、管軸と平行に円周方向へ複数の凹凸部を付けた異形管、管軸方向に関して螺旋状に円周方向へ複数の凹凸部を形成した異形管等が知られている。
円周方向に複数の凹凸部をもつ異形管は、ダイスを用いた抽伸法やロール成形法等、従来から種々の方法で製造されている。ダイスで素管を抽伸する方法(特開昭63−248515号公報)では、良好な断面形状の異形管が製造されるものの、寸法や異形管の形状に応じてダイスの変更が必要とされるため生産性が低い。
【0003】
孔型ロールやフラットロールを組み合わせた圧延機で異形管を製造するロール成形法(特開昭57−142715号公報)は生産性が高く、圧延機出側に設けたスパイラル状のガイドやダイスにより管軸方向に関して螺旋状のウネリを付けた複数の凹凸をもつ異形管も製造できる。しかし、成形ロール1の隙間Gに素管Mの材料を流入させて凸部を成形している(図1a)ため、素管Mを製造している造管ラインに組み込んだインライン成形に適用すると、未溶接部分で成形ロール1の隙間Gに材料が流入し、溶接部分が成形スタンドを通過しても、断面形状が崩れ、必要形状の凹凸が成形できないことがある(図1b)。また、螺旋状模様をつける場合、ガイドやダイスが磨耗しやすいことも欠点である。
【0004】
【発明が解決しようとする課題】
円周方向に複数の凹凸部をもつ異形管を生産性の高いロール成形法で製造する場合、未溶接部成形時の変形(図1b)を考慮すると、素管Mの円周方向全長にわたって隙間Gが小さくなるロール配置が好ましい。そこで、円周方向に8組の凹凸部をつけた異形管の製造では、凹部に対応する突起をロール周面に付けた成形ロール1を使用し、成形ロール1を180度分割(図2a)又は90度分割(図2b)で素管Mの円周方向に2個又は4個配置している。
しかし、ロールギャップDに比較して素管Mの直径が大きいため、ロールギャップDに素管Mを挿入すると、成形ロール1の間に隙間Gが発生する。隙間Gは、180度分割(図3a)及び90度分割(図3b)で組み合わせた成形ロール1では、素管Mの変形量が最も多くなる凸部pの頂点tに当たる位置で発生する。そのため、隙間Gに材料が集中的に流れ込み、必要形状をもつ異形管の製造が困難になる。
【0005】
また、製造した異形管の断面形状を良好にするためには、図4に示す異形管Pの凸部外面曲率半径Rが円周方向で均一になっていることが必要である。異形管Pの凸部外面曲率半径Rの円周方向での均一性を得るためには、最適寸法の隆起部間幅Wを持った成形ロール1で成形することが必要である。これまでは、その最適寸法を数種類の成形ロールを使用して成形実験を行なうことにより求めていたが、ロールコストが高くなることと効率が悪いことが問題であった。
【0006】
本発明は、このような問題を解消すべく案出されたものであり、ある成形ロールのロール低部と隣り合う成形ロールの隆起部との境にロール分割位置を設定し、そのロール分割位置の隆起部間隔を所定の式により求めた値とした成形ロールを素管円周方向に複数本配置した予備スタンド及び成形スタンドで素管を成形することにより、断面形状の崩れを発生させることなく、形状対称性に優れた良好な断面形状をもつ異形管を効率的に製造することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、その目的を達成するため、円周方向に関し複数組の凹部及び凸部をもつ異形管を円筒状の素管から製造する際、素管の円周方向に配置され、前記凹部の個数に相当する合計個数の隆起部をもち、隆起部間がロール底部となっている複数本の予備成形ロールを、或る予備成形ロールのロール底部と隣り合う予備成形ロールの隆起部との境にロール分割位置を設定し、前記ロール分割位置の隆起部間幅を下記の(1)式の値としており、前記複数本の予備成形ロールを素管の円周方向に配置した予備成形スタンドで素管を予備成形して前記凹部に対応する凹部を素管につけた後、同様な隆起部の位置及び下記(1)式で設定したロール分割位置の隆起部間幅を持ち同様なロール分割位置で配置した複数本の仕上げ成形ロールを備えた仕上げ成形スタンドで目標形状に素管を仕上げ成形することを特徴とする。
【0008】
W2=w−a (1)
ここで、wは必要とする異形管の凸部幅、W2はロール分割位置の成形ロールの隆起部間幅、aは成形中に広がるロール間隙間を考慮して予め設定した値である。
また、素管の管軸に直交する面に対して所定の螺旋角度でロール軸を傾斜させた予備成形ロール及び仕上げ成形ロールで素管を成形するとき、管軸方向に関して螺旋状のウネリを付けた異形管が製造される。
【0009】
異形管製造装置は、少なくとも予備成形スタンド及び仕上げ成形スタンドをもつ多段配置の成形スタンドを備えている。予備成形スタンド及び仕上げ成形スタンドは、素管に付ける凹部と同じ合計個数の隆起部がロール周面に形成され、隆起部の間がロール底部になっている複数本の成形ロールを、或る成形ロールのロール底部と隣り合う成形ロールの隆起部との境にロール分割位置を設定し、前記ロール分割位置の隆起部間幅を、成形中のロール間隔の広がり考慮して、その広がり分を予め必要とする異形管の凸部幅よりも小さくしており、前記複数本の成形ロールを素管の円周方向に配置している。
螺旋状のウネリを付けた異形管の製造用には、成形ロールのロール軸を素管の管軸に直交する面に対し所定の螺旋角度で傾斜させている。
【0010】
【実施の形態】
本発明に従った異形管の製造には、複数の成形スタンドをタンデムに配置した装置が使用されるが、ここでは成形スタンドを2段配置した装置(図5)を例にとって説明する。
素管Mは、予備成形スタンド10で予備成形された後、仕上げ成形スタンド20で目標形状の異形管Pに成形される。予備成形スタンド10と仕上げ成形スタンド20との間には、更に第3、4の成形スタンドを配置しても良い。
予備成形スタンド10は、各ロール間の隙間Gが非常に狭くなる配置で4本の予備成形ロール11〜14を組み合わせている(図6a)。予備成形ロール11〜14の周面には、目標異形管Pの周面にある凹数に相当する数(図6の場合には8個)の隆起部11p〜14pが形成されている。各予備成形ロール11〜14の分割位置は、予備成形ロール11、12のロール底部11b、12bと隣り合う予備成形ロール13、14の隆起部13p、14pとの境に設定されている。
【0011】
仕上げ成形スタンド20も、同様に狭い隙間Gで4本の仕上げ成形ロール21〜24を配置している(図6b)。成形ロール21〜24の周面にも、目標異形管Pの周面にある凹数に相当する数の隆起部21p〜24pが形成されている。各成形ロール21〜24の分割位置は、予備成形スタンド10と同様に仕上げ成形ロール21、22のロール底部21b、22bと隣り合う仕上げ成形ロール23、24の隆起部23p、24pとの境に設定されている。
予備成形スタンド10、仕上げ成形スタンド20共に、同様なロール支持機構30(図7)で各ロール11〜14、21〜24を回転支持する。このロール支持機構30は、各ロール11〜14、21〜24のロール軸31を回転可能に支持するロールチョック32を備えている。ロールチョック32は、各ロール11〜14、21〜24に対応して素管Mの円周方向に4組配置されており、素管Mの中心に向けて移動可能になっている。ロールチョック32の移動量を圧下スクリュー33で調節することにより、素管Mの圧下量が設定される。
【0012】
このように予備成形ロール11〜14を組み合わせた予備成形スタンド10に素管Mを通過させると、異形管Pの凸部pに当たる部分がロール底部11b〜14bで予備成形され、凹部に当たる部分が隆起部11p〜14pで予備成形される。予備成形スタンド10から仕上げ成形スタンド20に素管Mが送られると、ロール底部11b〜14bで予備成形された部分が仕上げ成形ロール21〜24のロール底部21b〜24bで仕上げ成形されて凸部pになり、隆起部11p〜14pで予備成形された部分が仕上げ成形ロール21〜24の隆起部21p〜24pで成形されて凹部bになる。
予備成形及び仕上げ成形の何れにおいても、予備成形ロール11〜14、仕上げ成形ロール21〜24の間に隙間Gが発生する。しかし、素管Mの変形量が最も多い凸部pの頂点t(図3)で各ロール11〜14、21〜24が分割されておらず、しかも各段で素管Mの圧下量を少なくできる多段成形のため隙間Gを狭くできる。したがって、隙間Gへの材料流入が抑えられ、形状精度の良好な異形管P(図8)が製造される。
【0013】
この方法は、通常の造管ラインに組み込んで異形管Pを製造するインライン成形でも有効である。すなわち、各スタンド10、20の圧下量が少なく、且つ各ロール11〜14、21〜24の隙間Gが狭いことから、予備成形スタンド10で板端部eが重なり合っても高低差の小さな8組の凹凸が素管Mにつけられる(図9)。素管Mの未溶接部分では、凹凸部の形成により素管Mの変形方向が凹凸部に定まるため、素管Mの溶接部分が予備成形スタンド10に達しても素管Mの円周方向に8組の凹凸部が形成されることになる。形成された凹凸部は、仕上げ成形スタンド20でそれぞれ凹部b及び凸部pに仕上げ成形される。
【0014】
また、本発明者等は、異形管Pの外面曲率半径Rの円周方向での均一性について種々の検討を重ねた結果、図4に示した成形ロールの寸法を素管Mから異形管Pに成形する際の成形スタンドの剛性を考慮して、ロール分割位置の隆起部間幅を、成形中のロール間隔の広がり考慮して、その広がり分だけ予め必要とする異形管の凸部幅よりも小さくおけば良いことがわかった。
【0015】
図4に示した異形管Pの、凸部外面曲率半径Rの円周方向の均一性は、成形ロール1の隆起部高さが凸部pの最大可能変形高さよりも高いとすると、素管Mへ実際に作用する圧下量rTが円周方向で一定であり、凸部pが成形ロール1の隆起部間幅W1、W2の領域で変形するから、隆起部間幅W1、W2の円周方向の均一性で決まってくる。異形管Pに成形する際に隆起部間幅W1、W2が円周方向で均一であれば、製造される異形管Pの凸部外面曲率半径Rも円周方向で同一となり、形状対称性の良好な製品となる。
【0016】
隆起部間幅W1、W2は、素管Mを成形する場合、成形スタンドの剛性により成形ロール1間に隙間Gが発生するため、ロール分割位置の隆起部間幅W2とそれ以外の隆起部間幅W1を異ならせる必要がある。つまり、隆起部間幅W1は必要とする異形管Pの凸部幅wとすれば良いが、ロール分割位置の隆起部間幅W2は素管Mを成形する場合に成形スタンドの剛性により発生する成形ロール1間の隙間Gを必要とする異形管Pの凸部幅wから差し引いた値にする必要がある。その成形スタンドの剛性は、ロール軸のたわみや、軸受けとロール軸やロールとの隙間で左右されるため、成形スタンド固有の値となる。一般に同等サイズの鋼管を製造する際の成形スタンドの剛性は大差なく、上記減少値は、0.3mm程度で十分である。しかし、成形するパイプの板厚が大きくなると、ロールを押し広げる力が大きくなるため、上記減少値も大きくする必要がある。
その減少値aは、成形する板厚tの関数で表したとき、下記に示される程度にすることが好ましい。
0.0625t+0.1<a<0.0625t+0.2
これにより、これまで数種類の成形ロールを使用した成形実験により求めていたロール寸法を低コストで効率良く決定できる。
【0017】
管軸方向に平行な凹凸を付けた異形管Pでは、素管Mの管軸に直交する方向と平行にロール軸31を保持したロール支持機構30(図7)が使用される。このロール支持機構30に代え、管軸方向に所定の螺旋角度θでロール軸45を傾斜支持するロール支持機構40(図10)を使用するとき、管軸方向に沿って螺旋状にうねった凹凸のある異形管Pが製造される。
【0018】
ロール支持機構40は、ロール収容空間41を素管Mの管軸方向に対し螺旋角度θで、ロール軸孔42を素管Mの管軸に直交する方向に対し螺旋角度θで傾斜させたロールチョック43を備えている。ロール11〜14、21〜24とロールチョック43の間にカラー44を介在させ、カラー44によりロール11〜14、21〜24を位置決めする。ロール11〜14、21〜24のロール軸45をロールチョック43で支持することにより、素管Mに対してロール11〜14、21〜24が螺旋角度θで押し付けられ、螺旋角度θで凸部p及び凹部bがうねった異形管Pが製造される。なお、ロール支持機構40を造管ラインに組み込んで異形管Pをインライン成形する場合には、素管Mの円周方向に予備成形スタンド10、仕上げ成形スタンド20を回転させる。
【0019】
以上は、8組の凹凸部を付けた異形管Pの製造を説明したが、本発明はこれに拘束されるものではなく、複数の凹凸部が円周方向にある異形管Pに対して同様に適用される。螺旋角度θは、過度に大きくとるとロール11〜14、21〜24の回転や素管M又は異形管Pの走行に支障をきたすため、45度以下に設定することが好ましい。また、各成形スタンド10、20とも、4本のロール11〜14、21〜24に代え、3本又は5本以上の成形ロールを組み込むことができる。
【0020】
【実施例1】
外径54mm、板厚1.6mmの鋼管STKM13Bを素管として使用し、円周方向に8組の凹凸部を有する、外径が50.4mmの異形管を素管造管中のインラインで成形した。造管ラインに配置された成形装置(図5)は2段成形スタンド構造とし、各スタンド10、20では、成形ロール11、12及び21、22のロール底部11b、12bと隣り合う成形ロール13、14及び23、24の隆起部13p、14p及び23p、24pとの境にロール分割位置を設定し、全体で8個の隆起部11p〜14p、21p〜24pをもつロール11〜14、21〜24を使用した。素管Mの円周方向に等間隔で凹凸部を形成するため、ロール11、12及び21、24の素管Mに対する開き角度α(図6a)を120度とした。
【0021】
1段目の成形では、異形管Pの必要と凸部幅wを19mmで円周方向で均一とする。ロール軸たわみと、軸受とロール軸との隙間から、aの値0.25mmを事前に求めておいた。このaの値から、ロール分割位置の隆起部間幅W2を18.75mmとし、それ以外の隆起部間幅W1を19mmとした。
また、2段目の成形では、異形管Pの必要凸部幅wを16.6mmとするため、aが0.3mmであったことから、ロール分割位置の隆起部間幅W2を16.3mmとし、それ以外の隆起部間幅W1は16.6mmとした。
【0022】
予備成形スタンド10の成形ロール11〜14の圧下量を1.5mm、仕上げ成形スタンド20の成形ロール21〜24の圧下量を2mmに設定し、70m/分の速度で送られてくる素管Mに凹凸を付けた。成形ロール11〜14、21〜24の回転は、素管Mとの摺擦による従動回転とした。
この条件で成形した結果、外径が50.4mmで凸部高さが6mmの異形管Pが成形でき、凸部幅wは16.6mmに対して図11に示すように円周方向で非常にばらつきの小さい異形管Pが得られた。また、凸部外面曲率半径Rも図12に示すように均一性が良好であった。
【0023】
【実施例2】
螺旋角度θ=5度で成形ロール11〜14、21〜24をロールチョック43(図10)に取り付け、予備成形スタンド10及び仕上げ成形スタンド20を回転させながら素管Mを成形する以外は、実施例1と同じ条件下で異形管Pを製造した。得られた異形管Pは、螺旋角度5度、外径50.4mmであり、凸部幅wは16.6mmに対して図11に示したように異形管Pの円周方向で非常に小さいばらつきとなった。また、凸部外面曲率半径Rも図12に示すように均一性が良好であった。
【0024】
【比較例】
a=0mmとして、1段目の成形ロール11〜14の隆起部間隔を全て19mm、2段目の成形ロール21〜24の隆起部間幅を、a=0mmとして全て16.6mmとした以外は、実施例1と同じ条件下で異形管Pを製造した。この場合、ロール分割位置の隆起部間幅W2が設定値より大きくなったため、異形管Pの凸部幅wが16.6mmに対して大きくばらついた。また、凸部外面曲率半径Rのばらつきも大きくなり、断面形状の円周方向における均一性が大きく崩れた。
【0025】
【発明の効果】
以上に説明したように、本発明においては、成形ロールのロール底部と隣り合う成形ロールのロール隆起部との境にロール分割位置を設定し、成形スタンドの剛性を考慮した算出式より求めた最適な隆起部間幅を有する成形ロールで目標異形管の成形を行なっている。しかも、成形スタンドを多段配置しているため、各段の圧下量を小さくできることから各ロールの隙間を狭くできる。この方法によるとき、予備成形で付けた凹部により素管の変形方向が規制されるため断面形状が大きく崩れることない。また、成形ロールの最適寸法も数種類の成形ロールでの実験で求める必要もない。したがって、対称性の高い複数の凹凸部を円周方向につけた異形管が、低コスト、高効率で製造される。
【図面の簡単な説明】
【図1】 8組の凹凸を付けた異形管を製造する際に使用される従来の成形ロール組合せ(a)及び従来法で異形管をインライン製造する場合に生じがちな不良な断面形状(b)
【図2】 従来の180度分割(a)又は90度分割(b)した成形ロールの配置
【図3】 従来のロール配置で異形管Pを製造した場合に形状崩れが生じることを示した説明図
【図4】 成形ロールの成形前(a)と成形中(b)の状態を示した説明図
【図5】 本発明に従った製造装置の概略側面図
【図6】 予備成形スタンド(a)及び仕上げ成形スタンド(b)の成形ロールを素管の管軸方向から見た概略図
【図7】 素管の中心に対して成形ロールを前進及び後退可能にするロール支持機構の概略図
【図8】 良好な断面形状をもつ異形管が製造されることを示す説明図
【図9】 板端部が重なり合った素管の断面形状
【図10】 管軸方向に関して螺旋状になった凹凸部をつけた異形管の製造に使用されるロール支持機構
【図11】 凸部幅wの異形管Pの円周方向における分布
【図12】 外面曲率半径Rの異形管Pの円周方向における分布
【符号の説明】
10:予備成形スタンド 20:仕上げ成形スタンド
11〜14、21〜24:予備成形スタンドと仕上げスタンドの成形ロール
11p〜14p、21p〜24p:予備成形スタンドと仕上げスタンドの成形ロールに付けた隆起部
11b〜14b、21b〜24b:予備成形スタンドと仕上げスタンドの成形ロール底部
M:素管 P:異形管 p:凸部 b:凹部 θ:螺旋角度
D:ロールギャップ G:成形ロール間の隙間 t:異形管の凸部頂点
α:成形ロールの分割角度 e:素管の未溶接部に板端部
w:異形管の必要凸部幅 W1:ロール分割位置以外の隆起部間幅
W2:ロール分割位置の隆起部間幅
r:設定圧下量 rT:素管に実際に作用される圧下量
a:成形スタンドの剛性等で決定される係数
1:成形ロール 2:成形ロールの低部 30、40:ロール支持機構
31、45:ロール軸 32、43:ロールチョック
33:圧下スクリュー 41:ロール収容空間 44:カラー
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for manufacturing a deformed pipe having a plurality of uneven portions in the circumferential direction.
[0002]
[Prior art]
The deformed pipe is used as a decorative building material in place of the conventional circular pipe, utilizing the design and the distinctiveness derived from the shape. This type of deformed tube is known as a deformed tube with a plurality of uneven portions in the circumferential direction parallel to the tube axis, a deformed tube in which a plurality of uneven portions are formed in the circumferential direction spirally with respect to the tube axis direction, etc. It has been.
A deformed pipe having a plurality of uneven portions in the circumferential direction has been conventionally produced by various methods such as a drawing method using a die and a roll forming method. In the method of drawing a raw tube with a die (Japanese Patent Laid-Open No. 63-248515), a deformed tube having a good cross-sectional shape is manufactured, but the die needs to be changed according to the dimensions and the shape of the deformed tube. Therefore, productivity is low.
[0003]
A roll forming method (Japanese Patent Laid-Open No. 57-142715) for producing a deformed tube with a rolling mill combined with a perforated roll or a flat roll is highly productive, and it is possible to use a spiral guide or die provided on the outlet side of the rolling mill. It is also possible to manufacture a deformed pipe having a plurality of projections and depressions with a spiral undulation in the pipe axis direction. However, since the convex portion is formed by allowing the material of the raw tube M to flow into the gap G of the forming roll 1 (FIG. 1a), when applied to in-line forming incorporated in the pipe making line where the raw tube M is manufactured. Even if the material flows into the gap G of the forming roll 1 at the unwelded portion and the welded portion passes through the forming stand, the cross-sectional shape may be lost, and the unevenness of the required shape may not be formed (FIG. 1b). In addition, when a spiral pattern is applied, it is a disadvantage that the guide and the die are easily worn.
[0004]
[Problems to be solved by the invention]
When manufacturing a deformed pipe having a plurality of concave and convex portions in the circumferential direction by a highly productive roll forming method, considering the deformation at the time of forming the unwelded portion (FIG. 1b), the gap across the entire circumferential length of the base pipe M A roll arrangement in which G is small is preferable. Therefore, in the manufacture of a deformed pipe with eight sets of concave and convex portions in the circumferential direction, the forming roll 1 having protrusions corresponding to the concave portions attached to the peripheral surface of the roll is used, and the forming roll 1 is divided by 180 degrees (FIG. 2a). Alternatively, two or four pieces are arranged in the circumferential direction of the raw tube M in a 90-degree division (FIG. 2b).
However, since the diameter of the raw tube M is larger than that of the roll gap D, when the raw tube M is inserted into the roll gap D, a gap G is generated between the forming rolls 1. The gap G is generated at a position corresponding to the apex t of the convex portion p where the deformation amount of the raw tube M is the largest in the forming roll 1 combined in the 180 degree division (FIG. 3a) and the 90 degree division (FIG. 3b). Therefore, the material flows into the gap G in a concentrated manner, making it difficult to manufacture a deformed pipe having a required shape.
[0005]
Further, in order to improve the cross-sectional shape of the manufactured deformed pipe, it is necessary that the convex portion outer surface radius of curvature R of the deformed pipe P shown in FIG. 4 is uniform in the circumferential direction. In order to obtain uniformity in the circumferential direction of the convex portion outer surface radius of curvature R of the deformed pipe P, it is necessary to form with the forming roll 1 having the width W between the raised portions of the optimum dimension. Until now, the optimum dimensions have been obtained by performing molding experiments using several types of molding rolls, but the problem is that the roll cost is high and the efficiency is low.
[0006]
The present invention has been devised to solve such a problem. A roll division position is set at the boundary between a lower roll portion of a certain forming roll and a raised portion of an adjacent forming roll, and the roll division position is set. By forming a raw tube with a preliminary stand and a forming stand in which a plurality of forming rolls having a spacing obtained by a predetermined formula as a value obtained by a predetermined formula are arranged in the circumferential direction of the raw tube without causing a collapse of the cross-sectional shape An object of the present invention is to efficiently produce a deformed tube having a good cross-sectional shape with excellent shape symmetry.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the present invention, when manufacturing a deformed tube having a plurality of sets of recesses and projections in the circumferential direction from a cylindrical tube, is arranged in the circumferential direction of the tube, A plurality of preformed rolls having a total number of raised portions corresponding to the number and having a roll bottom between the raised portions are separated from a roll bottom of a certain preformed roll and a raised portion of an adjacent preformed roll. In the preforming stand in which the roll dividing position is set, the width between the raised portions of the roll dividing position is set to the value of the following formula (1), and the plurality of preforming rolls are arranged in the circumferential direction of the raw tube After preforming the raw tube and attaching a concave portion corresponding to the concave portion to the raw tube, a similar roll dividing position having the same raised portion position and the width between the raised portions set by the following formula (1) Finishing with multiple finish forming rolls Characterized by forming finished mother tube target shape under molding stand.
[0008]
W2 = wa (1)
Here, w is the width of the convex portion of the required deformed pipe, W2 is the width between the raised portions of the forming roll at the roll dividing position, and a is a value set in advance in consideration of the gap between the rolls that is widened during forming.
In addition, when forming a raw pipe with a preforming roll and a finish forming roll in which the roll axis is inclined at a predetermined helical angle with respect to a plane perpendicular to the pipe axis of the raw pipe, a spiral undulation is attached in the pipe axis direction. A modified tube is produced.
[0009]
The modified pipe manufacturing apparatus includes a multi-stage forming stand having at least a preforming stand and a finish forming stand. The preforming stand and the finish forming stand are formed by molding a plurality of forming rolls in which the same total number of raised portions as the concave portions to be attached to the raw tube are formed on the roll peripheral surface, and between the raised portions is the roll bottom. A roll split position is set at the boundary between the roll bottom of the roll and the adjacent ridge of the forming roll, and the width between the ridges at the roll split position is set in advance by considering the spread of the roll interval during molding. It is smaller than the required convex portion width of the deformed tube, and the plurality of forming rolls are arranged in the circumferential direction of the raw tube.
For the production of a deformed pipe with a helical undulation, the roll axis of the forming roll is inclined at a predetermined helical angle with respect to a plane perpendicular to the pipe axis of the base pipe.
[0010]
Embodiment
In manufacturing the deformed pipe according to the present invention, an apparatus in which a plurality of molding stands are arranged in tandem is used. Here, an apparatus having two stages of molding stands (FIG. 5) will be described as an example.
The raw tube M is preformed by the preforming stand 10 and then formed into a deformed tube P having a target shape by the finish molding stand 20. Third and fourth molding stands may be further arranged between the preforming stand 10 and the finish molding stand 20.
The preforming stand 10 combines four preforming rolls 11 to 14 in an arrangement in which the gap G between the rolls is very narrow (FIG. 6a). On the peripheral surface of the preforming rolls 11-14, a number of raised portions 11p-14p (eight in the case of FIG. 6) corresponding to the number of recesses on the peripheral surface of the target deformed pipe P are formed. The division positions of the preforming rolls 11 to 14 are set at the boundary between the roll bottom portions 11b and 12b of the preforming rolls 11 and 12 and the raised portions 13p and 14p of the preforming rolls 13 and 14 adjacent to each other.
[0011]
Similarly, the finishing molding stand 20 is also provided with four finishing molding rolls 21 to 24 with a narrow gap G (FIG. 6b). The number of raised portions 21p to 24p corresponding to the number of recesses on the peripheral surface of the target deformed pipe P is also formed on the peripheral surfaces of the forming rolls 21 to 24. The dividing positions of the forming rolls 21 to 24 are set at the boundary between the roll bottom portions 21b and 22b of the finish forming rolls 21 and 22 and the raised portions 23p and 24p of the finish forming rolls 23 and 24 adjacent to the preform forming stand 21 and 22, respectively. Has been.
Both the preforming stand 10 and the finish forming stand 20 rotate and support the rolls 11 to 14 and 21 to 24 with the same roll support mechanism 30 (FIG. 7). The roll support mechanism 30 includes a roll chock 32 that rotatably supports the roll shafts 31 of the rolls 11 to 14 and 21 to 24. Four sets of roll chock 32 are arranged in the circumferential direction of the pipe M corresponding to each of the rolls 11 to 14 and 21 to 24, and are movable toward the center of the pipe M. By adjusting the amount of movement of the roll chock 32 with the reduction screw 33, the reduction amount of the raw tube M is set.
[0012]
When the raw tube M is passed through the preforming stand 10 in which the preforming rolls 11 to 14 are combined in this way, the portion corresponding to the convex portion p of the deformed tube P is preformed by the roll bottom portions 11b to 14b, and the portion corresponding to the concave portion is raised. It is preformed at the portions 11p to 14p. When the raw tube M is sent from the preforming stand 10 to the finish forming stand 20, the parts preformed by the roll bottom portions 11b to 14b are finish-molded by the roll bottom portions 21b to 24b of the finish forming rolls 21 to 24, and the convex portion p. Then, the part preformed by the raised portions 11p to 14p is formed by the raised portions 21p to 24p of the finish forming rolls 21 to 24 to become the recess b.
In both the preliminary molding and the finish molding, a gap G is generated between the preforming rolls 11 to 14 and the finishing molding rolls 21 to 24. However, each roll 11-14, 21-24 is not divided | segmented by the vertex t (FIG. 3) of the convex part p with the largest deformation | transformation amount of the raw pipe M, and also the amount of rolling down of the raw pipe M is reduced at each step. The gap G can be narrowed because of the multistage molding that can be performed. Therefore, the material inflow to the gap G is suppressed, and the deformed pipe P (FIG. 8) with good shape accuracy is manufactured.
[0013]
This method is also effective in in-line molding in which a modified pipe P is manufactured by being incorporated in a normal pipe making line. That is, since the reduction amount of each of the stands 10 and 20 is small and the gap G between the rolls 11 to 14 and 21 to 24 is narrow, even if the plate end e overlaps with the preforming stand 10, eight sets with small height difference are provided. Are formed on the tube M (FIG. 9). In the unwelded portion of the raw tube M, the deformation direction of the raw tube M is determined by the uneven portion due to the formation of the concavo-convex portion. Therefore, even if the welded portion of the raw tube M reaches the preforming stand 10, Eight sets of uneven portions are formed. The formed concavo-convex portions are finish-molded into the concave portion b and the convex portion p, respectively, by the finish molding stand 20.
[0014]
Further, as a result of various studies on the uniformity of the outer surface curvature radius R of the deformed pipe P in the circumferential direction, the present inventors have changed the dimensions of the forming roll shown in FIG. In consideration of the rigidity of the molding stand when molding into a width, the width between the raised portions at the roll splitting position is taken into account of the widening of the gap between the rolls during molding, and the width of the convex portion of the deformed pipe that is required in advance by that amount. I found that it was better to keep it small.
[0015]
The uniformity in the circumferential direction of the convex portion outer surface radius of curvature R of the deformed pipe P shown in FIG. 4 is that the height of the raised portion of the forming roll 1 is higher than the maximum possible deformation height of the convex portion p. The reduction amount r T that actually acts on M is constant in the circumferential direction, and the convex portion p is deformed in the region of the widths W1 and W2 between the raised portions of the forming roll 1, so that the circles with the widths W1 and W2 between the raised portions are formed. It depends on the uniformity in the circumferential direction. If the widths W1 and W2 between the raised portions are uniform in the circumferential direction when forming the deformed pipe P, the convex outer surface curvature radius R of the manufactured deformed pipe P is also the same in the circumferential direction, and the shape symmetry A good product.
[0016]
Since the gap G is generated between the forming rolls 1 due to the rigidity of the forming stand when the raw tube M is formed, the width W1 between the protruding portions is set between the protruding portion width W2 and the other protruding portions. It is necessary to make the width W1 different. In other words, the width W1 between the raised portions may be the required convex portion width w of the deformed pipe P, but the width W2 between the raised portions at the roll dividing position is generated due to the rigidity of the forming stand when the raw tube M is formed. It is necessary to make the value subtracted from the convex portion width w of the deformed pipe P that requires the gap G between the forming rolls 1. Since the rigidity of the molding stand depends on the deflection of the roll shaft and the gap between the bearing and the roll shaft or roll, the rigidity is unique to the molding stand. Generally, the rigidity of the forming stand when manufacturing steel pipes of the same size is not much different, and a reduction value of about 0.3 mm is sufficient. However, as the plate thickness of the pipe to be formed increases, the force that pushes the roll increases, so the reduction value must also be increased.
The reduction value a is preferably set to the following level when expressed as a function of the sheet thickness t to be formed.
0.0625t + 0.1 <a <0.0625t + 0.2
This makes it possible to efficiently determine the roll dimensions, which have been obtained by forming experiments using several types of forming rolls, at low cost.
[0017]
In the deformed pipe P provided with irregularities parallel to the pipe axis direction, a roll support mechanism 30 (FIG. 7) holding the roll axis 31 in parallel with the direction perpendicular to the pipe axis of the base pipe M is used. In place of the roll support mechanism 30, when using a roll support mechanism 40 (FIG. 10) that supports the roll shaft 45 at a predetermined spiral angle θ in the tube axis direction, the irregularities spirally wavy along the tube axis direction. A deformed pipe P having the following structure is manufactured.
[0018]
The roll support mechanism 40 has a roll chock in which the roll housing space 41 is inclined at a helical angle θ with respect to the tube axis direction of the raw tube M and the roll shaft hole 42 is inclined at a helical angle θ with respect to the direction orthogonal to the tube axis of the raw tube M. 43. A collar 44 is interposed between the rolls 11 to 14 and 21 to 24 and the roll chock 43, and the rolls 11 to 14 and 21 to 24 are positioned by the collar 44. By supporting the roll shaft 45 of the rolls 11 to 14 and 21 to 24 with the roll chock 43, the rolls 11 to 14 and 21 to 24 are pressed against the base tube M at the spiral angle θ, and the convex portion p at the spiral angle θ. And the deformed pipe P in which the recessed part b wave | undulated is manufactured. In the case where the roll support mechanism 40 is incorporated in the pipe making line and the deformed pipe P is formed in-line, the preforming stand 10 and the finish forming stand 20 are rotated in the circumferential direction of the base pipe M.
[0019]
The above has described the production of the deformed pipe P with eight sets of uneven portions, but the present invention is not limited to this, and the same applies to the deformed tube P having a plurality of uneven portions in the circumferential direction. Applies to The spiral angle θ is preferably set to 45 degrees or less in order to hinder the rotation of the rolls 11 to 14 and 21 to 24 and the travel of the raw tube M or the deformed tube P if excessively large. In addition, each of the molding stands 10 and 20 can incorporate three or five or more molding rolls instead of the four rolls 11 to 14 and 21 to 24.
[0020]
[Example 1]
A steel pipe STKM13B with an outer diameter of 54 mm and a plate thickness of 1.6 mm is used as a raw pipe, and a deformed pipe with an outer diameter of 50.4 mm having eight sets of irregularities in the circumferential direction is formed in-line in the raw pipe making pipe. did. The forming apparatus (FIG. 5) arranged in the pipe making line has a two-stage forming stand structure, and in each stand 10, 20, a forming roll 13, which is adjacent to the roll bottoms 11b, 12b of the forming rolls 11, 12, 21 and 22, Roll division positions are set at boundaries between the raised portions 13p, 14p and 23p, 24p of 14 and 23, 24, and rolls 11-14, 21-24 having a total of 8 raised portions 11p-14p, 21p-24p It was used. In order to form uneven portions at equal intervals in the circumferential direction of the pipe M, the opening angle α (FIG. 6a) of the rolls 11, 12, 21, and 24 with respect to the pipe M was set to 120 degrees.
[0021]
In the first-stage molding, the need for the deformed pipe P and the convex portion width w are 19 mm and uniform in the circumferential direction. A value of 0.25 mm was obtained in advance from the roll shaft deflection and the gap between the bearing and the roll shaft. From the value a, the width W2 between the raised portions at the roll dividing position was 18.75 mm, and the width W1 between the other raised portions was 19 mm.
Further, in the second stage molding, since the required convex portion width w of the deformed pipe P is set to 16.6 mm, a is 0.3 mm, so that the width W2 between the raised portions at the roll dividing position is 16.3 mm. The width W1 between the other raised portions was 16.6 mm.
[0022]
The rolling tube M that is sent at a speed of 70 m / min is set with a reduction amount of the forming rolls 11 to 14 of the preforming stand 10 set to 1.5 mm and a reduction amount of the forming rolls 21 to 24 of the finish forming stand 20 set to 2 mm. The surface was uneven. The rotation of the forming rolls 11 to 14 and 21 to 24 was driven rotation by rubbing with the raw tube M.
As a result of molding under this condition, a deformed pipe P having an outer diameter of 50.4 mm and a convex height of 6 mm can be molded, and the convex width w is 16.6 mm, which is very large in the circumferential direction as shown in FIG. Thus, a deformed tube P having a small variation was obtained. Further, the convex portion outer surface curvature radius R was also good in uniformity as shown in FIG.
[0023]
[Example 2]
Except that the forming rolls 11 to 14 and 21 to 24 are attached to the roll chock 43 (FIG. 10) at a spiral angle θ = 5 degrees, and the raw tube M is formed while the preforming stand 10 and the finish forming stand 20 are rotated. A modified tube P was produced under the same conditions as in 1. The obtained deformed pipe P has a spiral angle of 5 degrees and an outer diameter of 50.4 mm, and the protrusion width w is very small in the circumferential direction of the deformed pipe P as shown in FIG. 11 with respect to 16.6 mm. It became a variation. Further, the convex portion outer surface curvature radius R was also good in uniformity as shown in FIG.
[0024]
[Comparative example]
Except that a = 0 mm, the distance between the raised portions of the first-stage forming rolls 11 to 14 is 19 mm, and the width between the raised portions of the second-stage forming rolls 21 to 24 is 1 = 0 mm, where a = 0 mm. The modified pipe P was manufactured under the same conditions as in Example 1. In this case, since the width W2 between the raised portions at the roll dividing position is larger than the set value, the convex portion width w of the deformed pipe P varies greatly with respect to 16.6 mm. In addition, the variation in the outer radius of curvature R of the convex portion was increased, and the uniformity of the cross-sectional shape in the circumferential direction was greatly broken.
[0025]
【The invention's effect】
As described above, in the present invention, the optimal position obtained from the calculation formula in consideration of the rigidity of the molding stand by setting the roll dividing position at the boundary between the roll bottom of the molding roll and the roll bulge of the adjacent molding roll. The target deformed pipe is formed by a forming roll having a wide width between raised portions. In addition, since the forming stands are arranged in multiple stages, the amount of reduction at each stage can be reduced, so that the gap between the rolls can be reduced. When this method is used, the direction of deformation of the raw tube is regulated by the recesses formed by the preforming, so that the cross-sectional shape does not collapse greatly. Further, it is not necessary to obtain the optimum dimensions of the forming roll by experiments with several kinds of forming rolls. Therefore, a deformed tube having a plurality of highly concavo-convex portions in the circumferential direction is manufactured at low cost and high efficiency.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional cross section of rolls (b) used when manufacturing irregularly shaped pipes with 8 sets of irregularities and a defective cross-sectional shape (b) that tends to occur when an irregularly shaped pipe is manufactured in-line by a conventional method. )
[Fig. 2] Arrangement of forming rolls divided by conventional 180 degree division (a) or 90 degree division (b) [Fig. 3] Description showing that shape deformation occurs when deformed pipe P is manufactured by conventional roll arrangement FIG. 4 is an explanatory view showing the state of the forming roll before forming (a) and during forming (b). FIG. 5 is a schematic side view of the manufacturing apparatus according to the present invention. FIG. ) And a schematic view of the forming roll of the finish forming stand (b) as seen from the pipe axis direction of the raw pipe. FIG. 7 is a schematic view of a roll support mechanism that enables the forming roll to advance and retreat with respect to the center of the raw pipe. FIG. 8 is an explanatory view showing that a deformed tube having a good cross-sectional shape is manufactured. FIG. 9 is a cross-sectional shape of a raw tube with overlapping plate ends. FIG. 10 is an uneven portion spiraled in the tube axis direction. Roll support mechanism used for manufacturing deformed pipes with ribs [Fig. 11] Convex width w Distribution in the circumferential direction of the deformed pipe P [Fig. 12] Distribution in the circumferential direction of the deformed pipe P having the outer radius of curvature R [Explanation of symbols]
10: Preliminary forming stand 20: Finishing forming stands 11-14, 21-24: Forming rolls 11p-14p of the pre-forming stand and finishing stand, 21p-24p: Raised portion 11b attached to the forming rolls of the pre-forming stand and finishing stand -14b, 21b-24b: Molding roll bottom M of the preforming stand and finishing stand M: Elementary pipe P: Deformed pipe p: Convex part b: Concave part θ: Spiral angle D: Roll gap G: Gap between forming rolls t: Deformation The convex part vertex α of the pipe: The split angle of the forming roll e: The plate end w on the unwelded part of the raw pipe w: The required convex part width of the deformed pipe W1: The width between the raised parts other than the roll split position W2: The roll split position Width between ridges r: set reduction amount r T : reduction amount actually applied to the raw tube a: coefficient determined by the rigidity of the forming stand, etc. 1: forming roll 2: lower part of the forming roll 30, 4 0: roll support mechanism 31, 45: roll shaft 32, 43: roll chock 33: reduction screw 41: roll accommodation space 44: collar

Claims (4)

円周方向に関し複数組の凹部及び凸部をもつ異形管を円筒状の素管から製造する際、素管の円周方向に配置され、前記凹部の個数に相当する合計個数の隆起部をもち、隆起部間がロール底部となっている複数本の予備成形ロールを、或る予備成形ロールのロール底部と隣り合う予備成形ロールの隆起部との境にロール分割位置を設定し、前記ロール分割位置の隆起部間幅を下記の(1)式の値としており、前記複数本の予備成形ロールを素管の円周方向に配置した予備成形スタンドで素管を予備成形して前記凹部に対応する凹部を素管につけた後、同様な隆起部の位置及び下記(1)式で設定したロール分割位置の隆起部間幅を持ち同様なロール分割位置で配置した複数本の仕上げ成形ロールを備えた仕上げ成形スタンドで目標形状に素管を仕上げ成形することを特徴とする異形管の製造方法。
W2=w−a (1)
ここで、wは必要とする異形管の凸部幅、W2はロール分割位置の成形ロールの隆起部間幅、aは成形中に広がるロール間隙間を考慮して予め設定した値である。
When manufacturing a deformed tube having a plurality of sets of recesses and projections in the circumferential direction from a cylindrical tube, it is arranged in the circumferential direction of the tube and has a total number of raised portions corresponding to the number of the recesses. The roll dividing position of a plurality of preforming rolls having a roll bottom between the raised portions is set at the boundary between the roll bottom of a certain preforming roll and the protruding portion of the adjacent preforming roll, and the roll dividing The width between the raised portions of the position is set to the value of the following formula (1), and the raw tube is preformed with a preforming stand in which the plurality of preforming rolls are arranged in the circumferential direction of the raw tube to correspond to the concave portion. A plurality of finish forming rolls arranged at the same roll division position having the same raised portion position and the width between the raised portions set by the following formula (1). The raw tube into the target shape with a finished molding stand Method for producing a deformed pipe, characterized in that the raised molding.
W2 = wa (1)
Here, w is the width of the convex portion of the required deformed pipe, W2 is the width between the raised portions of the forming roll at the roll dividing position, and a is a value set in advance in consideration of the gap between the rolls that is widened during forming.
素管の管軸に直交する面に対して所定の螺旋角度でロール軸を傾斜させた予備成形ロール及び仕上げ成形ロールで素管を成形する請求項1に記載の異形管の製造方法。 The manufacturing method of the deformed pipe | tube of Claim 1 which shape | molds a raw | natural pipe | tube with the preforming roll which made the roll axis | shaft inclined with respect to the surface orthogonal to the pipe axis | shaft of a raw | natural pipe | tube, and a finish forming roll. 素管に付ける凹部と同じ合計個数の隆起部がロール周面に形成され、隆起部の間がロール底部になっている複数本の予備成形ロールを、或る予備成形のロール底部と隣り合う予備成形の隆起部との境にロール分割位置を設定し、前記ロール分割位置の隆起部間幅を下記の(1)式の値としており、前記複数本の予備成形ロールを素管の円周方向に配置した予備成形スタンドと、同様な隆起部の位置及び下記の(1)式で設定したロール分割位置の隆起部間幅を持ち同様なロール分割位置で配置した複数本の仕上げ成形ロールを備えた仕上げ成形スタンドとを備えている異形管の製造装置。
W2=w−a (1)
ここで、wは必要とする異形管の凸部幅、W2はロール分割位置の成形ロールの隆起部間幅、aは成形中に広がるロール間隙間を考慮して予め設定した値である。
A plurality of preformed rolls, in which the same total number of raised portions as the concave portions to be attached to the raw tube are formed on the peripheral surface of the roll and the gap between the raised portions is the roll bottom, boundary between the raised portion of the molding to set the roll split position in the which the ridges between the width of the roll dividing position as the value of the following expression (1), the circumferential direction of base pipe the plurality of preformed roll And a plurality of finish forming rolls arranged at the same roll division position with the same raised portion position and the width between the raised portions set at the roll division position set by the following formula (1). An apparatus for manufacturing deformed pipes equipped with a finishing stand.
W2 = wa (1)
Here, w is the width of the convex portion of the required deformed pipe, W2 is the width between the raised portions of the forming roll at the roll dividing position, and a is a value set in advance in consideration of the gap between the rolls that is widened during forming.
予備成形ロール及び仕上げ成形ロールのロール軸が素管の管軸に直交する面に対し所定の螺旋角度で傾斜している請求項3に記載の異形管の製造装置。 The deformed pipe manufacturing apparatus according to claim 3, wherein the roll axes of the preforming roll and the finish forming roll are inclined at a predetermined spiral angle with respect to a plane perpendicular to the pipe axis of the raw pipe.
JP2001098960A 2001-03-30 2001-03-30 Manufacturing method and manufacturing apparatus for deformed pipe Expired - Lifetime JP4674987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098960A JP4674987B2 (en) 2001-03-30 2001-03-30 Manufacturing method and manufacturing apparatus for deformed pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098960A JP4674987B2 (en) 2001-03-30 2001-03-30 Manufacturing method and manufacturing apparatus for deformed pipe

Publications (2)

Publication Number Publication Date
JP2002292425A JP2002292425A (en) 2002-10-08
JP4674987B2 true JP4674987B2 (en) 2011-04-20

Family

ID=18952560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098960A Expired - Lifetime JP4674987B2 (en) 2001-03-30 2001-03-30 Manufacturing method and manufacturing apparatus for deformed pipe

Country Status (1)

Country Link
JP (1) JP4674987B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731828B1 (en) * 2006-11-08 2007-06-25 (주) 다인 Link of suspension in vehicle
JP5954395B2 (en) * 2014-12-08 2016-07-20 新日鐵住金株式会社 Dimple steel pipe manufacturing method and dimple steel pipe manufacturing apparatus
CN110397218A (en) * 2019-08-15 2019-11-01 任自放 The building enclosure of assembled architecture and the steel pipe column used and steel pipe column processing technology
CN117943429B (en) * 2024-03-26 2024-05-28 常州润来科技有限公司 Special-shaped copper pipe machining equipment and machining method for wall-mounted furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230325A (en) * 1997-02-18 1998-09-02 Nisshin Steel Co Ltd Method for forming irregular shaped tube
JPH10314837A (en) * 1997-03-12 1998-12-02 Nisshin Steel Co Ltd Helical deformed tube, method for forming and device therefor
JP2001191111A (en) * 2000-01-05 2001-07-17 Nisshin Steel Co Ltd Method and device for in-line manufacturing special shaped tube
JP2001252715A (en) * 2000-03-09 2001-09-18 Nisshin Steel Co Ltd Method and device for manufacturing deformed tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230325A (en) * 1997-02-18 1998-09-02 Nisshin Steel Co Ltd Method for forming irregular shaped tube
JPH10314837A (en) * 1997-03-12 1998-12-02 Nisshin Steel Co Ltd Helical deformed tube, method for forming and device therefor
JP2001191111A (en) * 2000-01-05 2001-07-17 Nisshin Steel Co Ltd Method and device for in-line manufacturing special shaped tube
JP2001252715A (en) * 2000-03-09 2001-09-18 Nisshin Steel Co Ltd Method and device for manufacturing deformed tube

Also Published As

Publication number Publication date
JP2002292425A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
CN101965260A (en) Forming apparatus, shoe thereof and forming method
US20070017268A1 (en) Metal pipe straightening method, straightening roller, and manufacturing device
JP4674987B2 (en) Manufacturing method and manufacturing apparatus for deformed pipe
JP4066404B2 (en) Manufacturing method and manufacturing apparatus for deformed pipe
KR19990063724A (en) Rolling method of deformed bar and roll for deformed bar
GB2411183A (en) Bar for reinforced concrete
JPH10230325A (en) Method for forming irregular shaped tube
KR20160120765A (en) Die structure for form rolling of double-threaded body, method for form rolling of double-threaded body, and thread material for form rolling of double-threaded body
JP4240670B2 (en) Method and apparatus for forming ribbed plate
JP2001191111A (en) Method and device for in-line manufacturing special shaped tube
JPS63286220A (en) Production of electric resistance welded tube
JP2681536B2 (en) Channel rolling mill row
KR102412105B1 (en) Apparatus for roll stamping
JP2002248533A (en) Manufacturing method of large-diameter elbow
JPH06297003A (en) Manufacture of wide flange shape having round corners at the tip of flange and line of hot rolling devices therefor
JP2002113516A (en) Method and apparatus for manufacturing special shape tube with helical rugged pattern
RU2043804C1 (en) Method of making bent sections of metallic strip and pair of rolls of section bending mill for performing the method
JP6688661B2 (en) Metal plate processing apparatus and processing method
US5875669A (en) Rolling method and rolling facility for manufacturing steel bars for concrete reinforcement
JPS62282707A (en) Rolling device train for flanged shapes
JP5929542B2 (en) Rolling method and rolling equipment for channel steel
JP3166656B2 (en) Rolling method and rolling mill for section steel
JPH1128504A (en) Manufacture of metal stock having round shape in cross section and its manufacturing device
JP2577660B2 (en) Hot rolling method for channel steel
JPS6349309A (en) Rolling roll for cold pilger mill

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4674987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term