JP4206368B2 - Active anti-vibration support device - Google Patents

Active anti-vibration support device Download PDF

Info

Publication number
JP4206368B2
JP4206368B2 JP2004198433A JP2004198433A JP4206368B2 JP 4206368 B2 JP4206368 B2 JP 4206368B2 JP 2004198433 A JP2004198433 A JP 2004198433A JP 2004198433 A JP2004198433 A JP 2004198433A JP 4206368 B2 JP4206368 B2 JP 4206368B2
Authority
JP
Japan
Prior art keywords
vibration
engine
cylinder operation
support device
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004198433A
Other languages
Japanese (ja)
Other versions
JP2006017288A (en
Inventor
哲矢 石黒
浩臣 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004198433A priority Critical patent/JP4206368B2/en
Publication of JP2006017288A publication Critical patent/JP2006017288A/en
Application granted granted Critical
Publication of JP4206368B2 publication Critical patent/JP4206368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジンの荷重を支承するとともに、制御手段によりエンジンの振動状態に応じた電流でアクチュエータを周期的に伸縮制御して振動の伝達を抑制する能動型防振支持装置に関する。 The present invention relates to an active vibration isolating support device that supports an engine load and that controls vibrations by periodically expanding and contracting an actuator with a current according to the vibration state of the engine by a control unit.

かかる能動型防振支持装置は、下記特許文献により公知である。   Such an active vibration isolating support device is known from the following patent document.

この能動型防振支持装置は、アクチュエータに電流を印加して可動部材を振動させることでバネ定数を変化させるもので、そのバネ定数を設定する印加電流のピーク電流値と位相との関係を予めマップとして記憶しておき、エンジン回転数に応じて前記マップからアクチュエータに印加すべき電流のピーク電流値と位相とを求めることで、種々のエンジン回転数領域で能動型防振支持装置に有効な防振性能を発揮させるようになっている。
特開平7−42783号公報
This active vibration isolating support device changes the spring constant by applying a current to the actuator to vibrate the movable member. The relationship between the peak current value and the phase of the applied current that sets the spring constant is determined in advance. It is memorized as a map, and the peak current value and phase of the current to be applied to the actuator are obtained from the map according to the engine speed, so that it is effective for active vibration isolating support devices in various engine speed regions. Anti-vibration performance is demonstrated.
JP 7-42783 A

ところで、従来の能動型防振支持装置は、例えばエンジンのクランクパルスからエンジンの振動状態を推定し、その振動状態に基づいてアクチュエータへの通電を制御して防振性能を発揮させているが、休筒運転が可能なエンジンが全筒運転状態と休筒運転状態との間を移行する過渡期には、エンジンの振動状態が不規則に変化するために該振動状態を的確にかつ速やかに推定することが難しく、能動型防振支持装置に有効な防振性能を発揮させるのが困難であった。   By the way, the conventional active vibration isolating support device estimates the vibration state of the engine from, for example, the crank pulse of the engine, and controls the energization to the actuator based on the vibration state to exhibit the vibration damping performance. During the transition period when the engine capable of idle operation transitions between the all-cylinder operation state and the idle cylinder operation state, the vibration state of the engine changes irregularly, so that the vibration state is accurately and promptly estimated. It is difficult to make the active vibration-proof support device exhibit effective vibration-proof performance.

本発明は前述の事情に鑑みてなされたもので、エンジンの振動の過渡期においても能動型防振支持装置に有効な防振性能を発揮させることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to make an active vibration-proof support device exhibit effective vibration-proof performance even during a transition period of engine vibration.

上記目的を達成するために、請求項1に記載された発明によれば、エンジン制御手段からの気筒休止切換信号に基づいて全筒運転および休筒運転の切換が可能なエンジンの荷重を支承するとともに、防振支持装置制御手段によりエンジンの振動状態に応じた電流でアクチュエータを周期的に伸縮制御して振動の伝達を抑制する能動型防振支持装置において、前記防振支持装置制御手段は、エンジンの振動状態を推定する振動状態推定手段と、振動状態推定手段が推定したエンジンの振動状態に応じてアクチュエータに供給する電流を制御するアクチュエータ駆動制御手段と、前記気筒休止切換信号に基づいて全筒運転から休筒運転への切換および休筒運転から全筒運転への切換に伴うエンジンの振動の過渡期を判定する振動過渡期判定手段と、振動過渡期判定手段が振動の過渡期を判定したときに、振動状態推定手段が推定したエンジンの振動状態を、予めマップに記憶した補正値に基づいて補正する振動状態補正手段とを備えたことを特徴とする能動型防振支持装置が提案される。 To achieve the above object, according to the first aspect of the present invention, an engine load capable of switching between all-cylinder operation and rest-cylinder operation is supported on the basis of a cylinder deactivation switching signal from the engine control means. together, in suppressing active vibration isolation support system the transmission of vibrations to periodically stretch control actuator current corresponding to the vibration state of the engine by vibration isolation support system control means, the vibration isolation support system control means, a vibration state estimating means for estimating a vibration state of the engine, and an actuator drive control means for controlling the current supplied to the actuator according to the oscillation state of the engine vibration state estimating means has estimated the total based on the cylinder deactivation switching signal a vibration transition determining means for determining transition of the vibration of the engine caused by the switching to the all-cylinder operation from the switching and the cylinder deactivation operation to cylinder deactivation operation from cylinder operation When vibration transitional determination means determines the transition of the vibration to the vibration state of the engine vibration state estimating means has estimated, and a vibration state correcting means for correcting, based on a map in advance correction value stored in the An active vibration isolating support device is proposed.

、実施例の電子制御ユニットUmは本発明の防振支持装置制御手段に対応する。 The electronic control unit Um of the real施例corresponds to the vibration isolation support system control means of the present invention.

請求項1の構成によれば、全筒運転および休筒運転の切換が可能なエンジンの振動状態を振動状態推定手段で推定し、推定したエンジンの振動状態に応じてアクチュエータ駆動制御手段がアクチュエータに供給する電流を制御してエンジンの振動の伝達を抑制する際に、振動過渡期判定手段が気筒休止切換信号に基づいて全筒運転から休筒運転への切換および休筒運転から全筒運転への切換に伴うエンジンの振動の過渡期を判定すると、振動状態補正手段が前記推定した振動状態を予めマップに記憶した補正値に基づいて補正するので、エンジンの振動の過渡期においても能動型防振支持装置に有効な防振性能を発揮させることができる。特に、振動過渡期判定手段がエンジンの振動の過渡期を判定すると、エンジンの振動状態が実際に変動を開始する以前に前記推定した振動状態を補正することができるので、制御の時間遅れを防止して応答性の高い制御を行うことが可能となる。 According to the configuration of the first aspect, the vibration state of the engine capable of switching between the all-cylinder operation and the non-cylinder operation is estimated by the vibration state estimation means, and the actuator drive control means is applied to the actuator according to the estimated vibration state of the engine. When the supplied current is controlled to suppress the transmission of engine vibration, the vibration transition period determination means switches from all-cylinder operation to non-cylinder operation based on the cylinder deactivation switching signal and from non-cylinder operation to all-cylinder operation. of the determining transitional vibration of the engine associated with the switching, is corrected based on the correction value is vibrating state correcting means previously stored map in the vibration state in which the estimated, also active proof in transitional vibration of the engine The vibration supporting device can exhibit effective vibration isolation performance. In particular, if the vibration transition period determination means determines the engine transition period, the estimated vibration state can be corrected before the engine vibration state actually starts to fluctuate, thus preventing a control time delay. Thus, control with high responsiveness can be performed.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図7は本発明の一実施例を示すもので、図1は能動型防振支持装置の縦断面図、図2は図1の2−2線断面図、図3は図1の3−3線断面図、図4は図1の要部拡大図、図5は能動型防振支持装置の制御系のブロック図、図6はアクチュエータの制御手法を示すフローチャート、図7は作用を説明するタイムチャートである。   1 to 7 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an active vibration isolating support device, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. FIG. 4 is an enlarged view of the main part of FIG. 1, FIG. 5 is a block diagram of the control system of the active vibration isolating support device, FIG. 6 is a flowchart showing the actuator control method, and FIG. It is a time chart to explain.

図1〜図4に示す能動型防振支持装置Mは、自動車の気筒休止制御が可能なエンジンEを車体フレームFに弾性的に支持するためのもので、クランクパルスセンサSpで検出したエンジンEのクランクパルスと、エンジン制御手段Ueからの気筒休止切換信号とが入力される電子制御ユニットUmによって制御される。クランクパルスはクランクシャフトの1回転につき36回、つまりクランクアングルの10°毎に1回出力される。   The active vibration isolation support device M shown in FIGS. 1 to 4 is for elastically supporting an engine E capable of cylinder deactivation control of an automobile on a vehicle body frame F. The engine E detected by a crank pulse sensor Sp. Are controlled by an electronic control unit Um to which a crank pulse and a cylinder deactivation switching signal from the engine control means Ue are input. The crank pulse is output 36 times per rotation of the crankshaft, that is, once every 10 ° of the crank angle.

能動型防振支持装置Mは軸線Lに関して実質的に軸対称な構造を有するもので、エンジンEに結合される板状の取付ブラケット11に溶接した内筒12と、この内筒12の外周に同軸に配置された外筒13とを備えており、内筒12および外筒13には厚肉のゴムで形成した第1弾性体14の上端および下端がそれぞれが加硫接着により接合される。中央に開口15bを有する円板状の第1オリフィス形成部材15と、上面が開放した樋状の断面を有して環状に形成された第2オリフィス形成部材16と、同じく上面が開放した樋状の断面を有して環状に形成された第3オリフィス形成部材17とが溶接により一体化されており、第1オリフィス形成部材15および第2オリフィス形成部材16の外周部が重ね合わされて前記外筒13の下部に設けたカシメ固定部13aに固定される。   The active vibration isolating support device M has a substantially axisymmetric structure with respect to the axis L, and has an inner cylinder 12 welded to a plate-like mounting bracket 11 coupled to the engine E, and an outer periphery of the inner cylinder 12. The outer cylinder 13 is coaxially arranged, and the upper and lower ends of the first elastic body 14 made of thick rubber are joined to the inner cylinder 12 and the outer cylinder 13 by vulcanization adhesion. A disc-shaped first orifice forming member 15 having an opening 15b in the center, a second orifice forming member 16 having a bowl-shaped cross section with an open upper surface and formed in an annular shape, and a bowl shape having the same upper surface opened The third orifice forming member 17 having an annular shape and formed in an annular shape is integrated by welding, and the outer circumferences of the first orifice forming member 15 and the second orifice forming member 16 are overlapped to form the outer cylinder. 13 is fixed to a caulking fixing portion 13a provided at a lower portion.

膜状のゴムで形成された第2弾性体18の外周が第3オリフィス形成部材17の内周に加硫接着により固定されており、この第2弾性体18の内周に加硫接着により固定されたキャップ部材19が、軸線L上に上下動可能に配置された可動部材20に圧入により固定される。外筒13のカシメ固定部13aに固定されたリング部材21にダイヤフラム22の外周が加硫接着により固定されており、このダイヤフラム22の内周に加硫接着により固定されたキャップ部材23が前記可動部材20に圧入により固定される。   The outer periphery of the second elastic body 18 formed of film-like rubber is fixed to the inner periphery of the third orifice forming member 17 by vulcanization adhesion, and is fixed to the inner periphery of the second elastic body 18 by vulcanization adhesion. The cap member 19 is fixed by press-fitting to the movable member 20 arranged on the axis L so as to be movable up and down. The outer periphery of the diaphragm 22 is fixed to the ring member 21 fixed to the caulking fixing portion 13a of the outer cylinder 13 by vulcanization bonding, and the cap member 23 fixed to the inner periphery of the diaphragm 22 by vulcanization bonding is the movable member. It is fixed to the member 20 by press fitting.

しかして、第1弾性体14および第2弾性体18間に液体が封入された第1液室24が区画され、第2弾性体18およびダイヤフラム22間に液体が封入された第2液室25が区画される。そして第1液室24および第2液室25は、第1〜第3オリフィス形成部材15,16,17により形成された上部オリフィス26および下部オリフィス27によって相互に連通する。   Accordingly, the first liquid chamber 24 in which the liquid is sealed is defined between the first elastic body 14 and the second elastic body 18, and the second liquid chamber 25 in which the liquid is sealed between the second elastic body 18 and the diaphragm 22. Is partitioned. The first liquid chamber 24 and the second liquid chamber 25 communicate with each other through the upper orifice 26 and the lower orifice 27 formed by the first to third orifice forming members 15, 16, and 17.

上部オリフィス26は第1オリフィス形成部材15および第2オリフィス形成部材16間に形成される環状の通路であって、その一部に設けられた隔壁26aの一側において第1オリフィス形成部材15に連通孔15aが形成され、前記隔壁26aの他側において第2オリフィス形成部材16に連通孔16aが形成される。従って、上部オリフィス26は、第1オリフィス形成部材15の連通孔15aから第2オリフィス形成部材16の連通孔16aまでの略1周の範囲に亘って形成される(図2参照)。   The upper orifice 26 is an annular passage formed between the first orifice forming member 15 and the second orifice forming member 16, and communicates with the first orifice forming member 15 on one side of a partition wall 26a provided in a part thereof. A hole 15a is formed, and a communication hole 16a is formed in the second orifice forming member 16 on the other side of the partition wall 26a. Accordingly, the upper orifice 26 is formed over a substantially one-round range from the communication hole 15a of the first orifice forming member 15 to the communication hole 16a of the second orifice forming member 16 (see FIG. 2).

下部オリフィス27は第2オリフィス形成部材16および第3オリフィス形成部材17間に形成される環状の通路であって、その一部に設けられた隔壁27aの一側において第2オリフィス形成部材16に前記連通孔16aが形成され、前記隔壁27aの他側において第3オリフィス形成部材17に連通孔17aが形成される。従って、下部オリフィス27は、第2オリフィス形成部材16の連通孔16aから第3オリフィス形成部材17の連通孔17aまでの略1周の範囲に亘って形成される(図3参照)。   The lower orifice 27 is an annular passage formed between the second orifice forming member 16 and the third orifice forming member 17, and the second orifice forming member 16 is connected to the second orifice forming member 16 on one side of a partition wall 27a provided in a part thereof. A communication hole 16a is formed, and a communication hole 17a is formed in the third orifice forming member 17 on the other side of the partition wall 27a. Therefore, the lower orifice 27 is formed over a substantially one-round range from the communication hole 16a of the second orifice forming member 16 to the communication hole 17a of the third orifice forming member 17 (see FIG. 3).

以上のことから、第1液室24および第2液室25は、直列に接続された上部オリフィス26および下部オリフィス27によって相互に連通する。   From the above, the first liquid chamber 24 and the second liquid chamber 25 communicate with each other by the upper orifice 26 and the lower orifice 27 connected in series.

外筒13のカシメ固定部13aには、能動型防振支持装置Mを車体フレームFに固定するための環状の取付ブラケット28が固定されており、この取付ブラケット28の下面に前記可動部材20を駆動するためのアクチュエータ29の外郭を構成するアクチュエータハウジング30が溶接される。   An annular mounting bracket 28 for fixing the active vibration isolating support device M to the vehicle body frame F is fixed to the caulking fixing portion 13 a of the outer cylinder 13. The movable member 20 is attached to the lower surface of the mounting bracket 28. An actuator housing 30 that constitutes the outline of the actuator 29 for driving is welded.

アクチュエータハウジング30にはヨーク32が固定されており、ボビン33に巻き付けられたコイル34がアクチュエータハウジング30およびヨーク32に囲まれた空間に収納される。環状のコイル34の内周に嵌合するヨーク32の筒状部32aに有底円筒状のベアリング36が嵌合する。コイル34の上面に対向する円板状のアーマチュア38がアクチュエータハウジング30の内周面に摺動自在に支持されており、このアーマチュア38の内周に形成した段部38aがベアリング36の上部に係合する。アーマチュア38はボビン33の上面との間に配置した皿ばね42で上方に付勢され、アクチュエータハウジング30に設けた係止部30aに係合して位置決めされる。   A yoke 32 is fixed to the actuator housing 30, and a coil 34 wound around the bobbin 33 is accommodated in a space surrounded by the actuator housing 30 and the yoke 32. A bottomed cylindrical bearing 36 is fitted to the cylindrical portion 32a of the yoke 32 fitted to the inner periphery of the annular coil 34. A disk-shaped armature 38 facing the upper surface of the coil 34 is slidably supported on the inner peripheral surface of the actuator housing 30, and a step portion 38 a formed on the inner periphery of the armature 38 is engaged with the upper portion of the bearing 36. Match. The armature 38 is biased upward by a disc spring 42 disposed between the armature 38 and the upper surface of the bobbin 33, and is positioned by engaging with a locking portion 30 a provided in the actuator housing 30.

ベアリング36の内周に円筒状のスライダ43が摺動自在に嵌合しており、可動部材20から下方に延びる軸部20aが、ベアリング36の上底部を緩く貫通してスライダ43の内部に固定したボス44に接続される。ベアリング36の上底部とスライダ43との間にコイルばね41が配置されており、このコイルばね41でベアリング36は上向きに付勢され、スライダ43は下向きに付勢される。   A cylindrical slider 43 is slidably fitted to the inner periphery of the bearing 36, and a shaft portion 20 a extending downward from the movable member 20 loosely penetrates the upper bottom portion of the bearing 36 and is fixed inside the slider 43. Connected to the boss 44. A coil spring 41 is disposed between the upper bottom portion of the bearing 36 and the slider 43, and the bearing 36 is biased upward and the slider 43 is biased downward by the coil spring 41.

アクチュエータ29のコイル34が消磁状態にあるとき、ベアリング36に摺動自在に支持されたスライダ43にはコイルばね41の弾発力が下向きに作用するとともに、ヨーク32の底面との間に配置したコイルばね45の弾発力が上向きに作用しており、スライダ43は両コイルばね41,45の弾発力が釣り合う位置に停止する。この状態からコイル34を励磁してアーマチュア38を下方に吸引すると、段部38aに押されてベアリング36が下方に摺動することによりコイルばね41が圧縮される。その結果、コイルばね41の弾発力が増加してコイルばね45を圧縮しながらスライダ43が下降するため、スライダ43にボス44および軸部20aを介して接続された可動部材20が下降し、可動部材20に接続された第2弾性体18が下方に変形して第1液室24の容積が増加する。逆にコイル34を消磁すると、可動部材20が上昇して第2弾性体18が上方に変形し、第1液室24の容積が減少する。   When the coil 34 of the actuator 29 is in a demagnetized state, the elastic force of the coil spring 41 acts downward on the slider 43 slidably supported by the bearing 36 and is disposed between the bottom surface of the yoke 32. The spring force of the coil spring 45 is acting upward, and the slider 43 stops at a position where the spring forces of both the coil springs 41 and 45 are balanced. When the coil 34 is excited from this state and the armature 38 is attracted downward, the coil spring 41 is compressed by being pushed by the stepped portion 38a and sliding the bearing 36 downward. As a result, the elastic force of the coil spring 41 increases and the slider 43 descends while compressing the coil spring 45, so the movable member 20 connected to the slider 43 via the boss 44 and the shaft portion 20a descends, The second elastic body 18 connected to the movable member 20 is deformed downward and the volume of the first liquid chamber 24 is increased. Conversely, when the coil 34 is demagnetized, the movable member 20 rises, the second elastic body 18 is deformed upward, and the volume of the first liquid chamber 24 decreases.

しかして、自動車の走行中に低周波数のエンジンシェイク振動が発生したとき、エンジンEから入力される荷重で第1弾性体14が変形して第1液室24の容積が変化すると、上部オリフィス26および下部オリフィス27を介して接続された第1液室24および第2液室25間で液体が行き来する。第1液室24の容積が拡大・縮小すると、それに応じて第2液室25の容積が縮小・拡大するが、この第2液室25の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、上部オリフィス26および下部オリフィス27の形状および寸法、並びに第1弾性体14のばね定数は前記エンジンシェイク振動の周波数領域で低ばね定数および高減衰力を示すように設定されているため、エンジンEから車体フレームFに伝達される振動を効果的に低減することができる。   Thus, when low-frequency engine shake vibration occurs during the traveling of the automobile, the upper orifice 26 changes when the first elastic body 14 is deformed by the load input from the engine E and the volume of the first liquid chamber 24 changes. The liquid goes back and forth between the first liquid chamber 24 and the second liquid chamber 25 connected via the lower orifice 27. When the volume of the first liquid chamber 24 is enlarged / reduced, the volume of the second liquid chamber 25 is reduced / expanded accordingly, but the volume change of the second liquid chamber 25 is absorbed by the elastic deformation of the diaphragm 22. At this time, the shape and size of the upper orifice 26 and the lower orifice 27 and the spring constant of the first elastic body 14 are set so as to exhibit a low spring constant and a high damping force in the frequency region of the engine shake vibration. Vibration transmitted from the engine E to the vehicle body frame F can be effectively reduced.

尚、上記エンジンシェイク振動の周波数領域では、アクチュエータ29は非作動状態に保たれる。   In the frequency region of the engine shake vibration, the actuator 29 is kept in an inoperative state.

前記エンジンシェイク振動よりも周波数の高い振動、即ちエンジンEのクランクシャフトの回転に起因するアイドル時の振動や気筒休止時の振動が発生した場合、第1液室24および第2液室25を接続する上部オリフィス26および下部オリフィス27内の液体はスティック状態になって防振機能を発揮できなくなるため、アクチュエータ29を駆動して防振機能を発揮させる。   When vibration having a higher frequency than the engine shake vibration, that is, vibration during idling due to rotation of the crankshaft of engine E or vibration during cylinder deactivation occurs, the first liquid chamber 24 and the second liquid chamber 25 are connected. Since the liquid in the upper orifice 26 and the lower orifice 27 is in a stick state and cannot exhibit the anti-vibration function, the actuator 29 is driven to exhibit the anti-vibration function.

能動型防振支持装置Mのアクチュエータ29を作動させて防振性能を発揮させるべく、電子制御ユニットUmはクランクパルスおよび気筒休止切換信号に基づいてコイル34に対する通電を制御する。   The electronic control unit Um controls energization to the coil 34 based on the crank pulse and the cylinder deactivation switching signal in order to operate the actuator 29 of the active vibration isolating support device M to exhibit the anti-vibration performance.

即ち、図5に示すように、電子制御ユニットUmは、振動状態推定手段M1と、アクチュエータ駆動制御手段M2と、振動過渡期判定手段M3と、振動状態補正手段M4とを備える。振動状態推定手段M1は、クランクパルスセンサSpで検出したクランクパルスに基づいてエンジンEの振動状態(実施例ではエンジン振動の振幅)を推定する。アクチュエータ駆動制御手段M2は、振動状態推定手段M1で推定したエンジンEの振動状態に応じて、能動型防振支持装置Mに防振機能を発揮させるべく、そのアクチュエータ29に供給する電流を制御する。振動過渡期判定手段M3は、エンジン制御手段Ueからの気筒休止切換信号に基づいて、全筒運転→休筒運転の切換と休筒運転→全筒運転の切換とが行われたことを判定する。振動状態補正手段M4は、全筒運転→休筒運転の切換、あるいは休筒運転→全筒運転の切換にそれぞれ対応して予め記憶されたマップに基づいて、振動状態推定手段M1で推定したエンジンEの振動状態を補正する。   That is, as shown in FIG. 5, the electronic control unit Um includes vibration state estimation means M1, actuator drive control means M2, vibration transition period determination means M3, and vibration state correction means M4. The vibration state estimation means M1 estimates the vibration state of the engine E (in the embodiment, the amplitude of the engine vibration) based on the crank pulse detected by the crank pulse sensor Sp. The actuator drive control means M2 controls the current supplied to the actuator 29 in order to cause the active vibration isolation support device M to exhibit the vibration isolation function according to the vibration state of the engine E estimated by the vibration state estimation means M1. . Based on the cylinder deactivation switching signal from the engine control unit Ue, the vibration transition period determination unit M3 determines that the switching between all-cylinder operation → cylinder operation and switching between the cylinder operation → all-cylinder operation has been performed. . The vibration state correcting means M4 is an engine estimated by the vibration state estimating means M1 on the basis of a map stored in advance corresponding to switching of all cylinder operation → cylinder operation or switching of cylinder rest → all cylinder operation. The vibration state of E is corrected.

次に、能動型防振支持装置Mのアクチュエータ29の制御内容を、図6のフローチャートに基づいて具体的に説明する。   Next, the control content of the actuator 29 of the active vibration isolating support apparatus M will be specifically described based on the flowchart of FIG.

先ずステップS1でクランクパルスセンサSpからクランクアングルの10°毎に出力されるクランクパルスを読み込み、ステップS2で前記読み込んだクランクパルスを基準となるクランクパルス(特定のシリンダのTDC信号)と比較することでクランクパルスの時間間隔を演算する。続くステップS3で前記10°のクランクアングルをクランクパルスの時間間隔で除算することでクランク角速度ωを演算し、ステップS4でクランク角速度ωを時間微分してクランク角加速度dω/dtを演算する。続くステップS5でエンジンEのクランクシャフト回りのトルクTqを、エンジンEのクランクシャフト回りの慣性モーメントをIとして、
Tq=I×dω/dt
により演算する。このトルクTqはクランクシャフトが一定の角速度ωで回転していると仮定すると0になるが、膨張行程ではピストンの加速により角速度ωが増加し、圧縮行程ではピストンの減速により角速度ωが減少してクランク角加速度dω/dtが発生するため、そのクランク角加速度dω/dtに比例したトルクTqが発生することになる。
First, in step S1, the crank pulse output from the crank pulse sensor Sp every 10 ° of crank angle is read, and in step S2, the read crank pulse is compared with a reference crank pulse (TDC signal of a specific cylinder). To calculate the crank pulse time interval. In the subsequent step S3, the crank angular velocity ω is calculated by dividing the 10 ° crank angle by the time interval of the crank pulse, and in step S4, the crank angular velocity ω is time-differentiated to calculate the crank angular acceleration dω / dt. In the following step S5, the torque Tq around the crankshaft of the engine E is set as I, and the inertia moment around the crankshaft of the engine E is set as I.
Tq = I × dω / dt
Calculate by This torque Tq is zero assuming that the crankshaft is rotating at a constant angular velocity ω, but in the expansion stroke, the angular velocity ω increases due to acceleration of the piston, and in the compression stroke, the angular velocity ω decreases due to deceleration of the piston. Since the crank angular acceleration dω / dt is generated, a torque Tq proportional to the crank angular acceleration dω / dt is generated.

続くステップS6で時間的に隣接するトルクの最大値および最小値を判定し、ステップS7でトルクの最大値および最小値の偏差、つまりトルクの変動量としてエンジンEを支持する能動型防振支持装置Mの位置における振幅を演算する。前記ステップS1〜S7の処理は振動状態推定手段M1により実行される。   In the next step S6, the maximum value and the minimum value of the temporally adjacent torques are determined, and in step S7, the difference between the maximum value and the minimum value of the torque, that is, the active vibration isolation support device that supports the engine E as the amount of torque fluctuation The amplitude at the position of M is calculated. The processing of steps S1 to S7 is executed by the vibration state estimation means M1.

続くステップS8で振動過渡期判定手段M3によりエンジンEが全筒運転状態から休筒運転状態に切り換わる過渡期、あるいは休筒運転状態から全筒運転状態に切り換わる過渡期であるか否かを判断する。エンジンEが前記何れかの過渡期にあるときはエンジンEの振動状態が不安定になるため、振動状態推定手段M1で推定したエンジン振動の振幅は信頼性が低くなり、その推定した振幅に基づいて能動型防振支持装置Mを制御しても有効な防振性能を得ることが難しい。   In the following step S8, it is determined whether or not the engine E is in a transitional period in which the engine E is switched from the all-cylinder operation state to the idle cylinder operation state or in a transition period in which the engine E is switched from the idle cylinder operation state to the all cylinder operation state. to decide. When the engine E is in any one of the transition periods, the vibration state of the engine E becomes unstable. Therefore, the amplitude of the engine vibration estimated by the vibration state estimation means M1 becomes unreliable and is based on the estimated amplitude. Therefore, it is difficult to obtain an effective anti-vibration performance even if the active anti-vibration support device M is controlled.

そこで、エンジンEが前記何れかの過渡期にあるときは、ステップS9で振動状態補正手段M4が予め記憶したマップに基づいてエンジン振動の振幅の補正値を検索し、この補正値を振動状態推定手段M1が推定したエンジン振動の振幅に加算して補正する。そしてステップS10で非過渡期には振動状態推定手段M1により推定されたエンジン振動の振幅に基づいて、また過渡期には振動状態補正手段M4により補正されたエンジン振動の振幅に基づいて、アクチュエータ駆動制御手段M2がアクチュエータ29の駆動を制御すべく、ステップS11でアクチュエータ29のコイル34に印加する電流のデューティ波形およびタイミング(位相)を決定する。   Therefore, when the engine E is in any of the transition periods, the vibration state correction means M4 searches for a correction value of the amplitude of the engine vibration based on the map stored in advance in step S9, and this correction value is estimated as the vibration state. Correction is made by adding to the amplitude of the engine vibration estimated by the means M1. In step S10, the actuator is driven based on the amplitude of the engine vibration estimated by the vibration state estimating means M1 in the non-transient period, and based on the amplitude of the engine vibration corrected by the vibration state correcting means M4 in the transient period. In order to control the drive of the actuator 29, the control means M2 determines the duty waveform and timing (phase) of the current applied to the coil 34 of the actuator 29 in step S11.

これにより、全筒運転状態と休筒運転状態との過渡期においてエンジンEの振動状態が不安定になっても、能動型防振支持装置Mに有効な防振性能を発揮させることができる。特に、クランクパルスから推定したエンジン振動の振幅に基づいてアクチュエータ29の駆動を制御すると、エンジンEの振動状態が実際に不安定になってから過渡期の補正が行われるため、時間遅れが発生して応答性の良い制御を行うことが難しくなるが、本実施例によれば、気筒休止切換信号が出力された段階でエンジンEの振動状態が実際に不安定になる前に過渡期の補正を行うことができるため、時間遅れがなく応答性が高い制御を行うことが可能になる。   Thereby, even if the vibration state of the engine E becomes unstable in the transition period between the all-cylinder operation state and the non-cylinder operation state, the active vibration-proof support device M can exhibit effective vibration-proof performance. In particular, if the drive of the actuator 29 is controlled based on the amplitude of the engine vibration estimated from the crank pulse, the transition period is corrected after the vibration state of the engine E actually becomes unstable, so a time delay occurs. However, according to this embodiment, the transition period is corrected before the vibration state of the engine E actually becomes unstable at the stage when the cylinder deactivation switching signal is output. Therefore, it is possible to perform control with no time delay and high responsiveness.

尚、全筒運転状態から休筒運転状態に切り換わる過渡期と、休筒運転状態から全筒運転状態に切り換わる過渡期とで、エンジン振動の振幅の補正値を検索するマップを持ち替えることは勿論であるが、エンジン回転数やエンジン負荷のような他のパラメータに応じてマップを持ち替えれば、更に精度の高い制御を行うことができる。   It should be noted that the map for searching for the correction value of the amplitude of the engine vibration is changed between the transition period in which the all-cylinder operation state is switched to the non-cylinder operation state and the transition period in which the all-cylinder operation state is switched to the all cylinder operation state. Of course, more accurate control can be performed if the map is changed according to other parameters such as the engine speed and the engine load.

図7は本制御の作用を示すタイムチャートであって、時刻t0に気筒休止切換信号が全筒運転から休筒運転に切り換わると、それに遅れて時刻t1から時刻t2の間にエンジンEの回転変動(つまりエンジン振動)が発生する。従来の制御ではエンジンEの回転変動が発生する時刻t1から遅れてアクチュエータ29の駆動電流が補正されるが、本実施例によればエンジンEの回転変動が発生する時刻t1にタイミングを合わせてアクチュエータ29の駆動電流が補正されるので、制御の応答性を高めることができる。   FIG. 7 is a time chart showing the operation of this control. When the cylinder deactivation switching signal is switched from all-cylinder operation to non-cylinder operation at time t0, the rotation of the engine E is delayed between time t1 and time t2. Variation (that is, engine vibration) occurs. In the conventional control, the drive current of the actuator 29 is corrected with a delay from the time t1 when the rotational fluctuation of the engine E occurs. However, according to this embodiment, the actuator is synchronized with the time t1 when the rotational fluctuation of the engine E occurs. Since 29 drive currents are corrected, control responsiveness can be improved.

以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、実施例では自動車のエンジンEを支持する能動型防振支持装置Mを例示したが、本発明の能動型防振支持装置Mは自動車以外のエンジンに適用することができる For example, in the embodiment illustrated the active vibration isolation support system M for supporting the vehicle engine E, the active vibration isolation support system M of the present invention can be applied to the engine other than the automobile.

また実施例では振動状態推定手段M1がクランクパルスからエンジン振動の振幅を推定しているが、エンジン振動の振幅を荷重センサで検出しても良い。   In the embodiment, the vibration state estimation means M1 estimates the amplitude of the engine vibration from the crank pulse, but the amplitude of the engine vibration may be detected by a load sensor.

能動型防振支持装置の縦断面図Longitudinal section of active vibration isolator 図1の2−2線断面図2-2 sectional view of FIG. 図1の3−3線断面図3-3 sectional view of FIG. 図1の要部拡大図1 is an enlarged view of the main part of FIG. 能動型防振支持装置の制御系のブロック図Block diagram of control system for active vibration isolation support device アクチュエータの制御手法を示すフローチャートFlow chart showing control method of actuator 作用を説明するタイムチャートTime chart explaining the effect

符号の説明Explanation of symbols

E エンジ
M1 振動状態推定手段
M2 アクチュエータ駆動制御手段
M3 振動過渡期判定手段
M4 振動状態補正手段
Ue エンジン制御手段
Um 電子制御ユニット(防振支持装置制御手段)
29 アクチュエータ
E engine <br/> M1 vibrational state estimating unit M2 actuator drive control means M3 vibration transitional determining means M4 vibrating state correcting means
Ue engine control means Um Electronic control unit ( anti-vibration support device control means)
29 Actuator

Claims (1)

エンジン制御手段(Ue)からの気筒休止切換信号に基づいて全筒運転および休筒運転の切換が可能なエンジンの荷重を支承するとともに、防振支持装置制御手段(Um)によりエンジン(E)の振動状態に応じた電流でアクチュエータ(29)を周期的に伸縮制御して振動の伝達を抑制する能動型防振支持装置において、
前記防振支持装置制御手段(Um)は、
エンジン(E)の振動状態を推定する振動状態推定手段(M1)と、
振動状態推定手段(M1)が推定したエンジン(E)の振動状態に応じてアクチュエータ(29)に供給する電流を制御するアクチュエータ駆動制御手段(M2)と、
前記気筒休止切換信号に基づいて全筒運転から休筒運転への切換および休筒運転から全筒運転への切換に伴うエンジン(E)の振動の過渡期を判定する振動過渡期判定手段(M3)と、
振動過渡期判定手段(M3)が振動の過渡期を判定したときに、振動状態推定手段(M1)が推定したエンジン(E)の振動状態を、予めマップに記憶した補正値に基づいて補正する振動状態補正手段(M4)と、
を備えたことを特徴とする能動型防振支持装置。
Based on the cylinder deactivation switching signal from the engine control means (Ue), the engine load capable of switching between all-cylinder operation and non-cylinder operation is supported, and the anti-vibration support device control means (Um) controls the engine (E). In the active vibration isolating support device that suppresses vibration transmission by periodically extending and contracting the actuator (29) with a current according to the vibration state,
The anti-vibration support device control means (Um)
Vibration state estimation means (M1) for estimating the vibration state of the engine (E);
Actuator drive control means (M2) for controlling the current supplied to the actuator (29) according to the vibration state of the engine (E) estimated by the vibration state estimation means (M1);
Based on the cylinder deactivation switching signal , a vibration transition period determining means (M3) for determining a transition period of vibration of the engine (E) associated with switching from full cylinder operation to idle cylinder operation and switching from idle cylinder operation to all cylinder operation. )When,
When the vibration transition period determination means (M3) determines the vibration transition period, the vibration state of the engine (E) estimated by the vibration state estimation means (M1) is corrected based on the correction value stored in advance in the map. Vibration state correcting means (M4);
An anti-vibration support device comprising:
JP2004198433A 2004-07-05 2004-07-05 Active anti-vibration support device Expired - Fee Related JP4206368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198433A JP4206368B2 (en) 2004-07-05 2004-07-05 Active anti-vibration support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198433A JP4206368B2 (en) 2004-07-05 2004-07-05 Active anti-vibration support device

Publications (2)

Publication Number Publication Date
JP2006017288A JP2006017288A (en) 2006-01-19
JP4206368B2 true JP4206368B2 (en) 2009-01-07

Family

ID=35791754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198433A Expired - Fee Related JP4206368B2 (en) 2004-07-05 2004-07-05 Active anti-vibration support device

Country Status (1)

Country Link
JP (1) JP4206368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925328A (en) * 2013-01-16 2014-07-16 本田技研工业株式会社 Control Apparatus For Active Vibroisolating Support Device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293766A1 (en) * 2005-06-24 2006-12-28 Michael Schneider Compensation method for time delays in oscillatory control
JP4711912B2 (en) * 2006-08-29 2011-06-29 本田技研工業株式会社 Control device for active anti-vibration support device
EP2353911B1 (en) 2007-08-10 2012-09-19 Honda Motor Co., Ltd. Active vibration isolating support apparatus
JP4733714B2 (en) 2008-03-07 2011-07-27 本田技研工業株式会社 Active anti-vibration support device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925328A (en) * 2013-01-16 2014-07-16 本田技研工业株式会社 Control Apparatus For Active Vibroisolating Support Device
CN103925328B (en) * 2013-01-16 2016-04-06 本田技研工业株式会社 The control gear of active anti-vibration support

Also Published As

Publication number Publication date
JP2006017288A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US6641120B2 (en) Method for controlling drive of actuator of active vibration isolation support system
JP3811469B2 (en) Actuator drive controller for active anti-vibration support device
JP4176662B2 (en) Vibration control method for hybrid vehicle
JP4284399B2 (en) Anti-vibration support device for engine
JP3803603B2 (en) Actuator drive control method for active vibration isolation support device
JP4206368B2 (en) Active anti-vibration support device
JP3819876B2 (en) Actuator drive controller for active anti-vibration support device
JP3914177B2 (en) Actuator drive controller for active anti-vibration support device
JP2007064316A (en) Active vibration-isolating support device
JP4110015B2 (en) Actuator drive controller for active anti-vibration support device
JP3914176B2 (en) Actuator drive controller for active anti-vibration support device
JP3838646B2 (en) Actuator drive controller for active anti-vibration support device
JP4078321B2 (en) Active anti-vibration support device
JP2005249013A (en) Active vibration-control support device
JP4036448B2 (en) Actuator drive controller for active anti-vibration support device
JP4065152B2 (en) Engine vibration prevention control device
JP4110048B2 (en) Actuator drive controller for active anti-vibration support device
JP4057956B2 (en) Actuator drive controller for active anti-vibration support device
JP2004036435A (en) Control method for preventing vibration of cylinder rest engine
JP2006057753A (en) Active vibration control supporting device
JP2005280687A (en) Vibrationproofing control device of engine and vibrationproofing control device of vehicle
JP2004301297A (en) Active vibration control support device
JP2004036531A (en) Engine vibration preventive controlling method
JP4929092B2 (en) Anti-vibration support device for engine
JP4615879B2 (en) Active anti-vibration support device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4206368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees