JP4065368B2 - 開ループ測定を用いて閉ループ電力を適応制御するための方法と装置 - Google Patents

開ループ測定を用いて閉ループ電力を適応制御するための方法と装置 Download PDF

Info

Publication number
JP4065368B2
JP4065368B2 JP2000506735A JP2000506735A JP4065368B2 JP 4065368 B2 JP4065368 B2 JP 4065368B2 JP 2000506735 A JP2000506735 A JP 2000506735A JP 2000506735 A JP2000506735 A JP 2000506735A JP 4065368 B2 JP4065368 B2 JP 4065368B2
Authority
JP
Japan
Prior art keywords
signal
station
power
power level
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000506735A
Other languages
English (en)
Other versions
JP2004515087A (ja
JP2004515087A5 (ja
Inventor
プレスコット、トビン・エー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2004515087A publication Critical patent/JP2004515087A/ja
Publication of JP2004515087A5 publication Critical patent/JP2004515087A5/ja
Application granted granted Critical
Publication of JP4065368B2 publication Critical patent/JP4065368B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/221TPC being performed according to specific parameters taking into account previous information or commands using past power control commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Transmitters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、一般的にスペクトル拡散通信システム、さらに詳しく言えば、信号ステータスを検出して、制御可能な素子を使用して検出されたステータスの変化をもたらす際に制御ループまたはパス遅延が存在するようなシステム中で信号パラメータを調整する方法と装置に関する。この発明はさらに、同時に動作する送信機間での干渉を最小限に抑え、しかも個々の通信の質を最大限に高めるように制御される1つのパラメータとして、送信電力を用いることに関する。
【0002】
【従来の技術】
多数のシステムユーザ間で情報を伝達するのに、さまざまな多元接続通信システムと技術が開発されている。しかしながら、スペクトル拡散変調技術、例えば符号分割多元接続(CDMA)スペクトル拡散技術などは、特に、多数の通信システムユーザにサービスを提供する場合には、他の変調方式を凌ぐ利点を持つ。多元接続通信システムにおけるCDMA技術の使用は、「衛星または地上中継器を利用するスペクトル拡散多元接続通信システム」と題する1990年2月13日発行の米国特許第4,901,307号、および「個々の受信位相、時刻、およびエネルギーを追跡するためにスペクトル拡散通信システムの全スペクトルの送信電力を使用する方法と装置」と題された米国特許出願第08/368,570号で開示されており、両者とも、本発明の譲受人に譲渡されており、本書に引用することにより編入されている。
【0003】
これら特許は、一般的に多数の移動または遠隔システムユーザまたは加入者ユニット(“移動ユニット”)が、他の移動ユニットとまたは例えば公衆電話交換網のような接続されている他のシステムのユーザと通信するのに、少なくとも1つのトランシーバを使用する通信システムを開示する。通信信号は、衛星中継器とゲートウェイを経由して、または直接地上基地局(セルサイトまたはセルと呼ばれることもある)に伝送される。
【0004】
CDMA通信では、周波数スペクトルを複数回再利用でき、それによって移動ユニット数を増やすことが可能となる。CDMA使用の結果、他の多元接続技術を用いて達成し得るよりもかなり高いスペクトル効率を得ることができる。ただし、通信システムの全体的な容量を最大限に高め、相互干渉と信号品質を許容レベルに維持するため、システム内の信号の送信電力が、所定の通信リンクに必要な最低レベルの電力量に維持されるように制御されなければならない。
【0005】
衛星を使用する通信システムでは、通信信号は一般に、ライス(rician)で表されるフェーディングを起こす。したがって、受信信号は、レイリーフェーディング統計量を持つ多重反射成分と合計される直接成分からなる。直接成分と反射成分の電力比は一般的に、6−19dB台であり、移動ユニットのアンテナの特性と移動ユニットの動作環境により左右される。
【0006】
衛星通信システムとは対照的に、地上通信システムの通信信号は一般的に、直接成分なしで、反射成分すなわちレイリー成分のみからなる信号フェーディングを起こす。したがって、地上通信信号は、ライスフェーディングがフェーディング特性のほとんどを占める衛星通信信号に比べて、さらに厳しいフェーディング環境にさらされている。
【0007】
地上通信システムでのレイリーフェーディングは、物理的環境の中の色々な異なる形状物から反射される通信信号によって引き起こされる。その結果、信号はほとんど同時に、さまざまな方向から異なる伝送遅延で、移動ユニット受信機に届く。セルラ移動電話システムのUHF周波数帯を含む、移動無線通信が通例使用するUHF周波数帯では、異なるパスを通る信号にかなりの位相差が生じることがある。信号を弱めあう可能性のある合計は、時折強いフェーディングをもたらす結果となることがある。
【0008】
例えば従来の有線電話システムにおいて可能な双方向の会話を同時に活動状態にする全二重チャネルを提供するため、ある周波数帯を、アウトバウンドリンクまたはフォワードリンク(すなわち、ゲートウェイまたはセルサイト送信機から移動ユニット受信機への伝送)に使用し、別の異なる周波数帯をインバウンドリンクまたはリバースリンク(すなわち、移動ユニット送信機からゲートウェイまたはセルサイト受信機への伝送)に使用する。この周波数帯の区別により、送信機から受信機へのフィードバックまたは干渉なしに、移動ユニット送受信機を同時に活動状態にすることができる。
【0009】
しかしながら、異なる周波数帯を用いることは、電力制御と密接に関係している。異なる周波数帯を使用することにより、マルチパスフェーディングがフォワードおよびリバースリンクに対して独立プロセスとなった。フォワードリンクパス損失を簡単に測定することはできず、同じパス損失がリバースリンクにも現れると仮定することができない。
【0010】
さらに、セルラ移動電話システムでは、移動電話機は、本書に引用することにより開示が本書に編入される、「CDMAセルラ電話システムでの通信においてソフトハンドオフを行う方法とシステム」と題された1989年11月7日出願の、同時係属出願中の米国特許出願第07/433,030号に開示されている通り、複数のセルサイトを通して通信することができる。複数のセルサイトとの通信では、移動ユニットとセルサイトには、今述べた出願で開示され、さらに詳しくは「CDMAセルラ電話システムにおけるダイバーシティ受信機」と題された1989年11月7日出願の、同時係属出願中の米国特許出願第07/432,552号で説明されているような複数受信機方式が含まれている。
【0011】
電力制御の1つの方法は、移動ユニットまたはゲートウェイにまず受信信号の電力レベルを測定させる方法である。この電力測定値は、使われている各衛星のトランスポンダダウンリンク送信電力レベルの情報および移動ユニットとゲートウェイの受信機の感度の情報とともに、移動ユニットの各チャネルのパス損失を推定するのに使われる。その後、基地局または移動ユニットのトランシーバは、このパス損失推定値、送信データレート、および衛星受信機感度を考慮に入れて、移動ユニットへの信号送信に使うのに適した電力を求めることができる。移動ユニットのケースでは、このような測定値と決定に応答して、より多くの電力またはより少ない電力に対する要求をすることができる。同時に、ゲートウェイもこのような要求に応答して、またはゲートウェイ独自の測定値に応答して電力を増減することができる。
【0012】
移動ユニットが衛星に送信した信号は衛星により中継され、ゲートウェイ、一般的に通信システム制御システムに届く。ゲートウェイまたは制御システムは、送信された信号から受信信号の電力を測定する。ゲートウェイはその後、受信電力レベルが所望の通信レベルを維持するのに必要な最低限の電力レベルからどれだけ偏移しているかを求める。好ましくは、所望の最低電力レベルとは、システム干渉を減らしながら通信品質を維持するのに必要な電力レベルである。
【0013】
その後ゲートウェイは、移動ユニットの送信電力を調整または“微調整”できるように、電力制御コマンド信号を移動ユニットに送信する。移動ユニットはこのコマンド信号を使って、送信電力レベルを所望の通信を維持するのに必要な最低レベルに近づくように変更する。一般的に移動ユニットまたは衛星の動きによりチャネル状態が変化するので、移動ユニットはゲートウェイからの制御コマンドに応答して、適切な電力レベルを維持するように送信電力レベルを連続的に調整
する。
【0014】
この構成では、ゲートウェイからの制御コマンドを電力制御フィードバックと呼ぶ。ゲートウェイからの電力制御フィードバックは通常、衛星による往復伝搬遅延のためにかなり遅くなる。移動ユニットまたはゲートウェイから衛星への伝搬遅延は4.7から13ミリ秒台である。これは、一般的なLEO衛星軌道(たとえば、約879マイル)に対し、9.4から26ミリ秒の一方向伝搬遅延(すなわち、移動ユニットから衛星へ、そしてゲートウェイへ、またはゲートウェイから衛星へ、そして移動ユニットへ)という結果を招く。したがって、ゲートウェイからの電力制御コマンドは、そのコマンド信号が送られてから、最長26ミリ秒で移動ユニットに達することがある。同様に、電力制御コマンドに応答して移動ユニットが行った送信電力の変更は、変更が行われてから最長26ミリ秒でゲートウェイによって検出される。
【0015】
したがって、送信電力制御コマンドは、測定ユニットがコマンドの結果を検出できるようになる前に、一般的な処理遅延だけでなく往復伝搬遅延も受けることになる。残念なことに、特に伝搬遅延が大きい場合、電力制御コマンドに応答して移動ユニットが送信電力に対して行う調整は、ゲートウェイが次に受信電力を測定する前までに行われず、ゲートウェイが検出することもない。その結果、実行されている先の電力制御コマンドの利益なしで、送信電力を調整するために別の電力制御コマンドが送信されることになる。事実、伝搬遅延と電力制御ループの反復時間により、最初の電力制御コマンドに対して移動ユニットが応答し、ゲートウェイがその結果を検出する前に、複数の電力制御コマンドがペンディングまたは“伝搬中”状態になることがある。その結果、送信電力は、“リミットサイクル”と呼ばれる設定点当たりで変動する。すなわち、送信電力は、コマンドの到着と実行の遅れから、好ましい値を超えたり、好ましい値に届かなかったりする。
【0016】
この問題の解決策の1つとして、電力制御ループの反復時間が伝搬遅延と処理遅延にもっと密接に近づくように、単に反復時間を増やすという方法がある。しかしながら、通信信号が出会うことがある急激なフェーディングと突然の信号遮断の影響を考えると、突然の信号損失を防止するには、反復時間を短くする必要がある。そのため、送信電力が突然に、不必要に増加され、電力の浪費とシステム干渉の増加がもたらされる結果となることがある。
【0017】
必要なものは、送信信号電力の変化または他の信号パラメータや要求にすばやく応答し、しかも対応する制御コマンドに関係する伝搬遅延と処理遅延の影響を防ぐ方法と装置である。そのような方法と装置は、複雑さや制御構造を追加する必要、またはゲートウェイでのプロトコル変更の必要もほとんどないことが望ましい。
【0018】
【発明が解決しようとする課題】
本発明は、通信システムの信号パラメータの調整に役立つ方法と装置を目的としている。特に本発明は、例えば、信号伝搬に大きな遅れが生じる衛星を利用するような通信システムで送信電力を調整する方法と装置を目的としている。
【0019】
【課題を解決するための手段】
本発明は、送信された信号の伝搬状態を決定するために第2局(たとえば移動ユニット)から第1局(たとえばゲートウェイ)に送られた信号を監視することにより、第1局から第2局に送信される信号の電力レベルを制御することに関係する伝搬遅延の影響を防ぐ。伝搬状態に基づき、ループ利得が求められる。第1局から第2局に送信される信号の電力レベルを制御するコマンドのサイズを調整するのに、ループ利得が使われる。第2局と第1局との間の通信チャネルが無活動である(すなわち、変化していない)ことを伝搬状態が示した場合、ループ利得は1に設定される。第2局と第1局との間の通信チャネルが活動状態である(すなわち、変化している)ことを伝搬状態が示した場合、ループ利得は1より大きい値に設定され、それにより、制御コマンドのサイズが調整される。
【0020】
本発明の1つの実施形態によると、状態検出器は、第2局と第1局間の通信チャネルの伝搬状態を決定する。状態検出器は、第2局から第1局に送信される信号の電力レベル変化の大きさが、一連の連続時間(たとえばループ反復期間)ごとにしきい値を超えていないか否かを決定する。超えている場合には、状態検出器は、伝搬状態が活動状態であることを示す。超えていなければ、状態検出器は、伝搬状態が無活動状態であることを示す。
【0021】
本発明の1つの特徴は、第1チャネルの信号(すなわち、第1局から第2局に送信される信号)は、第2チャネルに送信される信号(すなわち、第2局から第1局に送信される信号)を用いて制御されることである。もっと詳しく言えば、第1チャネルの送信信号電力レベルは、第2チャネルでの受信信号電力レベルを監視することにより制御される。第1チャネルと第2チャネルは(特にフェーディングに関して)部分的に相関しているため、第2チャネルでの信号の伝搬状態の変化は、第1チャネルの信号の伝搬状態の変化を示すと仮定される。この仮定に基づき、ループ利得を調整することにより、制御ループは、従来の技術に比べてかなり短い時間で、第1チャネルでの変化に応答できることになる。
【0022】
【発明の実施の形態】
本発明は特に、低地球軌道(LEO)衛星を使用する通信システムでの使用に適している。しかしながら、当業者には当然のことながら、本発明のコンセプトを通信目的に利用されない衛星システムにも適用できる。本発明は、十分な大きさの信号伝搬遅延がある場合、衛星が非LEO軌道を通る衛星システム、または衛星以外の中継システムにも適用できる。
【0023】
この発明の好ましい実施形態を以下に詳細に述べる。特定のステップ、構成、および配置について述べるが、これは具体的に説明することだけを目的としていると了解されたい。当業者は、他のステップ、構成および配置を本発明の精神およびその範囲から逸脱することなく使用できると認めるであろう。本発明は、位置決定向けのものを含むさまざまな無線情報および通信システム、および衛星や地上セルラ電話システムでの使用が見いだされるかも知れない。好ましい用途は、移動または携帯電話サービス用のCDMA無線スペクトル拡散通信システムである。
【0024】
本発明が役立つ例示的な無線通信システムが図1に図示されている。この通信システムは、CDMAタイプの通信信号を使用するように考えられているが、本発明はこれを要求するものではない。図1に図示されている通信システム100の一部では、2台の遠隔移動ユニット124と126との通信を行うために、1つの基地局112、2つ衛星116と118、および2つの関係ゲートウェイまたはハブ120と122が示されている。一般的に、基地局と衛星/ゲートウェイは、別々の通信システムの構成要素であり、地上ベースおよび衛星ベースのものとして呼ばれているが、このことは必要とされるものではない。このようなシステムの基地局、ゲートウェイ、および衛星の総数は、所望のシステム容量および現在技術上既知のその他要因によって異なる。
【0025】
移動ユニット124と126にはそれぞれ、これらに限定されないが、例えばセルラ電話機、データトランシーバやデータ転送装置(例、コンピュータ、パーソナルデータアシスタント、ファクシミリ)、またはページャや位置決定受信機といった無線通信装置が含まれ、移動ユニット124と126は必要に応じて手持ちまたは車載とすることができる。一般的に、このようなユニットは、必要に応じて手持ちされるか、車載される。ここでは、移動ユニットは手持ち電話機として図示されている。しかしながら、本発明が教示することは、「屋内」とともに「屋外」位置も含む遠隔無線サービスが望まれる固定ユニットまたはその他タイプの端末に当てはまることも理解される。
【0026】
この技術では、基地局、ゲートウェイ、ハブおよび固定局という用語は、入れ換えて使われることがあり、ゲートウェイは通常、衛星を経由する通信を方向付けする専用基地局を構成すると理解されている。移動ユニットはまた、ある種の通信システムでは、好みによって、加入者ユニット、ユーザ端末、移動局、または単に「ユーザ」、「移動体」、または「加入者」とも呼ばれる。
【0027】
一般に、衛星116と118からのビームは、予め定められたパターンで異なる地理的領域をカバーする。CDMAチャネルまたは‘サブビーム’とも呼ばれる異なる周波数のビームを、同じ地域に重なるように方向付けることができる。複数の衛星、またはセルラ基地局のビームカバレッジまたはサービス領域は、通信システムの設計と提供されるサービスのタイプ、および空間ダイバーシティが達成されているかどうかにより、所定の地域で完全にまたは部分的に重なるように設計されることがあることが、当業者には容易に理解できる。例えば、それぞれは、異なるユーザ集団に異なる特性を持って異なる周波数でサービスを提供してもよく、または所定の移動ユニットが、それぞれ地理的カバレッジが重なり合っている複数の周波数および/または複数のサービスプロバイダを使ってもよい。
【0028】
さまざまな複数衛星通信システムが提案されており、例示的なシステムは、多数の移動ユニットにサービスを提供するためLEO軌道の8つの異なる軌道面を通る48以上の衛星を使用する。しかしながら、本発明の教示内容を、他の軌道距離と配列を含む、さまざまな衛星システムおよびゲートウェイ構成に適用する方法を当業者は容易に理解する。同時に、本発明はさまざまな基地局構成の地上ベースシステムに等しく適用できる。
【0029】
図1では、移動ユニット124や126と基地局112との間、または衛星116や118を経由して、ゲートウェイ120や122との間で確立される通信について考えられるいくつかの信号パスを図示する。基地局と移動ユニットとの通信リンクは、線130と132により図示されている。衛星116や118と移動ユニット124や126との間の衛星と移動ユニットとの通信リンクは、線140、142、および144によって示されている。ゲートウェイ120や122と衛星116や118との間のゲートウェイと衛星との通信リンクは、線146、148、150および152により示されている。ゲートウェイ120や122と基地局112を、一方向または双方向通信システムの一部として使ったり、単にメッセージやデータを移動ユニット124や126に伝送するために使ったりすることができる。
【0030】
移動ユニット124や126に使用するための例示的なトランシーバ200を図2に示す。トランシーバ200は少なくとも1本のアンテナ210を使って、アナログ受信機214に送られる通信信号を受信する。そのアナログ受信機では通信信号がダウンコンバートされ、増幅され、デジタル化される。同じ1本のアンテナに送信と受信の両方の機能を果させるため、一般的にデュプレクサ素子212が使われる。しかしながら、異なる送受信周波数で動作するために、別々のアンテナを使用するシステムもある。
【0031】
アナログ受信機214により出力されるデジタル通信信号は、少なくとも1つのデジタルデータ受信機216Aと、少なくとも1つのデジタルサーチャー受信機218に転送される。当業者に明らかなように、付加的なデジタルデータ受信機216B−216Nを使って、ユニットの受入れ可能なレベルの複雑さに基づいて所望のレベルの信号ダイバーシティを獲得することができる。
【0032】
少なくとも1つの移動ユニット制御プロセッサ220がデジタルデータ受信機216A−216Nとサーチャー受信機218とに結合されている。制御プロセッサ220は、他の機能もあるが、基本信号処理、タイミングや電力やハンドオフの制御または調整、および信号搬送波に使う周波数の選択を行う。制御プロセッサ220がしばしば実行するもう一つの基本制御機能は、PN符号シーケンスまたは通信信号の波形を処理するのに使われる直交関数の選択または操作である。制御プロセッサ220による信号処理には、相対的な信号強さの決定およびさまざまな関連信号パラメータの計算を含めることができる。例えばタイミングや周波数などの、このような信号パラメータの計算には、測定の効率または速度を高めるか、制御処理リソースの割当てを改善するために、付加的なまたは別の専用回路の使用を含めることができる。
【0033】
デジタルデータ受信機216A−216Nの出力は、移動ユニット内のデジタルベースバンド回路222に結合されている。ユーザデジタルベースバンド回路222は、移動ユニットユーザへの情報の送受信に使われる処理素子とプレゼンテーション素子とを備えている。すなわち、一時または長期デジタルメモリなどの信号やデータの記憶素子;ディスプレイ画面、スピーカー、キーパッド端末、および受話器のような入出力機器;A/D素子、ボコーダ、およびその他の音声信号とアナログ信号の処理素子などであり、これらはすべて、この技術でよく知られている素子を用いるユーザデジタルベースバンド回路222の部品を形成している。ダイバーシティ信号処理を使用する場合、ユーザデジタルベースバンド回路222は、ダイバーシティ合成器とデコーダを備えることができる。これら素子のいくつかは、制御プロセッサ220の制御の下で、または制御プロセッサ220と通信して動作することもできる。
【0034】
音声データまたはその他データが、移動ユニットから生じる出力メッセージまたは通信信号として準備される場合、ユーザデジタルベースバンド回路222は送信用の所望のデータを、受信し、記憶し、処理し、および、さもなければ準備するのに使われる。ユーザデジタルベースバンド回路222は、このデータを制御プロセッサ220の制御の下で動作する送信変調器226に提供する。送信変調器226の出力は電力制御装置228に転送され、電力制御装置228はアンテナ210からゲートウェイへの出力信号の最終的な送信のために出力電力制御を送信電力増幅器230にもたらす。
【0035】
移動ユニット200は必要に応じて送信パス内で1つ以上の前補正素子を使用して、送出信号の周波数を調整することもできる。これは、1つのまたはさまざまな既知の技術を使って行うことができる。移動ユニット200は送信パス内で前補正素子を使用し、送信波形に遅延を加算または減算するよく知られた技術を用いて、送出信号のタイミングを調整することもできる。
【0036】
受信した通信信号または1つ以上の共有リソース信号に対する1つ以上の測定された信号パラメータに対応する情報やデータは、技術上知られているさまざまな技術を使ってゲートウェイに送信できる。例えば、この情報は、独立した情報信号として転送したり、ユーザデジタルベースバンド回路222により作成された他のメッセージに添付することができる。別の方法として、制御プロセッサ220の制御の下で、送信変調器226または送信電力制御装置228により、情報は予め定められた制御ビットとして挿入することもできる。例として、「符号分割多元接続システムにおける高速フォワードリンク電力制御」と題された1995年1月17日発行の米国特許第5,383,219号、「送信機電力制御システムにおける制御パラメータの動的修正の方法とシステム」と題された1995年3月7日発行の米国特許第5,396,516号、および「送信機電力制御システム」と題された1993年11月30日発行の米国特許第5,267,262号を参照のこと。
【0037】
アナログ受信機214は、受信した信号の電力またはエネルギーを示す出力を提供することができる。別の方法として、受信電力検出器221が、アナログ受信機の出力をサンプリングし、技術上周知の処理を行って、この値を求めることができる。送信電力増幅器230または送信電力制御装置228がこの情報を直接使って、移動ユーザ200が送信する信号の電力を調整することができる。
【0038】
デジタル受信機216A−Nとサーチャー受信機218は、特定の信号を復調し、追跡するために、信号相関素子で構成されている。サーチャー受信機218は、パイロット信号または他の相対的に固定されたパターンの強力な信号を探すのに使われる一方、デジタル受信機216A−Nは、検出されたパイロット信号に関係する他の信号の復調に使われる。したがって、これらのユニットの出力を監視して、パイロット信号または他の信号のエネルギーまたは周波数を決定することができる。これらの受信機は、復調されている信号に関して現在の周波数とタイミングの情報を制御プロセッサ220に提供するために、監視可能な周波数追跡素子も使用している。
【0039】
ゲートウェイ120と122で使用するための、例示的な送受信装置300が図3に示されている。図3に示されているゲートウェイ120、122の一部は、通信信号を受信するためにアンテナ310に接続された1つ以上のアナログ受信機314を持っており、受信信号は技術上周知のさまざまな方式を使ってダウンコンバートされ、増幅され、デジタル化される。いくつかの通信システムでは複数のアンテナが使用される。アナログ受信機314によって出力されるデジタル化された信号は、324において一般的に破線により示されている少なくとも1つのデジタル受信機モジュールへの入力として提供される。
【0040】
ある種の変形が技術的に知られているが、各デジタル受信機モジュール324は、ゲートウェイ120、122と1つの移動ユニット124、126との間の通信を管理するのに使われる信号処理素子に相当する。1つのアナログ受信機314は、多くのデジタル受信機モジュール324に入力を提供することができ、多数のこのようなモジュールが、所定の時間に扱われる衛星ビームおよび可能性あるダイバーシティモード信号のすべてに対処するために、ゲートウェイ102、122で一般的に使用される。各デジタル受信機モジュール324には、1つ以上のデジタルデータ受信機316と1つのサーチャー受信機318がある。サーチャー受信機318は一般に、パイロット信号以外の適切なダイバーシティモードの信号を探し出す。通信システムで実行される場合、複数のデジタルデータ受信機316A−Nがダイバーシティ信号受信に使われる。
【0041】
デジタルデータ受信機316の出力は、技術上周知の、ここではさらに詳しく図示されていない装置を構成する次のベースバンド処理素子322に提供される。例示的なベースバンド装置は、マルチパス信号を加入者ごとの1つの出力に合成するダイバーシティ合成器とデコーダを含んでいる。例示的なベースバンド装置はまた、一般的にデジタルスイッチやネットワークに出力データを提供するためのインターフェイス回路も含んでいる。
【0042】
入力側では、これらに限定されないが、例えばボコーダ、データモデム、およびデジタルデータスイッチングおよび記憶構成要素などのようなさまざまな他の既知の素子が、ベースバンド処理素子322の一部を形成することができる。これらの素子は、1つ以上の送信モジュール334への音声信号とデータ信号の転送を処理し、制御し、または指示するように動作する。
【0043】
移動ユニットに送信される信号はそれぞれ、1つ以上の適切な送信モジュール334に結合される。代表的なゲートウェイは、多数のこのような送信モジュール334を使って、多くの移動ユニット124、126へ一度にサービスを提供し、いくつかの衛星およびビームにも一度に対応する。ゲートウェイ120、122が使用する送信モジュール334の数は、システムの複雑さ、視野内の衛星の数、加入者容量、選択されるダイバーシティの程度などを含む、技術上周知の要因によって決まる。
【0044】
各送信モジュール334には、送信のためにデータをスペクトル拡散変調する1つの送信変調器326が含まれている。送信変調器326は、デジタル送信電力制御装置328に結合された出力を持ち、デジタル送信電力制御装置328は出力デジタル信号に使われる送信電力を制御する。デジタル送信出力制御装置328は、干渉低減およびリソース割当てのために最低レベルの電力を適用するが、送信パスでの減衰および他のパス伝送特性を補償する必要がある場合、適切なレベルの電力を適用する。送信変調器326は信号拡散する際、少なくとも1つのPN発生器332を使用する。この符号発生はまた、ゲートウェイ120、122で使われる1つ以上のプロセッサまたは記憶素子の機能的な一部を形成することができる。
【0045】
送信電力制御装置328の出力は、合計器336に転送される。合計器では、この出力は他の送信電力制御回路からの出力と合計される。これら出力は、送信電力制御装置328の出力と同一周波数で同じビーム内の他の移動ニット124、126への送信用信号である。合計器336の出力は、デジタル−アナログ変換、適切なRF搬送波周波数への変換、さらなる増幅と移動ユニット124、126に放射するための1本以上のアンテナ340への出力のために、アナログ送信機338に提供される。アンテナ310と340は、システムの複雑さと構成によって、1本の同一アンテナであってもよい。
【0046】
移動ユニット200のケースのように、1つ以上の前補正素子または前補正装置(表示されていない)を送信パスに配置して、通信が確立されるリンクに対する既知のドップラに基づいて出力周波数を調整することができる。送信前に信号の周波数を調整するのに使われる技術または素子は、技術上周知である。加えて、同一のまたはもう一つの前補正装置が、通信が確立されるリンクに対する既知の伝搬遅延と符号ドップラとに基づいて出力タイミングを調整するように動作することができる。送信前に信号タイミングを調整するのに使われる技術または素子も、技術上周知である。
【0047】
少なくとも1つのゲートウェイ制御プロセッサ320が、受信機モジュール324、送信モジュール334、およびベースバンド回路322に結合される。これらユニットは互いに物理的に分離することができる。制御プロセッサ320は、これらに限定されないが、例えば信号処理、タイミング信号発生、電力制御、ハンドオフ制御、ダイバーシティ合成、およびシステムインターフェイス処理といった機能を実行するコマンドおよび制御信号を提供する。加えて、制御プロセッサ320は、PN拡散符号、直交符号シーケンス、および加入者通信で使うための特定の送信機と受信機を割り当てる。
【0048】
制御プロセッサ320はまた、パイロット信号、同期信号、およびページングチャネル信号の発生と電力を制御し、それら信号を送信電力制御装置328に結合することを制御する。パイロットチャネルは、データによって変調されない単なる信号であり、変化しない反復パターンまたは送信変調器326に対する不変フレーム構造タイプ入力を使用して、PN発生器332から適用されるPN拡散符号のみの効率的な送信を行うことができる。
【0049】
制御プロセッサ320は、例えば送信モジュール334や受信モジュール324といったモジュールの素子に直接結合することができる。各モジュールは一般に、モジュールの素子を制御する、例えば送信プロセッサ330や受信プロセッサ321といったモジュール固有のプロセッサを備えている。したがって、好ましい実施形態では、制御プロセッサ320は、図3に示す通り、送信プロセッサ330と受信プロセッサ321に結合される。この方法では、1つの制御プロセッサ320が、多数のモジュールおよびリソースの動作をより効率的に制御できる。送信プロセッサ330は、パイロット信号、同期信号、ページング信号およびトラフィックチャネル信号の発生と信号電力を制御し、ならびにそれらそれぞれの電力制御装置328への結合を制御する。受信プロセッサ321は、サーチング、復調のためのPN拡散符号および受信した電力の監視を制御する。
【0050】
ユーザ端末について上で検討したように、受信電力検出器323を使って、アナログ受信機314により決定される信号の電力を検出することができる。すなわち、デジタル受信機316の出力のエネルギーを監視することによって、信号の電力を検出することができる。この情報は、以下でさらに詳しく述べる通り、電力制御ループの一部として出力電力を調整するために、送信電力制御装置328に与えられる。またこの情報は、必要に応じて、受信プロセッサ321または制御プロセッサ320にも提供できる。この情報は、受信プロセッサ321に関数として組み込むこともできる。
【0051】
ある一定の動作、例えば共有リソース電力制御では、ゲートウェイ120と122は、例えば受信信号強度、周波数測定値、または他の受信信号パラメータといった情報を移動ユニットから通信信号で受信する。この情報は受信プロセッサ321により、データ受信機316の復調された出力から導き出すことができる。別の方法として、この情報は、制御プロセッサ320または受信プロセッサ321が監視する信号の予め定められた場所で発生したときに検出することができ、制御プロセッサ320に転送することができる。制御プロセッサ320はこの情報を使って、送信電力制御装置328とアナログ送信機338を使って処理され、送信される信号の、タイミングと周波数とともに出力電力を制御することができる。
【0052】
通信システム100が動作している間、フォワードリンク信号と呼ばれる通信信号s(t)は、ゲートウェイ(120,122)が発生させる搬送周波数Aを使って、ゲートウェイにより移動ユニット(124,126)に送信される。フォワードリンク信号は、時間遅延、伝搬遅延、ドップラによる周波数偏移、およびその他の影響を受ける。フォワードリンク信号は、ゲートウェイから衛星に送信される間(すなわち、フォワードリンク信号のアップリンク部分で)、まずこれらの影響を受ける。次に衛星から移動ユニットに送信される時(すなわち、フォワードリンク信号のダウンリンク部分で)、同様の影響を受ける。信号がいったん受信されれば、戻り信号またはリバースリンク信号を送信する際のさらなる遅延、移動ユニットから衛星への(すなわち、リバースリンク信号のアップリンク部分で)送信での伝搬遅延とドップラ、また衛星からゲートウェイへの(すなわち、リバースリンク信号のダウンリンク部分で)送信でも再度伝搬遅延とドップラが生じる。
【0053】
図4は、1つ以上の衛星中継器116を使用する通信システム100で送信されるさまざまな信号を図示している。ゲートウェイ120は、衛星中継器116を経由して移動ユニット124にフォワードリンク信号410を送信する。フォワードリンク信号410は、ゲートウェイ120から衛星中継器116へのアップリンク部分412と、衛星中継器116から移動ユニット124へのダウンリンク部分414とからなっている。移動ユニット124はリバースリンク信号420を、衛星中継器116を経由してゲートウェイ120に送信する。リバースリンク信号420は、移動ユニット124から衛星中継器116へのアップリンク部分422と、衛星中継器116からゲートウェイ120へのダウンリンク部分424とからなっている。
【0054】
図5は、リバースリンク制御ループ500を示している。リバースリンク制御ループ500は、通信システム100に関係するパラメータを制御するのに、好ましくは通信システム100で送信される信号の電力レベルを制御するのに役立つ。リバースリンク制御ループ500には、移動ユニット送信機510、第1遅延ブロック520、リバースパスチャネルプロセス530、第2遅延ブロック540、ゲートウェイ受信機550、および第3遅延ブロック560が含まれる。本発明の1つの実施形態では、移動ユニット送信機510には、トランシーバ200中の電力制御ループ機能、特に、図2で示されているような、制御プロセッサ220とデジタル送信電力制御装置228の電力制御ループ機能が含まれている。さらに、本発明のこの実施形態に関して、ゲートウェイ受信機550には、図3で示されているような、受信モジュール324、制御プロセッサ320、および送信モジュール334中の電力制御ループ機能が含まれている。
【0055】
図6は、フォワードリンク制御ループ600を示している。フォワードリンク制御ループ600は、通信システム100に関係するパラメータを制御するのに、また好ましくは、通信システム100で送信される信号の電力レベルを制御するのに役立つ。フォワードリンク制御ループ600には、ゲートウェイ送信機610、第2遅延ブロック540、フォワードパスチャネルプロセス630、第1遅延ブロック520、移動ユニット受信機650、そして第3遅延ブロック560がある。本発明の1つの実施形態では、ゲートウェイ送信機610には、送信モジュール334中の電力制御ループ機能、とりわけ、図3に示されているような、送信プロセッサ330、送信電力制御装置328、および制御プロセッサ320中の電力制御ループ機能が含まれている。さらに、本発明のこの実施形態に関して、移動ユニット受信機650には、トランシーバ200中の電力制御ループ機能、とりわけ図2で示されているような制御プロセッサ220の電力制御ループ機能が含まれている。
【0056】
リバースリンク制御ループ500の動作を、主として図5を参照し、次に図4に関連して説明する。移動ユニット送信機510は、特定の送信電力レベルで信号515(図5ではx(t)として表示)を出力する。本発明の好ましい実施形態では、信号515は、移動ユニット124からゲートウェイ120へのリバースリンク信号420のアップリンク部分422を表す。信号515は遅延ブロック520を通りτの遅延を受ける。遅延ブロック520の結果として、信号515は信号525(図5ではx(t−τ)と表示)に変形される。信号525は、τの時間だけ遅延した信号515に相当する。
【0057】
信号525は、リバースパスチャネルプロセス530により受け取られる。信号525が移動ユニット124からゲートウェイ120に伝搬されるときに、リバースパスチャネルプロセス530は、減衰、およびフェーディングなどのその他の影響を表す。言い換えれば、リバースパスチャネルプロセス530は、信号525が移動ユニット124から衛星116を経由してゲートウェイ120に伝搬されるときに、信号525が通過する大気/環境の伝達関数を表す。信号535(図5ではy(t−τ)と表示)は、プロセス530の結果として発生される。信号535は、明らかなように、減衰され、フェーディングされた信号525を表す。
【0058】
次に、信号535は、第2遅延ブロック540によって遅延される。信号535は、第2遅延ブロック540を通り、τの遅延を受ける。第2遅延ブロック540の結果として、信号535は、信号545(図5ではy(t−τ−τ)と表示)に変形される。信号545は、τの時間だけ遅れた信号535に対応する。遅延τは、上で述べた通り、リバースリンク信号420のダウンリンク部分424の伝搬遅延を表している。
【0059】
信号545は、移動ユニット124から送信され、ゲートウェイ120が受信した信号を表す。特に、信号545は、移動ユニット124により送信され、τおよびτだけ遅らされ、プロセス530にしたがって減衰され、フェーディングされた後の信号を表す。
【0060】
ゲートウェイ受信機550は信号545を受信し、信号545の電力レベルを周知の方法によって決定する。先に述べたように、信号545の電力レベルは、最小の所望電力レベルと一致していることが望ましい。例えば、信号545の電力レベルが所望の電力レベルより低い場合、ゲートウェイ受信機550は、移動ユニット送信機510に信号515の送信電力を増やすように指示する電力制御コマンドを発する。逆に信号545の電力レベルが所望の電力レベルより高い場合、ゲートウェイ受信機550は、移動ユニット送信機510に信号515の送信電力レベルを下げるように指示する電力制御コマンドを発する。
【0061】
本発明の好ましい実施形態では、ゲートウェイ受信機550はシングルビットの電力制御コマンドを発する。言い換えれば、ゲートウェイ受信機550は、電力アップコマンドかまたは電力ダウンコマンドを発する。このような電力制御システムの一般的な説明が、本発明の譲受人に譲渡され、引用することにより本書に編入される「送信機電力制御システムでの制御パラメータの動的修正の方法と装置」と題された、1995年3月7日発行の米国特許第5,396,516号で開示されている。本発明の好ましい実施形態では、電力アップコマンドは、移動ユニット送信機510に、信号515の送信電力を固定量、例えば1dBだけ増やすように指示する。電力ダウンコマンドは、移動ユニット送信機510に、信号515の送信電力を固定量、例えば1dBだけ減らすように指示する。明らかなように、さまざまな調整固定値を用いることができる。さらに明らかなように、さまざまな電力制御調整レベルを提供するであろうさらにビット数の多い電力制御コマンドを実行できる。
【0062】
さらに、本発明の好ましい実施形態では、ゲートウェイ受信機550は、信号545の電力レベルが所望の電力レベルより低い場合に、電力アップコマンドを発する。その他の時はいつも、ゲートウェイ受信機550は電力ダウンコマンドを発する。明らかなように、信号545の受信電力レベルが所望の電力レベルの特定の範囲内にある場合にゼロ電力コマンドを提供する付加的なレベルを実現することができる。
【0063】
本発明の別の実施形態では、電力アップコマンドは、第1の固定量だけ信号515の電力レベルを上げ、電力ダウンコマンドは第2の固定量だけ信号515の電力レベルを下げる。ここで第1の固定量は、第2の固定量より少ない。この実施形態では、リバースリンク制御ループ500は、信号515の電力レベルを上げるのに比べてより早く、信号515の電力レベルを減少させる。この実施形態は、CDMA通信システムでの信号の電力レベルを下げるのに迅速に応答する。これは、上で述べたように、どれか特定の信号が受ける干渉の量を減らす。
【0064】
図6のフォワードリンク制御ループ600は、図5のリバースリンク制御ループ500と類似した方法で動作する。フォワードリンク制御ループ600は、電力制御コマンド655を送信してから、信号645としてその電力制御コマンド655への応答を検出するまでの間に類似した伝搬遅延を受ける。とりわけ、フォワードリンク制御ループ600は、τ+τ+τの伝搬遅延を受ける。リバースリンク制御ループ500に関して先に述べた事柄に基づき、当業者は、フォワードリンク制御ループ600の動作を理解できるであろう。したがって、フォワードリンク制御ループ600の動作は、これ以上詳細には述べない。
【0065】
本発明は、独自に使うこともでき、また本発明の譲受人に譲渡され、ここに引用することにより本書に編入される、本書と同時に出願された出願番号(未決、代理人事件整理番号QCPA236)の「ループ遅延を用いる予測的パラメータ制御の方法と装置」が示す解決策とともに用いることができる解決策を提供している。とりわけ、本発明の1つの実施形態は、リバースリンク制御ループ500から得た測定値(たとえば、受信信号の電力レベル)を使って、フォワードリンク制御ループ600に関係するフォワードリンクループ利得を調整し、および/またはフォワードリンク制御ループ600から得た測定値を使って、リバースリンク制御ループ500に関係するリバースリンクループ利得を調整する。
【0066】
先に説明した通り、異なる周波数帯の使用は電力制御とかなり密接な関係を持っている。特に、異なる周波数帯の使用は、例えばフェーディングといった、大気または環境の影響に、帯域間で緩やかな相関関係を持たせる。拡散散乱がマルチパスフェーディングを引き起こす場合、複数の反射の位相は、2つの異なる周波数において独立した結果を生み出す。しかしながら、鏡面反射成分(直接的な見通し線成分)における影響は、いくらか相関関係のある結果を持つ傾向がある。言い換えれば、移動ユニット送信機510が直接的な見通し線を遮るブロック壁の背後に移動すると、フォワードリンク410とリバースリンク420にそれぞれ関係する信号、したがって2つの送信周波数がほぼ同時にブロック壁によって減衰される。しかしながら、拡散散乱は依然として独立した反射をもたらし、全体的な信号を構成する。この現象の主な影響は、フォワードパスチャネルプロセス630とリバースパスチャネルプロセス530とにおける急速な変動の間には独立性があり、直接的な見通し線成分に一般的に関係するゆっくりしたフェーディングプロセスではいくらかの相関関係を持つことである。
【0067】
したがって、移動ユニット送信機510と衛星116との間の直接的な見通し線に障害物がなければ、フォワードパスチャネルプロセス630とリバースパスチャネルプロセス530の両方に対するフェーディングプロセスは、K係数がかなり高いライスになる。直接的な見通し線が、例えば木のような植生によって遮られる場合、直接的な見通し線成分の減衰は、チャネル530と630の両方で、K係数のより小さいライスフェーディングプロセスを誘発する。最後に、直接的な見通し線が固形物体によって遮断される場合、フェーディングプロセスは、チャネル530と630の両方でレイリーとなる。
【0068】
図7は、周波数ダイバーシティがパラメータ、特に、高い相関関係を持つプロセス間の電力レベルにどのように影響するかを示している。図8は、周波数ダイバーシティが、相関関係の低いプロセス間の同一パラメータにどのように影響するかを示している。図7では、急激な変動が2つのチャネルプロセス530と630間で独立であり、直接的な見通し線成分が高い相関関係の減衰を持つことが示されている。このチャネルの影響は、チャネルプロセス530、630の両方に関して、移動ユーザ124が直接的な見通し線を遮るビル建物の背後に移動した場合のチャネルの影響と一致する。フォワードリンク受信電力720は、移動ユニット受信機650で受信する信号645の電力レベルを示す。リバースリンク受信電力710は、ゲートウェイ受信機550で受信する信号545の電力レベルを示す。建物の背後に移動することによる影響は、直接的な見通し線成分について相関関係を持っているため、受信電力710、720は、影響730(例えばフェーディング)により類似した損失を示す。
【0069】
図8では、プロセスは、フェーディングプロセス中の異なる特性を明らかにする。これは、比較的小さい形状の構造物の背後に移動した移動ユーザ124と関係付けることができる。当業者は、妨害によって引き起こされる直接的な見通し線成分の減衰量は、物体によって遮られる第1のわずかなフレネルゾーンの量に関係していると認めるであろう。フレネルゾーンのサイズは、送信周波数に反比例する。したがって、より高い周波数では、構造物は第1フレネルゾーンのかなりの部分を遮ることができる。より低い周波数では、フレネルゾーンのサイズがより大きくなるため、その周波数では同じ構造物でかなりの量を遮ることができない。したがって、ゲートウェイ受信機550と移動ユニット受信機650で受信する電力レベルは、図8に示された電力レベルとさらによく類似しているかもしれない。特に、フォワードリンク受信電力820は、移動ユニット受信機650により受信される信号645の電力レベルを示す。リバースリンク受信電力810は、ゲートウェイ受信機550により受信される信号545の電力レベルを表す。このケースでは、チャネルプロセス530、630の相関関係は強くないため、受信電力810、820は、フォワードリンク制御ループ600から得た測定値を、リバースリンク制御ループ500で直接使うこと、またその逆も可能になるような、影響830による類似した損失を示さない。
【0070】
しかしながら、本発明は、受信電力810、820が同一の損失を示す程度に基づいていない。むしろ、本発明は、例えばフェーディングのような影響がフォワードリンク410に存在するとき、その影響は、リバースリンク420でも存在する可能性が非常に高いという事実に基づいている。本発明は、制御ループの1つにおけるプロセス530、630通して伝搬する信号の状態変化を検出し、他の制御ループで送信される電力レベルを変更するのに使われるループ利得を調整する。もっと正確に言えば、ゲートウェイ受信機550が、リバースリンク制御ループ500における信号545の「伝搬状態」の変化を検出した場合、その後ゲートウェイ送信機610は、フォワードリンク制御ループ600でゲートウェイ送信機610により送信される信号615の電力レベルを変更するのに使われる制御コマンド665のステップサイズを調整する。同様に、移動ユニット受信機650が、フォワードリンク制御ループ600における信号645の伝搬状態の変化を検出した場合、その後移動ユニット送信機510は、リバースリンク制御ループ500で移動ユニット送信機510により送信される信号515の電力レベルを変更するのに使われる制御コマンド565のステップサイズを調整する。本発明の好ましい実施形態では、伝搬状態の変化は、以下でさらに詳しく述べる通り、信号の電力レベルを監視することによって検出される。
【0071】
以下では、明確さと簡潔さのために、リバースリンク制御ループ500のみを参照して説明する。この説明が、フォワードリンク制御ループ600にも当てはまることは明らかであろう。本発明の1つの実施形態では、制御コマンド565のステップサイズを増やすのは、ループ利得を使って行われる。この実施形態では、信号515の送信電力レベルを調整するのに制御コマンド565を使用する前にループ利得を使用して、制御コマンド565のステップサイズを乗算する。例えば、移動ユニット受信機650が信号645の伝搬状態に変化があることを検出すれば、移動ユニット送信機510が予め定められた係数(例えば2)によってループ利得を調整する。その後移動ユニット送信機510は調整されたループ利得と制御コマンド565とを乗算し、それによって制御コマンド565の有効ステップサイズを増やす。
【0072】
図9は、本発明の1つの実施形態によるフォワードおよびリバースリンク制御ループ600と500を示している。特に図9は、移動ユニット状態検出器910を介してリバースリンク制御ループ500内の移動ユニット送信機510に結合されたフォワードリンク制御ループ600内の移動ユニット受信機650、およびゲートウェイ状態検出器930を介してフォワードリンク制御ループ600内のゲートウェイ送信機610に結合されたリバースリンク制御ループ500内のゲートウェイ受信機550を図示している。
【0073】
一般に、移動ユニット状態検出器910は、移動ユニット受信機650により受信された信号645の電力測定値905を受け取る。1つ以上の電力測定値905に基づき、移動ユニット状態検出器910は、フォワードパスチャネルプロセス630が無活動状態または活動状態のいずれで動作しているか決定する。この決定に基づき、移動ユニット状態検出器910は制御コマンド565に適用されるフォワード制御ループ利得915を出力し、それにより、移動ユニット送信機510により送信される信号515の電力レベルの変化量を調整する。
【0074】
同様に、ゲートウェイ状態検出器930は、ゲートウェイ受信機550により受信される信号545の電力測定値925を受け取る。1つ以上の電力測定値925に基づき、ゲートウェイ状態検出器930は、リバースパスチャネルプロセス530が、無活動状態または活動状態のいずれで動作しているか決定する。この決定に基づき、ゲートウェイ状態検出器930は制御コマンド665に適用されるリバース制御ループ利得935を出力し、それにより、ゲートウェイ送信機610により送信される信号615の電力レベルの変化量を調整する。
【0075】
リバースパスチャネルプロセス530とフォワードパスチャネルプロセス630が、無活動状態と活動状態との間を同じように遷移するという仮定に基づき、本発明の状態検出器910、930により、制御ループ500、600が、状態検出器910、930なしで動作している制御ループ500、600よりも、影響830(例えばフェーディングなど)に対してかなり早く応答できる。このことについて、以下でさらに詳しく論じる。
【0076】
先に述べた無活動状態と活動状態はまとめて伝搬状態(すなわち信号がプロセス530、630を経てどのように伝搬していくか)とも呼ばれる。無活動伝搬状態は、プロセス530、630が、ゲートウェイ120と衛星118との間の、および移動ユニット124と衛星118との間の、直接的な見通し線送信であることを表す状態に相当する。活動伝搬状態は、プロセス530、630がゲートウェイ120と衛星118との間の、および/または移動ユニット124と衛星118との間の、強力な直接的な見通し線送信成分を持っていない状態に相当する。上で論じた通り、直接的な見通し線成分が減衰されるとき、フェーディングが起きる。これは、受信信号電力レベルに急激な変化をもたらす。本発明はこれを補償する。
【0077】
ここでは本発明を、図10と関連付けて論じる。図10は、移動ユニット状態検出器910とともに、移動ユニット受信機650と移動ユニット送信機510の関連部分についてさらに詳しく図示している。以下の論考は、特にリバース制御ループ500と移動ユニット状態検出器910に向けられているが、なおこの論考をフォワード制御ループ600およびゲートウェイ状態検出器930に同様に当てはめる方法も明らかであろう。
【0078】
移動ユニット受信機650には、電力レベル検出器1010が含まれている。電力レベル検出器1010には移動ユニット受信機650の構成要素が含まれ、明らかなようにこの構成要素は移動ユニット受信機650が周知の技術に基づいて、受信した信号645の電力レベルを決定できるようにする。電力レベル検出器1010は、受信した信号645の電力レベルを状態検出器910に出力する。
【0079】
一般に、状態検出器910は、リバースパスチャネルプロセス530の状態を決定する。本発明の好ましい実施形態では、状態検出器910は、リバースパスチャネルプロセス530が無活動状態(すなわち安定状態)かまたは活動状態(すなわち変化状態)のいずれで動作しているかを決定する。リバースパスチャネルプロセス530の状態に基づき、状態検出器910は、移動ユニット送信機510に利得915を出力する。利得915は、信号515の送信電力を変更するのに使われるループ利得を調整するのに使われる。リバースパスチャネルプロセス530が無活動状態で動作している場合、状態検出器910は利得915に対して単位利得を出力する(すなわち、制御コマンド565のステップサイズは、デフォルトレベルまたは予め定められたレベルに留まる)。リバースパスチャネルプロセス530が活動状態で動作している場合、状態検出器910は、利得915に対して利得Gを出力する(すなわち、制御コマンド565のステップサイズは、G倍だけ増やされる)。本発明の好ましい実施形態では、Gは2に設定されている。したがって、本発明の好ましい実施形態では、活動状態で動作している場合、状態検出器910は、移動ユニット送信機510に、2倍だけ制御コマンド565のステップサイズを増やすように指令する。明らかなように、例えばステップサイズ、時間遅延、予想電力フェーディングなどのシステムパラメータに基づき、他の値のGを用いることができる。さらに、明らかなように、例えば、送信された信号515の電力レベルの変化の大きさや他のシステム測定値に依存して、変数Gを使うことができる。
【0080】
移動ユニット送信機510は状態検出器910から利得915を受け取り、ゲートウェイ受信機550から制御コマンド565を受け取る。移動ユニット送信機510は、利得915を制御コマンド565に適用し、調整された制御コマンド1045を得る。本発明の好ましい実施形態では、移動ユニット送信機510は乗算器1040を通して、利得915により制御コマンド565を乗算して、調整された制御コマンド1045を得る。本発明の他の実施形態は、積形成ロジックまたは類似のデバイスや技術を使って同じタスクを遂行する。
【0081】
移動ユニット送信機510内の電力レベル調整1050により、調整された制御コマンド1045が受け取られる。電力レベル調整1050には送信電力制御装置328内の構成要素が含まれ、これらの構成要素は、明らかな周知の技術に基づいて、移動ユニット送信機510が送信される信号515の電力レベルを調整できるようにする。
【0082】
図10はさらに、本発明の状態検出器910の1つの実施形態を図示している。特に図10は、状態図1020による状態検出器910の動作を示している。状態図1020には、状態X、状態X、および状態Xの3つの状態が含まれている。状態検出器910は始動時に状態Xに初期化される。本発明のこの実施形態では、状態の遷移は、電力レベル測定値905の変化(図10でΔPとしても示されている)に基づいている。特に、本発明のこの実施形態では、無活動状態と活動状態間の遷移は、電力レベル測定値905の連続する2回の変化が、それぞれ予め定められたしきい値(図10ではTとして示されている)を超えているか否かに基づいて起きる。
【0083】
状態Xから始まり、電力レベル測定値905の変化が予め定められたしきい値を超えていると、状態検出器910は状態Xから状態Xに遷移する。電力レベル測定値905の変化が予め定められたしきい値を超えていない場合、状態検出器910は状態Xのままで、予め定められたしきい値を超えるまで、その状態にとどまる。
【0084】
状態Xから、電力レベル測定値905の変化が予め定められたしきい値を超えると、状態検出器910は状態Xから状態Xに遷移する。電力レベル測定値905の変化が予め定められたしきい値を超えない場合、状態検出器910は状態Xに遷移して戻る。
【0085】
状態Xから、電力レベル測定値905の変化が予め定められたしきい値を超え続ける限り、状態検出器901は状態Xにとどまる。電力レベル測定値905の変化が予め定められたしきい値を超えない場合、状態検出器910は、状態Xに遷移して戻る。
【0086】
状態検出器910が状態Xまたは状態Xにある限り、状態検出器910は、利得915を単位利得として出力する。本発明のこの実施形態によれば、状態Xと状態Xは、リバースパスチャネルプロセス530が無活動状態で動作していることを示す。このケースでは、制御コマンド565のステップサイズは変更されない。
【0087】
状態検出器910が状態Xにあるとき、状態検出器910は、利得915をGとして出力する。本発明のこの実施形態にしたがうと、状態Xは、リバースパスチャネルプロセス530は活動状態で動作していることを示す。このケースでは、制御コマンド565のステップサイズを、G倍だけ増やさなければならない。
【0088】
図10は、本発明の1つの実施形態のある表現を示している。明らかなように、同じ実施形態の他の表現が存在する(すなわち、状態図以外の表現)。例えば、以下の擬似符号は、本発明の類似実施形態の異なる表現を示している:
If ((|(PowerLevelk - PowerLevelk-1)| > Threshold) and
(|(PowerLevelk-1 - PowerLevelk-2)| > Threshold)))
then
Gain = G
else
Gain = 1
ここで、Powerleveliはi番目の電力レベル測定値である。
【0089】
明らかなように、予め定められたしきい値を超える電力レベル測定値905の付加的な回数の連続的な変化を用いることができる。例えば、電力レベル測定値905が連続して4回しきい値を超えるということを、無活動状態と活動状態との間の変化を示すのに使うことができる。他の回数であっても、同様に使用することができる。
【0090】
明らかなように、予め定められたしきい値は、さまざまなシステムパラメータに基づいて設定される。これらパラメータには、伝搬遅延、ループ反復レート、コマンドステップサイズ、および電力レベルの予想される変化などがあるが、これらに限定されるわけではない。
【0091】
ここで、本発明を図11と図12のフロー図から説明する。図11は、制御ループ500、600に類似した例示的な制御ループの動作を説明するフロー図である。図12は、状態検出器910、930に類似した例示的な状態検出器の動作を図示するフロー図である。
【0092】
図11を参照すると、ステップ1110では、第1局が第2局から送信された信号を受信する。第1局により受信された信号は、第2局から第1局に送信される、その電力レベルが制御されることが望ましい任意の信号とすることができる。ステップ1120では、第1局は周知の技術に基づいて、受信された信号の電力レベルを測定する。ステップ1130では、第1局は制御コマンドを発生させ、この制御コマンドは第2局により送信される信号の電力レベルを調整するように第2局に指示する。先に説明した通り、本発明の好ましい実施形態では、制御コマンドは、電力レベルが予め定められたステップサイズによって調整されるべきことを示す。当然ながら、他の実施形態は可変ステップサイズを使用してもよい。
【0093】
ステップ1140では、第1局は制御コマンドを第2局に送信する。ステップ1150では、第2局は受信した制御コマンドにループ利得係数を乗算し、送信される信号の電力レベルの調整値を決定する。ステップ1160では、第2局は送信される信号の電力レベルを、ステップ1150で決定された調整値によって調整する。
【0094】
図12を参照すると、ステップ1210では、第2局は第1局から送信された信号を受信する。この信号は、図11を参照して先に説明した信号とは異なる。この信号は、第1局から第2局に送信される、その電力レベルを有効に監視できる任意の信号とすることができる。この信号は、その電力レベルが制御されることが望ましい信号である必要はない。この信号は、第1局と第2局の間で信号が送信されるプロセスを示すことだけが必要である。
【0095】
ステップ1220では、第2局は、第1局から受信された信号の電力レベルを監視する。本発明の1つの実施形態では、第2局は受信信号の電力レベルを測定する。本発明の別の実施形態では、第2局は信号を1つ以上のしきい値と比較する。本発明の好ましい実施形態では、第2局は受信信号の電力レベルを測定し、信号の後続サンプル間での電力レベルの変化を決定する。当然のことながら、他の実施形態は、受信信号の電力レベルを監視するのに他の技術を用いることができる。
【0096】
ステップ1230では、第2局は監視された電力レベルに基づいて、受信信号に関係する伝搬状態を決定する。言い換えれば、第2局は、信号が送信されたプロセスが上記のような無活動状態か活動状態のいずれで動作していたかを決定する。
【0097】
ステップ1240では、第2局はステップ1230で決定された伝搬状態に基づいてループ利得を調整する。上で論じた通り、伝搬状態が無活動状態の場合、ループ利得は単位に設定される。伝搬状態が活動状態の場合、1より大きい利得係数に設定される。好ましい実施形態では、利得係数は2に設定される。当然ながら、非整数利得係数を含む他の利得係数を使うことができる。
【0098】
図13は本発明の好ましい実施形態にしたがったフロー図であり、ステップ1230の動作をさらに詳しく説明している。決定ステップ1310では、第2局は、受信信号の電力レベルの変化がしきい値を超えているか否か、および受信信号の電力レベルの前の変化がしきい値を超えているか否かを決定する。言い換えれば、第2局は、電力レベルの変化がしきい値を超えることが2回連続して起きているかどうか決定する。特に、第2局は、変化の大きさがしきい値を超えているか否かを決定する(すなわち電力レベルの増加または減少に等しく適用する)。
【0099】
ステップ1320において、電力レベルの変化が2回連続してしきい値を超えている場合、ループ利得が非単位の利得係数に設定される。ステップ1330において、電力レベルの変化が2回連続してしきい値を超えていない場合、ループ利得は単位利得係数に設定される。
【0100】
当然のことながら、本発明の範囲から逸脱することなく、ステップ1230の動作にさまざまな修正を加えることができる。チャネルの伝搬状態を推定するどのような技術でも用いることができる。例えば、変更は、最後のN個のサンプルの受信電力の平均と最後のM個のサンプルの受信電力の平均とを比較することを必要とするかもしれない。この場合、M>Nである。したがって、平均信号電力が、しきい値を下回っていたと決定することができる。第2の実施形態は、ループ利得の減少とは反対にループ利得の増加を決定するのに異なるアルゴリズムを提供してもよい。加えて、本発明は、他の情報源や、電力レベルの変化を検出するもの以外のセンサを含む手段によって、プロセスの伝搬状態を決定するための指標を使用することも意図している。
【0101】
図11、12および13は、「第1局」と「第2局」の観点から説明してきた。上記では、第2局での動作として説明したが、当然ながら本発明は第1局で、または第1局と第2局の両方で同時に使用することができる。その上、本発明はゲートウェイ120、移動ユニット124、または受信機とともに送信機が配置される他のこのような通信システム構成要素に関して実施することができる。
【0102】
先に示したように、本発明により、制御ループ500、600は状態検出器910、930なしで動作している制御ループ500、600と比較して、ループ利得の増加に基づいて、かなり早く影響830(例えばフェーディングなど)に対して応答できる。上で論じた通り、制御ループ500、600の応答時間は、往復伝搬時間による影響を受ける。言い換えれば、往復伝搬時間は、制御コマンド555が、例えばゲートウェイ受信機550により送信される時間と、その制御コマンド555に対する応答(すなわち、信号545の電力レベルの変化)がゲートウェイ受信機550によって検出される時間との間で経過する。
【0103】
応答がさらに早くなったことに加え、状態検出器910、930は、実際の電力レベルと所望の電力レベルとの間の誤差が近づく速度にも影響を与える。これはスリューレートと呼ばれる。Gに設定された利得915の場合、スリューレートは利得なしの制御コマンド565のG倍の速さとなる。したがって、例えばG=2の時、スリューレートは、利得なしのスリューレートの2倍の速度になるなどである。適正な利得の決定は、伝播遅延、ループ反復レート、コマンドステップのサイズ、および予想される変化、受信電力レベルの変化のレートといった要因に左右される。
【0104】
フォワードおよびリバースチャネルプロセス530、630の影響を理解することにより、移動ユニット124とゲートウェイ120との間で行き来する信号が受ける変化について同様の決定を行うことができる。したがって、電力以外のパラメータを本発明により制御することができる。通信システムによっては、同一のまたは付加的な制御ループを使って、例えば周波数、符号タイミングなどの通信信号のその他の動作パラメータを制御できる。上げるおよび下げる、または進めるおよび遅らせるといったコマンドを適宜発生させることができ、それらを使って、これらのパラメータの変更を実行できる。例えば、帰還リンク信号の動作周波数を調整して、移動ユニット124の局部発振器の中心周波数のドリフトを押しとどめるように、移動ユニット124に命ずることができ、またはドップラ効果を補償するために符号タイミングを変更することなどができる。コマンドを用いて補償を実行できる多くのパラメータやプロセスがよく知られているが、上で論じた電力制御コマンドが受けるのと同じ時間遅延すなわち伝送遅延も被る。
【0105】
衛星をベースとする通信システム100に関して本発明を説明したが、衛星を使用しないシステムでも本発明を実行できることがある。例えば、地上システムでは、セルサイトと移動ユニット124と間の伝搬が、電力制御ループ500のループ反復時間に比べて大きい場合、リミットサイクルと類似の問題が生じる。
【0106】
送信機510、610に一定の量だけ送信電力を増減するように指示する電力アップコマンドまたは電力ダウンコマンドが受信機550、650によって発せられるシングルビットシステムに関して本発明を説明した。しかしながら、明らかなように、電力制御コマンド555、655が、所望の電力レベルと受信電力レベル545との差に基づいて量子化される、異なる方式も実現することができる。
【0107】
先の好ましい実施形態の説明は、当業者が本発明を作り、利用できるように提供されている。これら実施形態のさまざまな変形は、当業者には容易に明らかとなるであろう。また、ここで規定された一般的な原理を、発明力を用いることなく別の実施形態に適用することができる。したがって、本発明はここに示される実施形態に限定されることを意図しているものではなく、ここに開示されている原理と新規な特徴に一致する最も広い範囲にしたがうべきである。
【0108】
本発明の特徴、目的および効果は、同じ参照符号が全体を通して対応したものを識別している図面を参照すると、詳細な説明からさらに明らかになるであろう。
【図面の簡単な説明】
【図1】 図1は、本発明が使用される典型的な無線通信システムを図示している。
【図2】 図2は、移動ユーザにより使用される例示的なトランシーバ装置を図示している。
【図3】 図3は、ゲートウェイで使用するための例示的な送受信装置を図示している。
【図4】 図4は、ゲートウェイと移動ユーザとの間のフォワードリンクとリバースリンク送信を図示している。
【図5】 図5は、リバースリンク制御ループを図示している。
【図6】 図6は、フォワードリンク制御ループを図示している。
【図7】 図7は、フォワードパスプロセスとリバースパスプロセスとが相関している時の、フォワードリンクとリバースリンクの受信電力レベルの例示的な比較を図示しているプロットである。
【図8】 図8は、フォワードパスプロセスとリバースパスプロセスとが部分的にしか相関していない時の、フォワードリンクとリバースリンクの受信電力レベルの比較を図示しているプロットである。
【図9】 図9は、本発明の1つの実施形態にしたがった状態検出器を用いるフォワードおよびリバースリンク制御ループを図示している。
【図10】 図10は、リバースリンク制御ループととともに使用される状態検出器をさらに詳細に図示している。
【図11】 図11は、本発明のループ利得を使用する例示的な制御ループの動作を図示しているフローチャートである。
【図12】 図12は、本発明にしたがったループ利得の決定を図示しているフローチャートである。
【図13】 図13は、本発明の1つの実施形態にしたがった伝搬状態の決定をさらに詳しく図示しているフローチャートである。

Claims (20)

  1. 第1局、第2局、および第1局と第2局の間の信号を結合する衛星リンクを具備し、各局は信号送信手段と信号受信手段を備える衛星通信システムの電力を制御する方法において、
    第2局において、第1局から送信された第1信号を受信するステップと、
    第1局において、第2局から送信された第2信号を受信するステップと、
    第1局において、前記受信した第2信号の電力レベルを測定するステップと、
    第1局において、前記受信した第2信号の前記測定された電力レベルに基づいて電力制御コマンドを発生させるステップと、
    前記電力制御コマンドを第1局から第2局に送信するステップと、
    第2局において、前記電力制御コマンドにループ利得係数を適用するステップと、
    第2局において、前記電力制御コマンドに基づいて、第2局から送信される前記第2信号の送信電力レベルを調整するステップと、
    第2局において、前記受信した第1信号の電力レベルを監視するステップと、
    前記受信した第1信号の前記電力レベルに基づいて、前記受信した第1信号の伝搬状態を決定するステップと、
    前記第1信号の前記伝搬状態の関数として前記ループ利得係数を調整するステップとを含み、
    前記ループ利得係数は第1の固定量だけ利得を増加させる電力アップ係数であるか、または第2の固定量だけ利得を減少させる電力ダウン係数であり、
    前記第1の固定量は前記第2の固定量よりも少ない方法。
  2. 前記伝搬状態を決定するステップは、前記受信した第1信号がフェーディング中で動作しているか否かを決定するステップを含む請求項1記載の方法。
  3. 前記伝搬状態を決定するステップは、
    連続的な回数において受信した、前記受信した第1信号の前記電力レベル間の電力レベルの変化を決定するステップと、
    前記電力レベルの変化としきい値と比較するステップと、
    前記電力レベルの変化が前記しきい値を超えているか否かに基づいて、前記伝搬状態を決定するステップとを含む請求項1記載の方法。
  4. 前記伝搬状態を決定するステップは、
    前記電力レベルの変化が前記しきい値を超えていない場合に、前記伝搬状態を無活動状態として決定するステップと、
    前記電力レベルの変化が前記しきい値を超えている場合に、前記伝搬状態を活動状態として決定するステップとを含む請求項3記載の方法。
  5. 前記ループ利得係数を調整するステップは、前記伝搬状態が前記活動状態である場合に、前記ループ利得係数を非単位利得係数に設定するステップを含む請求項4記載の方法。
  6. 前記ループ利得係数を調整するステップは、前記伝搬状態が前記無活動状態である場合に、前記ループ利得係数を単位利得係数に設定するステップを含む請求項4記載の方法。
  7. 前記ループ利得係数を設定するステップは、前記伝搬状態が前記活動状態である場合に、前記ループ利得係数を2に設定するステップを含む請求項5記載の方法。
  8. 第1局はゲートウェイであり、第2局は移動ユニットである請求項1記載の方法。
  9. 第1局は移動ユニットであり、第2局はゲートウェイである請求項1記載の方法。
  10. 通信システムのパラメータを制御する装置において、
    制御されるパラメータを有する第1信号を送信する手段と、制御コマンドを受信する手段を含む第2信号を受信する手段とを備えた第1局と、
    前記第1信号を受信する手段と、前記第2信号を送信する手段とを備えた第2局と、
    前記第2局に配置されて前記第1信号のパラメータを測定する手段と、前記第2局に配置されて前記測定されたパラメータに基づいて前記制御コマンドを発生させる手段と、前記第1局に配置されて前記制御コマンドとループ利得係数とに基づいて前記第1信号のパラメータを調整する手段とを備えた制御ループと、
    前記第2信号が前記第2局から前記第1局に送信されるプロセスの伝搬状態を決定する手段と、前記伝搬状態に基づいて前記ループ利得係数を調整する手段とを備え、前記第1局に配置された状態検出器とを具備し、
    前記ループ利得係数を調整する手段のループ利得係数は、第1の固定量だけ利得を増加させる電力アップ係数であるか、または第2の固定量だけ利得を減少させる電力ダウン係数であり、
    前記第1の固定量は前記第2の固定量よりも少ない装置。
  11. 前記伝搬状態を決定する手段は、前記第2信号に関係するパラメータを監視する手段を含み、前記パラメータは前記第1信号に関して制御されるパラメータと同じ性質である請求項10記載の装置。
  12. 前記伝搬状態を決定する手段は、前記第2信号に関係する前記パラメータの変化がしきい値を超えたか否かを決定する手段を含む請求項11記載の装置。
  13. 前記伝搬状態を決定する手段は、前記第2信号に関係する前記パラメータの変化の大きさがしきい値を超えたか否かを決定する手段を含む請求項11記載の装置。
  14. 前記伝搬状態を決定する手段は、複数の連続的な期間にわたって、前記第2信号に関係する前記パラメータの変化の大きさがしきい値を超えたか否かを決定する手段をさらに含む請求項13記載の装置。
  15. 前記伝搬状態を決定する手段は、
    前記複数の連続的な期間にわたって、前記変化の大きさが前記しきい値を超えていない場合に、前記伝搬状態を無活動状態として決定する手段と、
    前記複数の連続的な期間にわたって、前記変化の大きさが前記しきい値を超えている場合に、前記伝搬状態を活動状態として決定する手段とをさらに含む請求項14記載の装置。
  16. 前記ループ利得係数を調整する手段は、
    前記伝搬状態が前記無活動状態の場合に、前記ループ利得係数を単位利得係数に調整する手段と、
    前記伝搬状態が前記活動状態の場合に、前記ループ利得係数を非単位利得係数に調整する手段とを含む請求項15記載の装置。
  17. 前記非単位利得係数は2である請求項16記載の装置。
  18. 前記制御されるパラメータは前記第1信号の電力レベルである請求項10記載の装置。
  19. 前記第1局はゲートウェイであり、前記第2局は移動ユニットである請求項18記載の装置。
  20. 前記第1局は移動ユニットであり、前記第2局はゲートウェイである請求項18記載の装置。
JP2000506735A 1997-08-07 1998-08-07 開ループ測定を用いて閉ループ電力を適応制御するための方法と装置 Expired - Fee Related JP4065368B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/908,528 US6188678B1 (en) 1997-08-07 1997-08-07 Method and apparatus for adaptive closed loop power control using open loop measurements
PCT/US1998/016573 WO1999008398A2 (en) 1997-08-07 1998-08-07 Method and apparatus for adaptive closed loop power control using open loop measurements

Publications (3)

Publication Number Publication Date
JP2004515087A JP2004515087A (ja) 2004-05-20
JP2004515087A5 JP2004515087A5 (ja) 2006-06-15
JP4065368B2 true JP4065368B2 (ja) 2008-03-26

Family

ID=25425933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000506735A Expired - Fee Related JP4065368B2 (ja) 1997-08-07 1998-08-07 開ループ測定を用いて閉ループ電力を適応制御するための方法と装置

Country Status (14)

Country Link
US (1) US6188678B1 (ja)
EP (2) EP2148543B1 (ja)
JP (1) JP4065368B2 (ja)
AR (1) AR013939A1 (ja)
AT (2) ATE556558T1 (ja)
AU (1) AU752318B2 (ja)
BR (1) BRPI9815598B1 (ja)
CA (1) CA2311288C (ja)
DE (1) DE69841426D1 (ja)
ES (1) ES2337965T3 (ja)
HK (1) HK1034147A1 (ja)
MY (1) MY119732A (ja)
WO (1) WO1999008398A2 (ja)
ZA (1) ZA987150B (ja)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081536A (en) 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6708041B1 (en) 1997-12-15 2004-03-16 Telefonaktiebolaget Lm (Publ) Base station transmit power control in a CDMA cellular telephone system
US7936728B2 (en) * 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US7394791B2 (en) * 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US6222832B1 (en) * 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US7773566B2 (en) * 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US8134980B2 (en) * 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US7221664B2 (en) * 1998-06-01 2007-05-22 Interdigital Technology Corporation Transmittal of heartbeat signal at a lower level than heartbeat request
KR100272565B1 (ko) * 1998-06-16 2000-11-15 서평원 역방향 링크의 최적 직교 코드 할당 방법
US6615052B1 (en) * 1998-12-08 2003-09-02 Honeywell International Inc. Radio frequency power control algorithm
US6914889B1 (en) * 1998-12-08 2005-07-05 Lucent Technologies Inc. Variable rate forward power control for multichannel applications
US6334047B1 (en) * 1999-04-09 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a mobile radio communications system
US6515975B1 (en) * 1999-04-22 2003-02-04 Nortel Networks Limited Fast forward power control during soft handoff
CN1130878C (zh) * 1999-06-18 2003-12-10 索尼公司 电子设备、数据通信方法及电子设备的数据处理方法
US6487241B1 (en) * 1999-11-22 2002-11-26 Advanced Micro Devices, Inc. Method and apparatus employing cutback probe
JP3583343B2 (ja) * 1999-11-29 2004-11-04 松下電器産業株式会社 通信端末装置、基地局装置および送信電力制御方法
AU3673001A (en) 2000-02-07 2001-08-14 Tantivy Communications, Inc. Minimal maintenance link to support synchronization
CN101034918A (zh) 2000-02-23 2007-09-12 Ipr特许公司 反向链路初始功率的设定
US6823193B1 (en) 2000-02-28 2004-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Downlink transmit power synchronization during diversity communication with a mobile station
US6597723B1 (en) * 2000-03-21 2003-07-22 Interdigital Technology Corporation Weighted open loop power control in a time division duplex communication system
US6600772B1 (en) 2000-03-21 2003-07-29 Interdigital Communications Corporation Combined closed loop/open loop power control in a time division duplex communication system
US6603797B1 (en) * 2000-03-22 2003-08-05 Interdigital Technology Corporation Outer loop/weighted open loop power control in a time division duplex communication system
US6781973B1 (en) * 2000-03-30 2004-08-24 Matsushita Electric Industrial Co., Ltd. Combined signaling and sir inner-loop power control
JP3479836B2 (ja) * 2000-09-18 2003-12-15 日本電気株式会社 Cdma受信装置
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US6970716B2 (en) 2001-02-22 2005-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Power control for downlink shared channel in radio access telecommunications network
US7092686B2 (en) * 2001-03-08 2006-08-15 Siemens Communications, Inc. Automatic transmit power control loop
US7570709B2 (en) * 2001-03-08 2009-08-04 Siemens Aktiengesellschaft Automatic transmit power control loop with modulation averaging
US6993337B2 (en) * 2001-03-30 2006-01-31 Lucent Technologies Inc. Velocity based scheduling in cellular systems
KR100665077B1 (ko) 2001-06-13 2007-01-09 탄티비 커뮤니케이션즈 인코포레이티드 하트비트 요구보다 낮은 레벨로의 하트비트 신호의 전송
US20030040315A1 (en) * 2001-08-20 2003-02-27 Farideh Khaleghi Reduced state transition delay and signaling overhead for mobile station state transitions
EP1296464B1 (en) * 2001-09-24 2007-10-31 Lucent Technologies Inc. Fast power control in wireless communication network
US7082107B1 (en) 2001-11-26 2006-07-25 Intel Corporation Power control in wireless communications based on estimations of packet error rate
KR100841302B1 (ko) * 2001-12-28 2008-06-26 엘지전자 주식회사 이동통신 시스템의 신호 전력 제어 방법
US6711352B2 (en) * 2001-12-28 2004-03-23 Nidec Copal Corporation Range finder of light amount detection type with multi zone resolution
US7340267B2 (en) * 2002-04-17 2008-03-04 Lucent Technologies Inc. Uplink power control algorithm
US6865377B1 (en) * 2002-06-28 2005-03-08 Arraycomm, Inc. Combined open and closed loop beam forming in a multiple array radio communication system
AU2003240168A1 (en) * 2003-06-10 2005-01-04 Nokia Corporation Reception of signals in a device comprising a transmitter
US7606590B2 (en) 2004-04-07 2009-10-20 Atc Technologies, Llc Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US8452316B2 (en) * 2004-06-18 2013-05-28 Qualcomm Incorporated Power control for a wireless communication system utilizing orthogonal multiplexing
US7197692B2 (en) 2004-06-18 2007-03-27 Qualcomm Incorporated Robust erasure detection and erasure-rate-based closed loop power control
US7594151B2 (en) * 2004-06-18 2009-09-22 Qualcomm, Incorporated Reverse link power control in an orthogonal system
US8848574B2 (en) 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system
US8942639B2 (en) * 2005-03-15 2015-01-27 Qualcomm Incorporated Interference control in a wireless communication system
US20070087770A1 (en) * 2005-10-14 2007-04-19 Hong Gan Methods and apparatuses for transmission power control in a wireless communication system
CN101331698B (zh) * 2005-10-27 2012-07-18 高通股份有限公司 用于估计无线通信系统中的反向链路负载的方法和设备
US20070183484A1 (en) * 2005-10-27 2007-08-09 Matthias Brehler System and method of frequency acquisition
US8315226B2 (en) * 2006-01-05 2012-11-20 Qualcomm Incorporated Power control and handoff with power control commands and erasure indications
US8442572B2 (en) 2006-09-08 2013-05-14 Qualcomm Incorporated Method and apparatus for adjustments for delta-based power control in wireless communication systems
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8886245B2 (en) * 2007-03-09 2014-11-11 Qualcomm Incorporated Messaging scheme for controlling uplink transmit power of a wireless device
US8744510B2 (en) 2007-03-13 2014-06-03 Pranav Dayal Power control method and apparatus for wireless communications
US9258784B2 (en) * 2007-06-28 2016-02-09 Nokia Technologies Oy Method and device for optimizing mobile radio transmitter/receiver having antenna
KR101545007B1 (ko) * 2007-10-30 2015-08-18 코닌클리케 필립스 엔.브이. 데이터 및 제어 정보에 대한 전송 파라미터들의 조합된 변경
GB0800385D0 (en) * 2008-01-10 2008-02-20 Astrium Ltd Frequency sharing in a communication system
US8891743B2 (en) * 2011-10-04 2014-11-18 Cisco Technology, Inc. Gain control enhancement for modulated communications
US9176213B2 (en) * 2013-03-13 2015-11-03 Northrop Grumman Systems Corporation Adaptive coded modulation in low earth orbit satellite communication system
US9904885B2 (en) 2014-04-06 2018-02-27 Vypin, LLC Wireless medication compliance sensing device, system, and related methods
US10121028B2 (en) 2013-06-26 2018-11-06 Vypin, LLC Asset tag apparatus and related methods
US10438476B2 (en) 2013-06-26 2019-10-08 Vypin, LLC Wireless hand hygiene tracking system and related techniques
US10572700B2 (en) 2013-06-26 2020-02-25 Vypin, LLC Wireless asset location tracking system and related techniques
US20150130637A1 (en) * 2013-11-11 2015-05-14 Trackblue, Llc Wireless Moisture Sensing Device, System, and Related Methods
US9673887B1 (en) * 2014-03-21 2017-06-06 Rockwell Collins, Inc. Self-calibration of a communications device for transmit power level control
US10433267B2 (en) * 2015-10-27 2019-10-01 The Boeing Company Satellite link budget command interface tool
JP2022024500A (ja) * 2020-07-28 2022-02-09 日本電気株式会社 無線通信装置、電波制御方法及び電波制御プログラム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2048056C1 (de) 1970-09-30 1978-10-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Empfänger für in SSMA-Technik modulierte elektrische Schwingungen
US3925782A (en) 1975-02-28 1975-12-09 Us Army Adaptive RF power output control for net radios
US4112257A (en) 1977-03-24 1978-09-05 Frost Edward G Comprehensive automatic mobile radio telephone system
US4868795A (en) 1985-08-05 1989-09-19 Terra Marine Engineering, Inc. Power leveling telemetry system
US4752967A (en) * 1985-11-29 1988-06-21 Tandem Computers Incorporated Power control system for satellite communications
FR2592256B1 (fr) 1985-12-20 1988-02-12 Trt Telecom Radio Electr Dispositif d'asservissement de la puissance d'emission d'un faisceau hertzien
DE3607687A1 (de) 1986-03-08 1987-09-10 Philips Patentverwaltung Verfahren und schaltungsanordnung zum weiterschalten einer funkverbindung in eine andere funkzelle eines digitalen funkuebertragungssystems
FR2595889B1 (fr) 1986-03-14 1988-05-06 Havel Christophe Dispositif de controle de puissance d'emission dans une station emettrice-receptrice de radiocommunication
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4870689A (en) 1987-04-13 1989-09-26 Beltone Electronics Corporation Ear wax barrier for a hearing aid
US5265119A (en) 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5257283A (en) 1989-11-07 1993-10-26 Qualcomm Incorporated Spread spectrum transmitter power control method and system
FI86352C (fi) * 1989-11-14 1992-08-10 Nokia Oy Ab Digitaliskt radiolaenksystem och foerfarande foer reglering av en saendingseffekt i ett digitaliskt radiolaenksystem.
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
SE467386B (sv) 1990-10-05 1992-07-06 Ericsson Telefon Ab L M Foerfarande foer reglering av uteffekt i mobilradiosystem
US5093840A (en) 1990-11-16 1992-03-03 Scs Mobilecom, Inc. Adaptive power control for a spread spectrum transmitter
US5204876A (en) 1991-03-13 1993-04-20 Motorola, Inc. Method and apparatus for providing high data rate traffic channels in a spread spectrum communication system
US5107487A (en) 1991-05-28 1992-04-21 Motorola, Inc. Power control of a direct sequence CDMA radio
US5220678A (en) 1991-08-12 1993-06-15 Motorola, Inc. Method and apparatus for adjusting the power of a transmitter
US5245629A (en) 1991-10-28 1993-09-14 Motorola, Inc. Method for compensating for capacity overload in a spread spectrum communication system
US5305468A (en) * 1992-03-18 1994-04-19 Motorola, Inc. Power control method for use in a communication system
GB2268365B (en) 1992-06-26 1996-01-17 Roke Manor Research Improvements in or relating to cellular mobile radio systems
KR100289630B1 (ko) 1992-07-13 2001-05-02 리패치 무선 랜의 출력제어방법 및 장치
US5465399A (en) 1992-08-19 1995-11-07 The Boeing Company Apparatus and method for controlling transmitted power in a radio network
NZ255617A (en) 1992-09-04 1996-11-26 Ericsson Telefon Ab L M Tdma digital radio: measuring path loss and setting transmission power accordingly
US5396516A (en) 1993-02-22 1995-03-07 Qualcomm Incorporated Method and system for the dynamic modification of control paremeters in a transmitter power control system
JP3192839B2 (ja) 1993-09-20 2001-07-30 富士通株式会社 初期送信電力の決定方法
US5383219A (en) 1993-11-22 1995-01-17 Qualcomm Incorporated Fast forward link power control in a code division multiple access system
JP2980156B2 (ja) 1994-05-12 1999-11-22 エヌ・ティ・ティ移動通信網株式会社 送信電力制御方法および該制御方法を用いたスペクトル拡散通信装置
JP2877248B2 (ja) * 1994-05-20 1999-03-31 エヌ・ティ・ティ移動通信網株式会社 Cdmaシステムにおける送信電力制御方法および装置
FR2737361B1 (fr) * 1995-07-25 1997-08-22 Alcatel Espace Procede de regulation d'une puissance d'un signal emis par une premiere station a destination d'une seconde station dans un reseau de telecommunications par satellite

Also Published As

Publication number Publication date
AU752318B2 (en) 2002-09-12
DE69841426D1 (de) 2010-02-11
HK1034147A1 (en) 2001-10-12
WO1999008398A2 (en) 1999-02-18
EP2148543A1 (en) 2010-01-27
JP2004515087A (ja) 2004-05-20
CA2311288C (en) 2006-10-17
ES2337965T3 (es) 2010-04-30
BR9815598A (pt) 2003-11-18
BRPI9815598B1 (pt) 2015-09-01
AU8776798A (en) 1999-03-01
ATE556558T1 (de) 2012-05-15
WO1999008398A3 (en) 1999-07-01
MY119732A (en) 2005-07-29
CA2311288A1 (en) 1999-02-18
EP1057283B1 (en) 2009-12-30
EP2148543B1 (en) 2012-05-02
ZA987150B (en) 2000-07-04
AR013939A1 (es) 2001-01-31
EP1057283A2 (en) 2000-12-06
US6188678B1 (en) 2001-02-13
ATE453966T1 (de) 2010-01-15

Similar Documents

Publication Publication Date Title
JP4065368B2 (ja) 開ループ測定を用いて閉ループ電力を適応制御するための方法と装置
JP5032689B2 (ja) ループ遅延による予測パラメータ制御方法及び装置
CA2120768C (en) Transmitter power control system
US5265119A (en) Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
KR100215947B1 (ko) Cdma셀룰러모빌전화시스템에서의송신전력제어방법및장치
US5485486A (en) Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5257283A (en) Spread spectrum transmitter power control method and system
EP1569360A1 (en) Spread-spectrum system and method
KR19990022258A (ko) 저궤도 위성 통신 시스템을 위한 파일럿 신호 전력 제어
JP3323438B2 (ja) 無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees