JP4065152B2 - Engine vibration prevention control device - Google Patents

Engine vibration prevention control device Download PDF

Info

Publication number
JP4065152B2
JP4065152B2 JP2002194506A JP2002194506A JP4065152B2 JP 4065152 B2 JP4065152 B2 JP 4065152B2 JP 2002194506 A JP2002194506 A JP 2002194506A JP 2002194506 A JP2002194506 A JP 2002194506A JP 4065152 B2 JP4065152 B2 JP 4065152B2
Authority
JP
Japan
Prior art keywords
vibration
engine
phase
actuator
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002194506A
Other languages
Japanese (ja)
Other versions
JP2004034826A (en
Inventor
浩臣 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002194506A priority Critical patent/JP4065152B2/en
Publication of JP2004034826A publication Critical patent/JP2004034826A/en
Application granted granted Critical
Publication of JP4065152B2 publication Critical patent/JP4065152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、能動型防振支持装置の防振性能を高めるためのエンジンの振動防止制御装置に関する。
【0002】
【従来の技術】
エンジンのクランクパルスを検出することでエンジン振動の振幅および位相を推定し、推定したエンジン振動の振幅および位相に基づいてアクチュエータの作動を制御することで、液室の容積を変化させる可動板を駆動してエンジン振動を低減する能動型防振支持装置が、本出願人により特願2002−101592号により既に提案されている。
【0003】
【発明が解決しようとする課題】
ところで、上記従来のものは、エンジンのクランクパルスに基づいてエンジン振動の振幅およびクランク位相を推定しているが、燃焼室における混合気の爆発により発生した振動が能動型防振支持装置の位置に達するまでには時間遅れがあり、しかも能動型防振支持装置に駆動信号が入力してからアクチュエータが作動するまでには時間遅れがあるため、前記推定したエンジン振動のクランク位相と能動型防振支持装置の作動位相との間にずれが発生してしまい、結果として能動型防振支持装置の防振効果が充分に発揮されない可能性があった。
【0004】
本発明は前述の事情に鑑みてなされたもので、エンジン振動の位相と能動型防振支持装置のアクチュエータが作動する位相とのずれを補償し、能動型防振支持装置による防振効果を一層高めることを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、少なくともクランクパルスからエンジンの振動の位相を推定し、その推定した振動の位相に基づいて能動型防振支持装置のアクチュエータを作動させる位相を制御するエンジンの振動防止制御装置において、エンジン回転数を検出するエンジン回転数センサと、外気温を検出する外気温センサと、実際のエンジンの振動の位相に対して時間遅れを発生させることなく前記アクチュエータを作動させ、且つ外気温の変動による位相のずれを補償して実際のエンジンの振動の位相に対して適切なタイミングで前記アクチュエータを作動させるべく、エンジン回転数及び外気温に基づいて前記推定した振動の位相を補正する補正手段とを備えたことを特徴とするエンジンの振動防止制御装置が提案される。
【0006】
請求項1の発明の上記構成によれば、クランクパルスから推定したエンジンの振動の位相に基づいて能動型防振支持装置のアクチュエータを作動させる位相を制御する際に、エンジン回転数センサで検出したエンジン回転数に基づいて前記推定した振動の位相を補正するので、実際のエンジンの振動の位相に対して時間遅れを発生させることなく能動型防振支持装置のアクチュエータを作動させ、能動型防振支持装置の防振効果を充分に発揮させることができる
【0007】
また特にクランクパルスから推定したエンジンの振動の位相を、エンジン回転数だけでなく外気温に基づいて補正するので、請求項1の発明の前記効果に加えて、外気温の変動による位相のずれを補償してエンジンの振動の位相に対して一層適切なタイミングで能動型防振支持装置のアクチュエータを作動させ、防振効果を更に高めることができる。
【0008】
尚、実施例の電子制御ユニットUは本発明の補正手段に対応する。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0010】
図1〜図6は本発明の一実施例を示すもので、図1は能動型防振支持装置の縦断面図、図2は図1の2−2線断面図、図3は図1の3−3線断面図、図4は図1の要部拡大図、図5は能動型防振支持装置の制御手法を示すフローチャート、図6は振動のクランク位相の補正位相値を検索するマップである。
【0011】
図1〜図4に示す能動型防振支持装置Mは、自動車のエンジンEを車体フレームFに弾性的に支持し、エンジンEの振動が車体フレームFに伝達され難くする機能を有する。エンジンEのクランクシャフトが所定角度(例えば、10°)回転する度に出力されるクランクパルスを検出するクランクパルスセンサSaからの信号と、気筒毎の上死点のタイミングを検出するTDCセンサSbからの信号と、エンジン回転数Neを検出するエンジン回転数センサScからの信号と、外気温Ta(実施例では、吸気温あるいは冷却水温で代用)を検出する外気温センサSdからの信号とが入力される電子制御ユニットUは、能動型防振支持装置Mの制御を司る。
【0012】
能動型防振支持装置Mは軸線Lに関して実質的に軸対称な構造を有するもので、エンジンEに結合される板状の取付ブラケット11に溶接した内筒12と、この内筒12の外周に同軸に配置された外筒13とを備えており、内筒12および外筒13には厚肉のゴムで形成した第1弾性体14の上端および下端がそれぞれが加硫接着により接合される。中央に開口15bを有する円板状の第1オリフィス形成部材15と、上面が開放した樋状の断面を有して環状に形成された第2オリフィス形成部材16と、同じく上面が開放した樋状の断面を有して環状に形成された第3オリフィス形成部材17とが溶接により一体化されており、第1オリフィス形成部材15および第2オリフィス形成部材16の外周部が重ね合わされて前記外筒13の下部に設けたカシメ固定部13aに固定される。
【0013】
膜状のゴムで形成された第2弾性体18の外周が第3オリフィス形成部材17の内周に加硫接着により固定されており、この第2弾性体18の内周に加硫接着により固定されたキャップ部材19が、軸線L上に上下動可能に配置された可動部材20に圧入により固定される。外筒13のカシメ固定部13aに固定されたリング部材21にダイヤフラム22の外周が加硫接着により固定されており、このダイヤフラム22の内周に加硫接着により固定されたキャップ部材23が前記可動部材20に圧入により固定される。
【0014】
しかして、第1弾性体14および第2弾性体18間に液体が封入された第1液室24が区画され、第2弾性体18およびダイヤフラム22間に液体が封入された第2液室25が区画される。そして第1液室24および第2液室25は、第1〜第3オリフィス形成部材15,16,17により形成された上部オリフィス26および下部オリフィス27によって相互に連通する。
【0015】
上部オリフィス26は第1オリフィス形成部材15および第2オリフィス形成部材16間に形成される環状の通路であって、その一部に設けられた隔壁26aの一側において第1オリフィス形成部材15に連通孔15aが形成され、前記隔壁26aの他側において第2オリフィス形成部材16に連通孔16aが形成される。従って、上部オリフィス26は、第1オリフィス形成部材15の連通孔15aから第2オリフィス形成部材16の連通孔16aまでの略1周の範囲に亘って形成される(図2参照)。
【0016】
下部オリフィス27は第2オリフィス形成部材16および第3オリフィス形成部材17間に形成される環状の通路であって、その一部に設けられた隔壁27aの一側において第2オリフィス形成部材16に前記連通孔16aが形成され、前記隔壁27aの他側において第3オリフィス形成部材17に連通孔17aが形成される。従って、下部オリフィス27は、第2オリフィス形成部材16の連通孔16aから第3オリフィス形成部材17の連通孔17aまでの略1周の範囲に亘って形成される(図3参照)。
【0017】
以上のことから、第1液室24および第2液室25は、直列に接続された上部オリフィス26および下部オリフィス27によって相互に連通する。
【0018】
外筒13のカシメ固定部13aには、能動型防振支持装置Mを車体フレームFに固定するための環状の取付ブラケット28が固定されており、この取付ブラケット28の下面に前記可動部材20を駆動するためのアクチュエータ29の外郭を構成するアクチュエータハウジング30が溶接される。
【0019】
アクチュエータハウジング30にはヨーク32が固定されており、ボビン33に巻き付けられたコイル34がアクチュエータハウジング30およびヨーク32に囲まれた空間に収納される。環状のコイル34の内周に嵌合するヨーク32の筒状部32aに有底円筒状のベアリング36が嵌合する。コイル34の上面に対向する円板状のアーマチュア38がアクチュエータハウジング30の内周面に摺動自在に支持されており、このアーマチュア38の内周に形成した段部38aがベアリング36の上部に係合する。アーマチュア38はボビン33の上面との間に配置した皿ばね42で上方に付勢され、アクチュエータハウジング30に設けた係止部30aに係合して位置決めされる。
【0020】
ベアリング36の内周に円筒状のスライダ43が摺動自在に嵌合しており、可動部材20から下方に延びる軸部20aが、ベアリング36の上底部を緩く貫通してスライダ43の内部に固定したボス44に接続される。ベアリング36の上底部とスライダ43との間にコイルばね41が配置されており、このコイルばね41でベアリング36は上向きに付勢され、スライダ43は下向きに付勢される。
【0021】
アクチュエータ29のコイル34が消磁状態にあるとき、ベアリング36に摺動自在に支持されたスライダ43にはコイルばね41の弾発力が下向きに作用するとともに、ヨーク32の底面との間に配置したコイルばね45の弾発力が上向きに作用しており、スライダ43は両コイルばね41,45の弾発力が釣り合う位置に停止する。この状態からコイル34を励磁してアーマチュア38を下方に吸引すると、段部38aに押されてベアリング36が下方に摺動することによりコイルばね41が圧縮される。その結果、コイルばね41の弾発力が増加してコイルばね45を圧縮しながらスライダ43が下降するため、スライダ43にボス44および軸部20aを介して接続された可動部材20が下降し、可動部材20に接続された第2弾性体18が下方に変形して第1液室24の容積が増加する。逆にコイル34を消磁すると、可動部材20が上昇して第2弾性体18が上方に変形し、第1液室24の容積が減少する。
【0022】
しかして、自動車の走行中に低周波数のエンジンシェイク振動が発生したとき、エンジンEから入力される荷重で第1弾性体14が変形して第1液室24の容積が変化すると、上部オリフィス26および下部オリフィス27を介して接続された第1液室24および第2液室25間で液体が行き来する。第1液室24の容積が拡大・縮小すると、それに応じて第2液室25の容積が縮小・拡大するが、この第2液室25の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、上部オリフィス26および下部オリフィス27の形状および寸法、並びに第1弾性体14のばね定数は前記エンジンシェイク振動の周波数領域で低ばね定数および高減衰力を示すように設定されているため、エンジンEから車体フレームFに伝達される振動を効果的に低減することができる。
【0023】
尚、上記エンジンシェイク振動の周波数領域では、アクチュエータ29は非作動状態に保たれる。
【0024】
前記エンジンシェイク振動よりも周波数の高い振動、即ちエンジンEのクランクシャフトの回転に起因するアイドル振動やこもり音振動が発生した場合、第1液室24および第2液室25を接続する上部オリフィス26および下部オリフィス27内の液体はスティック状態になって防振機能を発揮できなくなるため、アクチュエータ29を駆動して防振機能を発揮させる。
【0025】
能動型防振支持装置Mに防振機能を発揮させるべく、電子制御ユニットUは各センサSa,Sb,Sc,Sdからの信号に基づいてアクチュエータ29のコイル34に対する通電を制御する。この制御の内容を、図5のフローチャートに基づいて具体的に説明する。
【0026】
先ずステップS1でクランクパルスセンサSaにより検出した10°のクランクアングル毎に出力されるクランクパルスと、TDCセンサSbにより検出した気筒毎の上死点のタイミングと、エンジン回転数センサScで検出したエンジン回転数Neと、外気温センサSdで検出した外気温Taとを読み込む。続くステップS2でクランクパルスの時間間隔を算出した後に、ステップS3で前記10°のクランクアングルをクランクパルスの時間間隔で除算することでクランク角速度ωを算出し、更にステップS4でクランク角速度ωを時間微分してクランク角加速度dω/dtを算出する。続くステップS5でエンジンEのクランクシャフト回りのトルクTqを、エンジンEのクランクシャフト回りの慣性モーメントをIとして、
Tq=I×dω/dt
により算出する。このトルクTqはクランクシャフトが一定の角速度ωで回転していると仮定すると0になるが、膨張行程ではピストンの加速により角速度ωが増加し、圧縮行程ではピストンの減速により角速度ωが減少してクランク角加速度dω/dtが発生するため、そのクランク角加速度dω/dtに比例したトルクTqが発生することになる。
【0027】
続くステップS6で時間的に隣接するトルクの最大値および最小値を判定し、ステップS7でトルクの最大値および最小値の偏差、つまりトルクの変動量としてエンジン振動量を算出する。このエンジン振動量は、能動型防振支持装置Mの位置における振動状態と高い相関関係を持っている。続くステップS8で気筒毎のTDC信号とエンジン振動量とを対応させることで、気筒毎のエンジン振動量を算出する。そしてステップS9で気筒毎のTDC信号とクランクシャフトの角速度ωとにより、気筒毎の振動のクランク位相を推定する。
【0028】
このように、クランクパルスおよびTDC信号から推定した気筒毎の振動のクランク位相は、混合気の爆発により発生した振動が能動型防振支持装置Mの位置に達するまでの時間遅れと、能動型防振支持装置Mに駆動信号が入力してからアクチュエータ29が作動するまでの時間遅れとにより、能動型防振支持装置Mのアクチュエータ29の作動位相との間にずれが発生してしまい、能動型防振支持装置Mの防振効果が充分に発揮されない虞がある。この位相のずれの大きさは主としてエンジン回転数Neによって変化し、また外気温Taによっても変化する。
【0029】
そこで本実施例では、以下のステップS10,S11で前記時間遅れを補正している。即ち、ステップS10でエンジン回転数センサScにより検出したエンジン回転数Neを、図6(A)のマップに適用して補正位相値を検索するとともに、ステップS11で外気温センサSdにより検出した外気温Taに相当する吸気温あるいは冷却水温を、図6(B),(C)のマップに適用して補正位相値を検索する。そしてステップS12でエンジン回転数Neによる補正位相値および外気温Taによる補正位相値によって気筒毎の振動のクランク位相を補正して能動型防振支持装置Mのアクチュエータ29の制御位相を決定した後、ステップS13で前記補正後の気筒毎の振動のクランク位相に基づいて能動型防振支持装置Mのアクチュエータ29を作動させる。
【0030】
しかして、振動によってエンジンEが下方に偏倚して第1液室24の容積が減少して液圧が増加するときには、コイル34を励磁してアーマチュア38を吸引する。その結果、アーマチュア38はコイルばね41,45を圧縮しながらスライダ43および可動部材20と共に下方に移動し、可動部材20に内周を接続された第2弾性体18を下方に変形させる。これにより、第1液室24の容積が増加して液圧の増加を抑制するため、能動型防振支持装置MはエンジンEから車体フレームFへの下向きの荷重伝達を防止する能動的な支持力を発生する。
【0031】
逆に振動によってエンジンEが上方に偏倚して第1液室24の容積が増加して液圧が減少するときには、コイル34を消磁してアーマチュア38を吸引を解除する。その結果、アーマチュア38はコイルばね41,45の弾発力でスライダ43および可動部材20と共に上方に移動し、可動部材20に内周を接続された第2弾性体18を上方に変形させる。これにより、第1液室24の容積が減少して液圧の減少を抑制するため、能動型防振支持装置MはエンジンEから車体フレームFへの上向きの荷重伝達を防止する能動的な支持力を発生する。
【0032】
上述した能動型防振支持装置Mのアクチュエータ29のコイル34を励磁および消磁するタイミングを、前記補正後の気筒毎の振動のクランク位相に基づいて制御することで、気筒毎の振動のクランク位相に対して時間遅れのない適切なタイミングで能動型防振支持装置Mを作動させることができ、その防振性能を効果的に発揮させることができる。
【0033】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0034】
例えば、能動型防振支持装置Mの構造は実施例のものに限定されず、同様の機能を備えた種々の構造のものを採用することができる。
【0035】
【発明の効果】
以上のように発明によれば、クランクパルスから推定したエンジンの振動の位相に基づいて能動型防振支持装置のアクチュエータを作動させる位相を制御する際に、エンジン回転数センサで検出したエンジン回転数に基づいて前記推定した振動の位相を補正するので、実際のエンジンの振動の位相に対して時間遅れを発生させることなく能動型防振支持装置のアクチュエータを作動させ、能動型防振支持装置の防振効果を充分に発揮させることができる。
【0036】
また特にクランクパルスから推定したエンジンの振動の位相を、エンジン回転数だけでなく外気温に基づいて補正するので、外気温の変動による位相のずれを補償してエンジンの振動の位相に対して一層適切なタイミングで能動型防振支持装置のアクチュエータを作動させ、防振効果を更に高めることができる。
【図面の簡単な説明】
【図1】 能動型防振支持装置の縦断面図
【図2】 図1の2−2線断面図
【図3】 図1の3−3線断面図
【図4】 図1の要部拡大図
【図5】 能動型防振支持装置の制御手法を示すフローチャート
【図6】 振動のクランク位相の補正位相値を検索するマップ
【符号の説明】
E エンジン
Ne エンジン回転数
M 能動型防振支持装置
Sc エンジン回転数センサ
Sd 外気温センサ
Ta 外気温
U 電子制御ユニット(補正手段)
29 アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an engine vibration prevention control device for enhancing vibration isolation performance of an active vibration isolation support device.
[0002]
[Prior art]
By detecting the crank pulse of the engine, the amplitude and phase of the engine vibration are estimated, and the actuator is controlled based on the estimated amplitude and phase of the engine vibration to drive the movable plate that changes the volume of the liquid chamber Thus, an active vibration isolating support device for reducing engine vibration has already been proposed by the present applicant in Japanese Patent Application No. 2002-101593.
[0003]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional one, the amplitude and crank phase of the engine vibration are estimated based on the crank pulse of the engine, but the vibration generated by the explosion of the air-fuel mixture in the combustion chamber is at the position of the active vibration isolating support device. Since there is a time delay until it reaches, and there is a time delay from the input of the drive signal to the active vibration isolating support device until the actuator operates, the estimated engine vibration crank phase and the active vibration There is a possibility that a deviation occurs with respect to the operation phase of the support device, and as a result, the vibration-proof effect of the active vibration-proof support device may not be sufficiently exhibited.
[0004]
The present invention has been made in view of the above-described circumstances, and compensates for a deviation between the phase of engine vibration and the phase at which the actuator of the active vibration isolating support device operates, thereby further improving the vibration isolating effect of the active vibration isolating support device. The purpose is to increase.
[0005]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, the phase of the engine vibration is estimated from at least the crank pulse, and the actuator of the active vibration isolating support device is based on the estimated phase of the vibration. In the engine vibration prevention control device for controlling the phase for operating the engine, the engine speed sensor for detecting the engine speed, the outside air temperature sensor for detecting the outside air temperature, and a time delay with respect to the actual engine vibration phase. actuates the actuator without causing, and actuates the actuator at the right time for the actual engine vibration of the phase to compensate for the phase shift due to variations in the ambient temperature Rubeku, engine speed and the outer anti-vibration of the engine, characterized in that a correcting means for correcting the phase of the vibration the estimated based on air temperature Your device is proposed.
[0006]
According to the above configuration of the invention of claim 1, when the phase for operating the actuator of the active vibration isolating support device is controlled based on the phase of the engine vibration estimated from the crank pulse, it is detected by the engine speed sensor. Since the estimated vibration phase is corrected based on the engine speed, the actuator of the active vibration isolating support device is operated without causing a time delay with respect to the actual engine vibration phase. The vibration-proofing effect of the support device can be sufficiently exhibited .
[0007]
The in particular phase of the vibration of the engine estimated from crank pulse, is corrected based on the outside air temperature as well as the engine speed, in addition to the effect of the invention of claim 1, phase shift due to changes in outside air temperature Thus, the actuator of the active vibration isolating support device can be operated at a more appropriate timing with respect to the vibration phase of the engine to further enhance the vibration isolating effect.
[0008]
The electronic control unit U of the embodiment corresponds to the correcting means of the present invention.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the embodiments of the present invention shown in the accompanying drawings.
[0010]
1 to 6 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an active vibration isolating support device, FIG. 2 is a sectional view taken along line 2-2 in FIG. 1, and FIG. Fig. 4 is a sectional view taken along line 3-3, Fig. 4 is an enlarged view of the main part of Fig. 1, Fig. 5 is a flowchart showing a control method of the active vibration isolating support device, and Fig. 6 is a map for searching for a correction phase value of a crank phase of vibration. is there.
[0011]
The active vibration isolation support device M shown in FIGS. 1 to 4 has a function of elastically supporting an engine E of a vehicle on a vehicle body frame F and making it difficult for vibration of the engine E to be transmitted to the vehicle body frame F. From a signal from a crank pulse sensor Sa that detects a crank pulse that is output every time the crankshaft of the engine E rotates by a predetermined angle (for example, 10 °), and from a TDC sensor Sb that detects the timing of top dead center for each cylinder. , A signal from the engine speed sensor Sc for detecting the engine speed Ne, and a signal from the outside air temperature sensor Sd for detecting the outside air temperature Ta (in the embodiment, substitute with the intake air temperature or the cooling water temperature). The electronic control unit U is responsible for controlling the active vibration isolating support apparatus M.
[0012]
The active vibration isolating support device M has a substantially axisymmetric structure with respect to the axis L, and has an inner cylinder 12 welded to a plate-like mounting bracket 11 coupled to the engine E, and an outer periphery of the inner cylinder 12. The outer cylinder 13 is coaxially arranged, and the upper and lower ends of the first elastic body 14 made of thick rubber are joined to the inner cylinder 12 and the outer cylinder 13 by vulcanization adhesion. A disc-shaped first orifice forming member 15 having an opening 15b in the center, a second orifice forming member 16 having a bowl-shaped cross section with an open upper surface and formed in an annular shape, and a bowl shape having the same upper surface opened The third orifice forming member 17 having an annular shape and formed in an annular shape is integrated by welding, and the outer circumferences of the first orifice forming member 15 and the second orifice forming member 16 are overlapped to form the outer cylinder. 13 is fixed to a caulking fixing portion 13a provided at a lower portion.
[0013]
The outer periphery of the second elastic body 18 formed of film-like rubber is fixed to the inner periphery of the third orifice forming member 17 by vulcanization adhesion, and is fixed to the inner periphery of the second elastic body 18 by vulcanization adhesion. The cap member 19 is fixed by press-fitting to the movable member 20 arranged on the axis L so as to be movable up and down. The outer periphery of the diaphragm 22 is fixed to the ring member 21 fixed to the caulking fixing portion 13a of the outer cylinder 13 by vulcanization bonding, and the cap member 23 fixed to the inner periphery of the diaphragm 22 by vulcanization bonding is the movable member. It is fixed to the member 20 by press fitting.
[0014]
Accordingly, the first liquid chamber 24 in which the liquid is sealed is defined between the first elastic body 14 and the second elastic body 18, and the second liquid chamber 25 in which the liquid is sealed between the second elastic body 18 and the diaphragm 22. Is partitioned. The first liquid chamber 24 and the second liquid chamber 25 communicate with each other through the upper orifice 26 and the lower orifice 27 formed by the first to third orifice forming members 15, 16, and 17.
[0015]
The upper orifice 26 is an annular passage formed between the first orifice forming member 15 and the second orifice forming member 16, and communicates with the first orifice forming member 15 on one side of a partition wall 26a provided in a part thereof. A hole 15a is formed, and a communication hole 16a is formed in the second orifice forming member 16 on the other side of the partition wall 26a. Accordingly, the upper orifice 26 is formed over a substantially one-round range from the communication hole 15a of the first orifice forming member 15 to the communication hole 16a of the second orifice forming member 16 (see FIG. 2).
[0016]
The lower orifice 27 is an annular passage formed between the second orifice forming member 16 and the third orifice forming member 17, and the second orifice forming member 16 is connected to the second orifice forming member 16 on one side of a partition wall 27a provided in a part thereof. A communication hole 16a is formed, and a communication hole 17a is formed in the third orifice forming member 17 on the other side of the partition wall 27a. Therefore, the lower orifice 27 is formed over a substantially one-round range from the communication hole 16a of the second orifice forming member 16 to the communication hole 17a of the third orifice forming member 17 (see FIG. 3).
[0017]
From the above, the first liquid chamber 24 and the second liquid chamber 25 communicate with each other by the upper orifice 26 and the lower orifice 27 connected in series.
[0018]
An annular mounting bracket 28 for fixing the active vibration isolating support device M to the vehicle body frame F is fixed to the caulking fixing portion 13 a of the outer cylinder 13. The movable member 20 is attached to the lower surface of the mounting bracket 28. An actuator housing 30 that constitutes the outline of the actuator 29 for driving is welded.
[0019]
A yoke 32 is fixed to the actuator housing 30, and a coil 34 wound around the bobbin 33 is accommodated in a space surrounded by the actuator housing 30 and the yoke 32. A bottomed cylindrical bearing 36 is fitted to the cylindrical portion 32a of the yoke 32 fitted to the inner periphery of the annular coil 34. A disk-shaped armature 38 facing the upper surface of the coil 34 is slidably supported on the inner peripheral surface of the actuator housing 30, and a step portion 38 a formed on the inner periphery of the armature 38 is engaged with the upper portion of the bearing 36. Match. The armature 38 is biased upward by a disc spring 42 disposed between the armature 38 and the upper surface of the bobbin 33, and is positioned by engaging with a locking portion 30 a provided in the actuator housing 30.
[0020]
A cylindrical slider 43 is slidably fitted to the inner periphery of the bearing 36, and a shaft portion 20 a extending downward from the movable member 20 loosely penetrates the upper bottom portion of the bearing 36 and is fixed inside the slider 43. Connected to the boss 44. A coil spring 41 is disposed between the upper bottom portion of the bearing 36 and the slider 43, and the bearing 36 is biased upward and the slider 43 is biased downward by the coil spring 41.
[0021]
When the coil 34 of the actuator 29 is in a demagnetized state, the elastic force of the coil spring 41 acts downward on the slider 43 slidably supported by the bearing 36 and is disposed between the bottom surface of the yoke 32. The spring force of the coil spring 45 is acting upward, and the slider 43 stops at a position where the spring forces of both the coil springs 41 and 45 are balanced. When the coil 34 is excited from this state and the armature 38 is attracted downward, the coil spring 41 is compressed by being pushed by the stepped portion 38a and sliding the bearing 36 downward. As a result, the elastic force of the coil spring 41 increases and the slider 43 descends while compressing the coil spring 45, so the movable member 20 connected to the slider 43 via the boss 44 and the shaft portion 20a descends, The second elastic body 18 connected to the movable member 20 is deformed downward and the volume of the first liquid chamber 24 is increased. Conversely, when the coil 34 is demagnetized, the movable member 20 rises, the second elastic body 18 is deformed upward, and the volume of the first liquid chamber 24 decreases.
[0022]
Thus, when low-frequency engine shake vibration occurs during the traveling of the automobile, the upper orifice 26 changes when the first elastic body 14 is deformed by the load input from the engine E and the volume of the first liquid chamber 24 changes. The liquid goes back and forth between the first liquid chamber 24 and the second liquid chamber 25 connected via the lower orifice 27. When the volume of the first liquid chamber 24 is enlarged / reduced, the volume of the second liquid chamber 25 is reduced / expanded accordingly, but the volume change of the second liquid chamber 25 is absorbed by the elastic deformation of the diaphragm 22. At this time, the shape and size of the upper orifice 26 and the lower orifice 27 and the spring constant of the first elastic body 14 are set so as to exhibit a low spring constant and a high damping force in the frequency region of the engine shake vibration. Vibration transmitted from the engine E to the vehicle body frame F can be effectively reduced.
[0023]
In the frequency region of the engine shake vibration, the actuator 29 is kept in an inoperative state.
[0024]
When vibration having a frequency higher than the engine shake vibration, that is, idle vibration or booming sound vibration caused by rotation of the crankshaft of the engine E occurs, the upper orifice 26 connecting the first liquid chamber 24 and the second liquid chamber 25. Since the liquid in the lower orifice 27 is in a stick state and cannot exhibit the anti-vibration function, the actuator 29 is driven to exhibit the anti-vibration function.
[0025]
The electronic control unit U controls the energization of the coil 29 of the actuator 29 based on the signals from the sensors Sa, Sb, Sc, and Sd so that the active vibration-proof support device M exhibits the vibration-proof function. The contents of this control will be specifically described based on the flowchart of FIG.
[0026]
First, crank pulses output at every 10 ° crank angle detected by the crank pulse sensor Sa in step S1, timing of top dead center for each cylinder detected by the TDC sensor Sb, and engine detected by the engine speed sensor Sc. The rotational speed Ne and the outside air temperature Ta detected by the outside air temperature sensor Sd are read. After calculating the crank pulse time interval in the subsequent step S2, the crank angular speed ω is calculated by dividing the 10 ° crank angle by the crank pulse time interval in step S3, and the crank angular speed ω is calculated in step S4. The crank angular acceleration dω / dt is calculated by differentiation. In the following step S5, the torque Tq around the crankshaft of the engine E is set as I, and the inertia moment around the crankshaft of the engine E is set as I.
Tq = I × dω / dt
Calculated by This torque Tq is zero assuming that the crankshaft is rotating at a constant angular velocity ω, but in the expansion stroke, the angular velocity ω increases due to acceleration of the piston, and in the compression stroke, the angular velocity ω decreases due to deceleration of the piston. Since the crank angular acceleration dω / dt is generated, a torque Tq proportional to the crank angular acceleration dω / dt is generated.
[0027]
In the next step S6, the maximum value and the minimum value of the temporally adjacent torque are determined, and in step S7, the engine vibration amount is calculated as a deviation between the maximum value and the minimum value of the torque, that is, the torque fluctuation amount. This engine vibration amount has a high correlation with the vibration state at the position of the active vibration-proof support device M. In the subsequent step S8, the engine vibration amount for each cylinder is calculated by associating the TDC signal for each cylinder with the engine vibration amount. In step S9, the crank phase of vibration for each cylinder is estimated from the TDC signal for each cylinder and the angular velocity ω of the crankshaft.
[0028]
As described above, the crank phase of the vibration for each cylinder estimated from the crank pulse and the TDC signal indicates the time delay until the vibration generated by the explosion of the air-fuel mixture reaches the position of the active vibration isolation support device M, and the active type vibration isolation. Due to the time delay from the input of the drive signal to the vibration support device M until the actuator 29 is activated, a deviation occurs from the operation phase of the actuator 29 of the active vibration isolation support device M. There is a possibility that the anti-vibration effect of the anti-vibration support device M is not sufficiently exhibited. The magnitude of this phase shift mainly changes with the engine speed Ne and also changes with the outside air temperature Ta.
[0029]
Therefore, in this embodiment, the time delay is corrected in the following steps S10 and S11. That is, the engine speed Ne detected by the engine speed sensor Sc in step S10 is applied to the map of FIG. 6A to search for a correction phase value, and the outside air temperature detected by the outside air temperature sensor Sd in step S11. The correction phase value is retrieved by applying the intake air temperature or the cooling water temperature corresponding to Ta to the maps of FIGS. In step S12, the crank phase of vibration for each cylinder is corrected by the correction phase value based on the engine speed Ne and the correction phase value based on the outside air temperature Ta to determine the control phase of the actuator 29 of the active vibration isolation support device M. In step S13, the actuator 29 of the active vibration isolating support device M is operated based on the corrected crank phase of vibration for each cylinder.
[0030]
Therefore, when the engine E is biased downward due to vibration and the volume of the first fluid chamber 24 decreases and the fluid pressure increases, the coil 34 is excited to attract the armature 38. As a result, the armature 38 moves downward together with the slider 43 and the movable member 20 while compressing the coil springs 41 and 45, and deforms the second elastic body 18 connected to the inner periphery of the movable member 20 downward. As a result, since the volume of the first fluid chamber 24 is increased and the increase in fluid pressure is suppressed, the active vibration isolating support device M is an active support that prevents downward load transmission from the engine E to the vehicle body frame F. Generate power.
[0031]
On the contrary, when the engine E is biased upward due to vibration and the volume of the first liquid chamber 24 increases and the hydraulic pressure decreases, the coil 34 is demagnetized to release the suction of the armature 38. As a result, the armature 38 moves upward together with the slider 43 and the movable member 20 by the elastic force of the coil springs 41 and 45, and deforms the second elastic body 18 whose inner periphery is connected to the movable member 20 upward. As a result, since the volume of the first fluid chamber 24 is reduced and the decrease in fluid pressure is suppressed, the active vibration isolating support device M is an active support that prevents upward load transmission from the engine E to the vehicle body frame F. Generate power.
[0032]
By controlling the timing of exciting and demagnetizing the coil 34 of the actuator 29 of the above-described active vibration isolating support apparatus M based on the corrected crank phase of vibration for each cylinder, the crank phase of vibration for each cylinder is controlled. On the other hand, the active vibration-proof support device M can be operated at an appropriate timing without a time delay, and the vibration-proof performance can be effectively exhibited.
[0033]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0034]
For example, the structure of the active vibration isolating support apparatus M is not limited to that of the embodiment, and various structures having similar functions can be adopted.
[0035]
【The invention's effect】
As described above, according to the present invention, when the phase for operating the actuator of the active vibration isolating support device is controlled based on the phase of the engine vibration estimated from the crank pulse, the engine speed detected by the engine speed sensor is detected. Since the estimated vibration phase is corrected based on the number, the actuator of the active vibration isolating support device is operated without causing a time delay with respect to the actual engine vibration phase. The anti-vibration effect can be fully exhibited.
[0036]
The phase of the vibration of the engine estimated from crank pulses in particular, is corrected based on the outside air temperature as well as the engine speed, to compensate for the phase shift due to variations in the ambient temperature to the phase of vibration of the engine Thus, the actuator of the active vibration isolating support device can be operated at a more appropriate timing to further enhance the vibration isolating effect.
[Brief description of the drawings]
1 is a longitudinal sectional view of an active vibration isolating support device. FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a sectional view taken along line 3-3 in FIG. FIG. 5 is a flowchart showing a control method of the active vibration isolating support device. FIG. 6 is a map for searching for a correction phase value of a crank phase of vibration.
E Engine Ne Engine speed M Active vibration-proof support device Sc Engine speed sensor Sd Outside air temperature sensor Ta Outside air temperature U Electronic control unit (correction means)
29 Actuator

Claims (1)

なくともクランクパルスからエンジン(E)の振動の位相を推定し、その推定した振動の位相に基づいて能動型防振支持装置(M)のアクチュエータ(29)を作動させる位相を制御するエンジンの振動防止制御装置において、
エンジン回転数(Ne)を検出するエンジン回転数センサ(Sc)と、
外気温(Ta)を検出する外気温センサ(Sd)と、
実際のエンジン(E)の振動の位相に対して時間遅れを発生させることなく前記アクチュエータ(29)を作動させ、且つ外気温(Ta)の変動による位相のずれを補償して実際のエンジン(E)の振動の位相に対して適切なタイミングで前記アクチュエータ(29)を作動させるべく、エンジン回転数(Ne)及び外気温(Ta)に基づいて前記推定した振動の位相を補正する補正手段(U)と
を備えたことを特徴とする、エンジンの振動防止制御装置。
Even without least to estimate the phase of the vibration of the engine (E) from the crank pulse, the engine for controlling the phase of actuating the actuator (29) of the active vibration isolation support device (M) based on the estimated vibration of the phase In the vibration prevention control device,
An engine speed sensor (Sc) for detecting the engine speed (Ne);
An outside air temperature sensor (Sd) for detecting the outside air temperature (Ta);
The actuator (29) is operated without causing a time delay with respect to the phase of the vibration of the actual engine (E), and the phase shift due to fluctuations in the outside air temperature (Ta) is compensated for, so that the actual engine (E ) To correct the estimated vibration phase based on the engine speed (Ne) and the outside air temperature (Ta) in order to operate the actuator (29) at an appropriate timing with respect to the vibration phase of And an anti-vibration control device for an engine.
JP2002194506A 2002-07-03 2002-07-03 Engine vibration prevention control device Expired - Fee Related JP4065152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194506A JP4065152B2 (en) 2002-07-03 2002-07-03 Engine vibration prevention control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194506A JP4065152B2 (en) 2002-07-03 2002-07-03 Engine vibration prevention control device

Publications (2)

Publication Number Publication Date
JP2004034826A JP2004034826A (en) 2004-02-05
JP4065152B2 true JP4065152B2 (en) 2008-03-19

Family

ID=31703185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194506A Expired - Fee Related JP4065152B2 (en) 2002-07-03 2002-07-03 Engine vibration prevention control device

Country Status (1)

Country Link
JP (1) JP4065152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490199B2 (en) * 2004-07-30 2010-06-23 東海ゴム工業株式会社 Active vibration isolator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893842A (en) * 1994-09-27 1996-04-12 Mazda Motor Corp Vibration reducing device for vehicle and its control method
JPH08177965A (en) * 1994-12-26 1996-07-12 Nippondenso Co Ltd Engine mount
JPH10306842A (en) * 1997-05-06 1998-11-17 Tokai Rubber Ind Ltd Active type damper
JPH10320059A (en) * 1997-05-21 1998-12-04 Nissan Motor Co Ltd Active type vibration controller
JP3952584B2 (en) * 1997-12-05 2007-08-01 東海ゴム工業株式会社 Active vibration isolator
JPH11325166A (en) * 1998-05-13 1999-11-26 Toyota Motor Corp Engine mount system
JP3804275B2 (en) * 1998-06-22 2006-08-02 日産自動車株式会社 Active noise vibration control device
JP4122091B2 (en) * 1998-08-07 2008-07-23 本田技研工業株式会社 Control method of vibration reduction device
JP2003291658A (en) * 2002-04-03 2003-10-15 Nissan Motor Co Ltd Vibration control supporting device

Also Published As

Publication number Publication date
JP2004034826A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP3811469B2 (en) Actuator drive controller for active anti-vibration support device
US6641120B2 (en) Method for controlling drive of actuator of active vibration isolation support system
JP4284399B2 (en) Anti-vibration support device for engine
JP4890384B2 (en) Method for detecting natural frequency of engine and control method for active vibration isolating support device
JP3803603B2 (en) Actuator drive control method for active vibration isolation support device
US7192014B2 (en) Active vibration isolation support system
JP4806479B2 (en) Control device for active anti-vibration support device
JP3914177B2 (en) Actuator drive controller for active anti-vibration support device
JP4065152B2 (en) Engine vibration prevention control device
JP3838646B2 (en) Actuator drive controller for active anti-vibration support device
JP4110015B2 (en) Actuator drive controller for active anti-vibration support device
JP2007064316A (en) Active vibration-isolating support device
JP3914176B2 (en) Actuator drive controller for active anti-vibration support device
JP4206368B2 (en) Active anti-vibration support device
JP4110048B2 (en) Actuator drive controller for active anti-vibration support device
JP4036448B2 (en) Actuator drive controller for active anti-vibration support device
JP4057956B2 (en) Actuator drive controller for active anti-vibration support device
JP2005249013A (en) Active vibration-control support device
JP2004036435A (en) Control method for preventing vibration of cylinder rest engine
JP2005280687A (en) Vibrationproofing control device of engine and vibrationproofing control device of vehicle
JP2004036531A (en) Engine vibration preventive controlling method
JP2006207633A (en) Active vibration control supporting device
JP2004036530A (en) Engine vibration preventing control method
JP4929092B2 (en) Anti-vibration support device for engine
JP2004301297A (en) Active vibration control support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent or registration of utility model

Ref document number: 4065152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees