JP3838646B2 - Actuator drive controller for active anti-vibration support device - Google Patents

Actuator drive controller for active anti-vibration support device Download PDF

Info

Publication number
JP3838646B2
JP3838646B2 JP2003165537A JP2003165537A JP3838646B2 JP 3838646 B2 JP3838646 B2 JP 3838646B2 JP 2003165537 A JP2003165537 A JP 2003165537A JP 2003165537 A JP2003165537 A JP 2003165537A JP 3838646 B2 JP3838646 B2 JP 3838646B2
Authority
JP
Japan
Prior art keywords
cylinder
state
engine
support device
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165537A
Other languages
Japanese (ja)
Other versions
JP2005003051A (en
Inventor
敦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003165537A priority Critical patent/JP3838646B2/en
Publication of JP2005003051A publication Critical patent/JP2005003051A/en
Application granted granted Critical
Publication of JP3838646B2 publication Critical patent/JP3838646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気筒休止可能なエンジンの振動の伝達を抑制すべく制御手段でアクチュエータの作動を制御する能動型防振支持装置のアクチュエータ駆動制御装置に関する。
【0002】
【従来の技術】
かかる能動型防振支持装置は、下記特許文献により公知である。
【0003】
この能動型防振支持装置は、アクチュエータに電流を印加して可動部材を振動させることでバネ定数を変化させるもので、そのバネ定数を設定する印加電流のピーク電流値と位相との関係を予めマップとして記憶しておき、エンジン回転数に応じて前記マップからアクチュエータに印加すべき電流のピーク電流値と位相とを求めることで、種々のエンジン回転数領域で能動型防振支持装置に有効な防振機能を発揮させるようになっている。
【0004】
【特許文献】
特開平7−42783号公報
【0005】
【発明が解決しようとする課題】
ところで、エンジンを全筒状態から気筒休止状態に切り替える指令信号や、気筒休止状態から全筒状態に切り替える指令信号が出力されたとき、エンジンの運転状態は気筒休止が可能な気筒の作動期間にある場合と、気筒休止が不能な気筒の作動期間にある場合とがある。それにも関わらず、前記指令信号が出力された瞬間に能動型防振支持装置の制御を全筒状態の制御と気筒休止状態の制御との間で切り替えてしまうと、エンジンが実質的に全筒状態にあるのに能動型防振支持装置が気筒休止状態の制御を行ったり、エンジンが実質的に気筒休止状態にあるのに能動型防振支持装置が全筒状態の制御を行ったりする場合があり、その間に能動型防振支持装置が有効な防振効果を発揮できなくなる可能性がある。
【0006】
本発明は前述の事情に鑑みてなされたもので、エンジンの全筒状態と気筒休止状態との切替時に能動型防振支持装置に有効な防振機能を発揮させることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、気筒休止可能なエンジンの振動の伝達を抑制すべく制御手段でアクチュエータの作動を制御する能動型防振支持装置のアクチュエータ駆動制御装置において、前記制御手段は、エンジンの運転状態を気筒休止状態と全筒状態との間で切り替える切替信号が出力されたときの前記運転状態に基づいて、アクチュエータの作動周期を切り替えるタイミングを決定することを特徴とする、能動型防振支持装置のアクチュエータ駆動制御装置が提案される。
【0008】
上記構成によれば、エンジンの運転状態を気筒休止状態と全筒状態との間で切り替える切替信号が出力されたとき、そのときのエンジンの運転状態に基づいてアクチュエータの作動周期を切り替えるタイミングを決定するので、エンジンの運転状態と能動型防振支持装置の制御状態とが不一致になるのを防止し、能動型防振支持装置に有効な防振機能を発揮させることができる。
【0009】
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記エンジンは全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、前記制御手段は、エンジンの運転状態を全筒状態から気筒休止状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止可能気筒である場合に、次の次の気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えることを特徴とする、能動型防振支持装置のアクチュエータ駆動制御装置が提案される。
【0010】
上記構成によれば、全筒状態から気筒休止状態に切り替える切替信号が出力されたときが休止可能気筒の作動期間であれば、次の次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に全筒状態から気筒休止状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0011】
また請求項3に記載された発明によれば、請求項1の構成に加えて、前記エンジンは全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、前記制御手段は、エンジンの運転状態を全筒状態から気筒休止状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止不能気筒である場合に、次の気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えることを特徴とする、能動型防振支持装置のアクチュエータ駆動制御装置が提案される。
【0012】
上記構成によれば、全筒状態から気筒休止状態に切り替える切替信号が出力されたときが休止不能気筒の作動期間であれば、次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に全筒状態から気筒休止状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0013】
また請求項4に記載された発明によれば、請求項1の構成に加えて、前記エンジンは全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、前記制御手段は、エンジンの運転状態を気筒休止状態から全筒状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止可能気筒である場合に、次の次の気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えることを特徴とする、能動型防振支持装置のアクチュエータ駆動制御装置が提案される。
【0014】
上記構成によれば、気筒休止状態から全筒状態に切り替える切替信号が出力されたときが休止可能気筒の作動期間であれば、次の次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に気筒休止状態から全筒状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0015】
また請求項5に記載された発明によれば、請求項1の構成に加えて、前記エンジンは全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、前記制御手段は、エンジンの運転状態を気筒休止状態から全筒状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止不能気筒である場合に、次の気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えることを特徴とする、能動型防振支持装置のアクチュエータ駆動制御装置が提案される。
【0016】
上記構成によれば、気筒休止状態から全筒状態に切り替える切替信号が出力されたときが休止不能気筒の作動期間であれば、次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に気筒休止状態から全筒状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0017】
尚、実施例の電子制御ユニットUは本発明の制御手段に対応する。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0019】
図1〜図8は本発明の一実施例を示すもので、図1は能動型防振支持装置の縦断面図、図2は図1の2−2線断面図、図3は図1の3−3線断面図、図4は図1の要部拡大図、図5はV型6気筒エンジンの点火順序を示す図、図6は全筒状態および気筒休止状態間の切替タイミングを説明するタイムチャート、図7は全筒状態および気筒休止状態間の切替制御を説明するフローチャート、図8はアクチュエータの制御手法を示すフローチャートである。
【0020】
図1〜図4に示す能動型防振支持装置M(アクティブ・コントロール・マウント:ACM)は、自動車の気筒休止制御が可能なエンジンEを車体フレームFに弾性的に支持するためのもので、エンジンEのクランクシャフトの回転に伴って出力されるクランクパルスを検出するクランクパルスセンサSaと、エンジンEの気筒休止制御を司るエンジンECU10とが接続された電子制御ユニットUによって制御される。このクランクパルスはクランクシャフトの1回転につき24回、つまりクランクアングルの15°毎に1回出力される。
【0021】
能動型防振支持装置Mは軸線Lに関して実質的に軸対称な構造を有するもので、エンジンEに結合される板状の取付ブラケット11に溶接した内筒12と、この内筒12の外周に同軸に配置された外筒13とを備えており、内筒12および外筒13には厚肉のゴムで形成した第1弾性体14の上端および下端がそれぞれが加硫接着により接合される。中央に開口15bを有する円板状の第1オリフィス形成部材15と、上面が開放した樋状の断面を有して環状に形成された第2オリフィス形成部材16と、同じく上面が開放した樋状の断面を有して環状に形成された第3オリフィス形成部材17とが溶接により一体化されており、第1オリフィス形成部材15および第2オリフィス形成部材16の外周部が重ね合わされて前記外筒13の下部に設けたカシメ固定部13aに固定される。
【0022】
膜状のゴムで形成された第2弾性体18の外周が第3オリフィス形成部材17の内周に加硫接着により固定されており、この第2弾性体18の内周に加硫接着により固定されたキャップ部材19が、軸線L上に上下動可能に配置された可動部材20に圧入により固定される。外筒13のカシメ固定部13aに固定されたリング部材21にダイヤフラム22の外周が加硫接着により固定されており、このダイヤフラム22の内周に加硫接着により固定されたキャップ部材23が前記可動部材20に圧入により固定される。
【0023】
しかして、第1弾性体14および第2弾性体18間に液体が封入された第1液室24が区画され、第2弾性体18およびダイヤフラム22間に液体が封入された第2液室25が区画される。そして第1液室24および第2液室25は、第1〜第3オリフィス形成部材15,16,17により形成された上部オリフィス26および下部オリフィス27によって相互に連通する。
【0024】
上部オリフィス26は第1オリフィス形成部材15および第2オリフィス形成部材16間に形成される環状の通路であって、その一部に設けられた隔壁26aの一側において第1オリフィス形成部材15に連通孔15aが形成され、前記隔壁26aの他側において第2オリフィス形成部材16に連通孔16aが形成される。従って、上部オリフィス26は、第1オリフィス形成部材15の連通孔15aから第2オリフィス形成部材16の連通孔16aまでの略1周の範囲に亘って形成される(図2参照)。
【0025】
下部オリフィス27は第2オリフィス形成部材16および第3オリフィス形成部材17間に形成される環状の通路であって、その一部に設けられた隔壁27aの一側において第2オリフィス形成部材16に前記連通孔16aが形成され、前記隔壁27aの他側において第3オリフィス形成部材17に連通孔17aが形成される。従って、下部オリフィス27は、第2オリフィス形成部材16の連通孔16aから第3オリフィス形成部材17の連通孔17aまでの略1周の範囲に亘って形成される(図3参照)。
【0026】
以上のことから、第1液室24および第2液室25は、直列に接続された上部オリフィス26および下部オリフィス27によって相互に連通する。
【0027】
外筒13のカシメ固定部13aには、能動型防振支持装置Mを車体フレームFに固定するための環状の取付ブラケット28が固定されており、この取付ブラケット28の下面に前記可動部材20を駆動するためのアクチュエータ29の外郭を構成するアクチュエータハウジング30が溶接される。
【0028】
アクチュエータハウジング30にはヨーク32が固定されており、ボビン33に巻き付けられたコイル34がアクチュエータハウジング30およびヨーク32に囲まれた空間に収納される。環状のコイル34の内周に嵌合するヨーク32の筒状部32aに有底円筒状のベアリング36が嵌合する。コイル34の上面に対向する円板状のアーマチュア38がアクチュエータハウジング30の内周面に摺動自在に支持されており、このアーマチュア38の内周に形成した段部38aがベアリング36の上部に係合する。アーマチュア38はボビン33の上面との間に配置した皿ばね42で上方に付勢され、アクチュエータハウジング30に設けた係止部30aに係合して位置決めされる。
【0029】
ベアリング36の内周に円筒状のスライダ43が摺動自在に嵌合しており、可動部材20から下方に延びる軸部20aが、ベアリング36の上底部を緩く貫通してスライダ43の内部に固定したボス44に接続される。ベアリング36の上底部とスライダ43との間にコイルばね41が配置されており、このコイルばね41でベアリング36は上向きに付勢され、スライダ43は下向きに付勢される。
【0030】
アクチュエータ29のコイル34が消磁状態にあるとき、ベアリング36に摺動自在に支持されたスライダ43にはコイルばね41の弾発力が下向きに作用するとともに、ヨーク32の底面との間に配置したコイルばね45の弾発力が上向きに作用しており、スライダ43は両コイルばね41,45の弾発力が釣り合う位置に停止する。この状態からコイル34を励磁してアーマチュア38を下方に吸引すると、段部38aに押されてベアリング36が下方に摺動することによりコイルばね41が圧縮される。その結果、コイルばね41の弾発力が増加してコイルばね45を圧縮しながらスライダ43が下降するため、スライダ43にボス44および軸部20aを介して接続された可動部材20が下降し、可動部材20に接続された第2弾性体18が下方に変形して第1液室24の容積が増加する。逆にコイル34を消磁すると、可動部材20が上昇して第2弾性体18が上方に変形し、第1液室24の容積が減少する。
【0031】
しかして、自動車の走行中に低周波数のエンジンシェイク振動が発生したとき、エンジンEから入力される荷重で第1弾性体14が変形して第1液室24の容積が変化すると、上部オリフィス26および下部オリフィス27を介して接続された第1液室24および第2液室25間で液体が行き来する。第1液室24の容積が拡大・縮小すると、それに応じて第2液室25の容積が縮小・拡大するが、この第2液室25の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、上部オリフィス26および下部オリフィス27の形状および寸法、並びに第1弾性体14のばね定数は前記エンジンシェイク振動の周波数領域で低ばね定数および高減衰力を示すように設定されているため、エンジンEから車体フレームFに伝達される振動を効果的に低減することができる。
【0032】
尚、上記エンジンシェイク振動の周波数領域では、アクチュエータ29は非作動状態に保たれる。
【0033】
前記エンジンシェイク振動よりも周波数の高い振動、即ちエンジンEのクランクシャフトの回転に起因するアイドル時の振動や気筒休止時の振動が発生した場合、第1液室24および第2液室25を接続する上部オリフィス26および下部オリフィス27内の液体はスティック状態になって防振機能を発揮できなくなるため、アクチュエータ29を駆動して防振機能を発揮させる。
【0034】
能動型防振支持装置Mのアクチュエータ29を作動させて防振機能を発揮させるべく、電子制御ユニットUはクランクパルスセンサSaおよびエンジンECU10からの信号に基づいてコイル34に対する通電を制御する。
【0035】
図5に示すように、本実施例のエンジンEは4サイクルV型6気筒エンジンであって、一方のバンクに気筒休止可能な♯1、♯2および♯3の3個の気筒を備えるとともに、他方のバンクに気筒休止不能な♯4、♯5および♯6の3個の気筒を備える。6個の気筒♯1〜♯6の点火順序は、♯1→♯4→♯2→♯5→♯3→♯6であって、両バンクの気筒が交互に爆発するようになっており、かつ気筒休止時には一方のバンクの♯1、♯2および♯3の3個の気筒が一斉に休止するようになっている。
【0036】
気筒休止状態の1周期は、気筒休止可能な気筒の休止と、それに続く気筒休止不能な気筒の爆発とで構成されるもので、気筒休止状態の開始は気筒休止可能な気筒の作動期間の開始を以て始まり、気筒休止状態の終了は気筒休止不能な気筒の作動期間の終了を以て終わることになる。
【0037】
本実施例の4サイクルV型6気筒のエンジンEでは、全筒状態でクランクシャフトの2回転につき6回の爆発が行われるため、クランクシャフトの1回転につき3回の振動が発生する3次振動状態となり、また気筒休止状態でクランクシャフトの2回転につき3回の爆発が行われるため、クランクシャフトの1回転につき1.5回の振動が発生する1.5次振動状態となる。
【0038】
次に、図6のタイムチャートに基づいて、全筒状態と気筒休止状態との切替制御の内容を説明する。
【0039】
図6(A)の▲1▼位置において、全筒状態から気筒休止状態に切り替える切替指令が出力されたとき、気筒休止可能な♯2気筒の作動期間であり、次に作動期間となる気筒は気筒休止不能な♯5気筒であるため、気筒休止不能な♯5気筒の作動期間の開始に合わせて気筒休止状態の制御を開始してしまうと、能動型防振支持装置MがエンジンEの振動状態に合致ない不適切な作動をして有効な防振効果を発揮できなくなる可能性がある。そこで、この場合には、次に作動期間となる気筒休止不能な♯5気筒の作動期間が過ぎるまで全筒状態の制御を継続し、更にその次に作動期間となる気筒休止可能な♯3気筒の作動期間(実際には気筒休止状態に制御される)の開始に合わせて気筒休止状態の制御を開始する。
【0040】
また図6(B)の▲3▼位置において、全筒状態から気筒休止状態に切り替える切替指令が出力されたとき、気筒休止不能な♯5気筒の作動期間であり、次に作動期間となる気筒は気筒休止可能な♯3気筒であるため、その♯3気筒の作動期間(実際には気筒休止状態に制御される)の開始に合わせて気筒休止状態の制御を開始する。
【0041】
また図6(A)の▲2▼位置において、気筒休止状態から全筒状態に切り替える切替指令が出力されたとき、気筒休止可能な♯1気筒の作動期間(実際には気筒休止状態に制御される)であり、次に作動期間となる気筒は気筒休止不能な♯4気筒であるが、気筒休止不能な♯4気筒の作動期間の開始に合わせて全筒状態の制御を開始してしまうと、その前に気筒休止した♯1気筒の影響で能動型防振支持装置MがエンジンEの振動状態に合致ない不適切な作動をして有効な防振効果を発揮できなくなる可能性がある。そこで、この場合には、次に作動期間となる気筒休止可能な♯4気筒の作動期間が過ぎるまで気筒休止状態の制御を継続し、更にその次に作動期間となる気筒休止可能な♯2気筒の作動期間の開始に合わせて全筒状態の制御を開始する。
【0042】
また図6(B)の▲4▼位置において、気筒休止状態から全筒状態に切り替える切替指令が出力されたとき、気筒休止不能な♯4気筒の作動期間であり、次に作動期間となる気筒は気筒休止可能な♯2気筒であるため、その♯2気筒の作動期間の開始に合わせて全筒状態の制御を開始する。
【0043】
上記作用を、図7のフローチャートに基づいて、更に詳細に説明する。
【0044】
先ず、ステップS1でエンジンECU10から気筒休止指令信号、つまり全筒状態あるいは気筒休止状態の何れが指令されているかを読み取り、ステップS2で現在作動期間にある気筒の番号を読み取る。続くステップS3で制御状態の切替指令があり、ステップS4で気筒休止指令中であれば、つまり全筒状態から気筒休止状態への切り替えが指令されれば、ステップS5で現在作動期間にある気筒が気筒休止可能な気筒であるか否かを判断する。
【0045】
前記ステップS5で現在作動期間にある気筒が気筒休止可能な気筒でなければ、ステップS9で次の気筒の作動周期の開始時から気筒休止状態の振動(1.5次振動)を推定し、ステップS10で気筒休止制御のパラメータを算出する。このステップS4,S5,S9,S10の経路は、図6(B)のタイムチャートの▲3▼の状態に対応する。
【0046】
前記ステップS5で現在作動期間にある気筒が気筒休止可能な気筒であれば、ステップS6で1TDC(上死点)が経過するまでは、つまり次の気筒の作動期間が過ぎるまでは、ステップS11で全筒状態の振動(3次振動)を推定し、ステップS12で全筒制御のパラメータを算出する。また前記ステップS6で次の気筒の作動期間が過ぎると、ステップS9で気筒休止状態の振動(1.5次振動)を推定し、ステップS10で気筒休止制御のパラメータを算出する。このステップS4,S5,S6,S11,S12の経路、あるいはステップS4,S5,S6,S9,S10の経路は、図6(A)のタイムチャートの▲1▼の状態に対応する。
【0047】
一方、前記ステップS4で気筒休止指令中でなければ、つまり気筒休止状態から全筒状態への切り替えが指令されれば、ステップS7で現在作動期間にある気筒が気筒休止可能な気筒であるか否かを判断する。
【0048】
前記ステップS7で現在作動期間にある気筒が気筒休止可能な気筒でなければ、ステップS11で次の気筒の作動周期の開始時から全筒状態の振動(3次振動)を推定し、ステップS12で全筒制御のパラメータを算出する。このステップS4,S7,S11,S12の経路は、図6(B)のタイムチャートの▲4▼の状態に対応する。
【0049】
前記ステップS7で現在作動期間にある気筒が気筒休止可能な気筒であれば、ステップS8で1TDC(上死点)が経過するまでは、つまり次の気筒の作動期間が過ぎるまでは、ステップS9で気筒休止状態の振動(1.5次振動)を推定し、ステップS10で気筒休止制御のパラメータを算出する。また前記ステップS8で次の気筒の作動期間が過ぎると、ステップS11で全筒状態の振動(3次振動)を推定し、ステップS12で全筒制御のパラメータを算出する。このステップS4,S7,S8,S9,S10の経路、あるいはステップS4,S7,S8,S11,S12の経路は、図6(A)のタイムチャートの▲2▼の状態に対応する。
【0050】
そして最後に、前記ステップS10,S12で算出したパラメータに基づいて、ステップS13で能動型防振支持装置Mの駆動指令値を決定する。
【0051】
次に、上記図7のフローチャートのステップS9,S10,S11,S12,S13の詳細を、図8のフローチャートに基づいて説明する。
【0052】
先ずステップS21でクランクパルスセンサSaからクランクアングルの15°毎に出力されるクランクパルスを読み込み、ステップS22で前記読み込んだクランクパルスを基準となるクランクパルス(特定のシリンダのTDC信号)と比較することでクランクパルスの時間間隔を演算する。続くステップS23で前記15°のクランクアングルをクランクパルスの時間間隔で除算することでクランク角速度ωを演算し、ステップS24でクランク角速度ωを時間微分してクランク角加速度dω/dtを演算する。続くステップS25でエンジンEのクランクシャフト回りのトルクTqを、エンジンEのクランクシャフト回りの慣性モーメントをIとして、
Tq=I×dω/dt
により演算する。このトルクTqはクランクシャフトが一定の角速度ωで回転していると仮定すると0になるが、膨張行程ではピストンの加速により角速度ωが増加し、圧縮行程ではピストンの減速により角速度ωが減少してクランク角加速度dω/dtが発生するため、そのクランク角加速度dω/dtに比例したトルクTqが発生することになる。
【0053】
続くステップS26で時間的に隣接するトルクの最大値および最小値を判定し、ステップS27でトルクの最大値および最小値の偏差、つまりトルクの変動量としてエンジンEを支持する能動型防振支持装置Mの位置における振幅を演算する。そしてステップS28で、アクチュエータ29のコイル34に印加する電流のデューティ波形およびタイミング(位相)を決定する。
【0054】
以上のように、エンジンEが全筒状態から気筒休止状態に切り替わる過渡期には、切替指令が出力された直後ではなく、最初の気筒休止可能な気筒の作動期間の開始に合わせて、つまりエンジンEが全筒状態から気筒休止状態に実質的に移行するタイミングに合わせて能動型防振支持装置Mの制御を切り替えるので、前記過渡期に能動型防振支持装置Mが不適切な作動を行って有効な防振機能を発揮できなくなる事態を回避することができる。
【0055】
またエンジンEが気筒休止状態から全筒状態に切り替わる過渡期には、切替指令が出力された直後ではなく、最初の気筒休止可能な気筒の作動期間の開始に合わせて、つまりエンジンEが気筒休止状態から全筒状態に実質的に移行するタイミングに合わせて能動型防振支持装置Mの制御を切り替えるので、前記過渡期に能動型防振支持装置Mが不適切な作動を行って有効な防振機能を発揮できなくなる事態を回避することができる。
【0056】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0057】
例えば、能動型防振支持装置Mは液体を封入したものに限定されず、ピエゾ素子を用いたものであっても良い。
【0058】
また実施例では自動車のエンジンEを支持する能動型防振支持装置Mを例示したが、本発明の能動型防振支持装置Mは自動車以外のエンジンの支持に適用することができる。
【0059】
【発明の効果】
以上のように請求項1に記載された発明によれば、エンジンの運転状態を気筒休止状態と全筒状態との間で切り替える切替信号が出力されたとき、そのときのエンジンの運転状態に基づいてアクチュエータの作動周期を切り替えるタイミングを決定するので、エンジンの運転状態と能動型防振支持装置の制御状態とが不一致になるのを防止し、能動型防振支持装置に有効な防振機能を発揮させることができる。
【0060】
また請求項2に記載された発明によれば、全筒状態から気筒休止状態に切り替える切替信号が出力されたときが休止可能気筒の作動期間であれば、次の次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に全筒状態から気筒休止状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0061】
また請求項3に記載された発明によれば、全筒状態から気筒休止状態に切り替える切替信号が出力されたときが休止不能気筒の作動期間であれば、次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に全筒状態から気筒休止状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0062】
また請求項4に記載された発明によれば、気筒休止状態から全筒状態に切り替える切替信号が出力されたときが休止可能気筒の作動期間であれば、次の次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に気筒休止状態から全筒状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【0063】
また請求項5に記載された発明によれば、気筒休止状態から全筒状態に切り替える切替信号が出力されたときが休止不能気筒の作動期間であれば、次の気筒の作動期間、つまり次の休止可能気筒の作動期間の開始に合わせてアクチュエータの作動周期を切り替えるので、エンジンの運転状態が実質的に気筒休止状態から全筒状態に切り替わるタイミングに合わせて能動型防振支持装置の制御状態を切り替え、その防振効果を有効に発揮させることができる。
【図面の簡単な説明】
【図1】能動型防振支持装置の縦断面図
【図2】図1の2−2線断面図
【図3】図1の3−3線断面図
【図4】図1の要部拡大図
【図5】V型6気筒エンジンの点火順序を示す図
【図6】全筒状態および気筒休止状態間の切替タイミングを説明するタイムチャート
【図7】全筒状態および気筒休止状態間の切替制御を説明するフローチャート
【図8】アクチュエータの制御手法を示すフローチャート
【符号の説明】
E エンジン
U 電子制御ユニット(制御手段)
29 アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an actuator drive control device for an active vibration-proof support device in which the operation of an actuator is controlled by a control means so as to suppress transmission of vibration of an engine capable of cylinder deactivation.
[0002]
[Prior art]
Such an active vibration isolating support device is known from the following patent document.
[0003]
This active vibration isolating support device changes the spring constant by applying a current to the actuator to vibrate the movable member. The relationship between the peak current value and the phase of the applied current that sets the spring constant is determined in advance. It is memorized as a map, and the peak current value and phase of the current to be applied to the actuator are obtained from the map according to the engine speed, so that it is effective for active vibration isolating support devices in various engine speed regions. Anti-vibration function is demonstrated.
[0004]
[Patent Literature]
Japanese Patent Laid-Open No. 7-42783
[Problems to be solved by the invention]
By the way, when a command signal for switching the engine from the all cylinder state to the cylinder deactivation state or a command signal for switching from the cylinder deactivation state to the all cylinder state is output, the operation state of the engine is in the cylinder operation period in which the cylinder can be deactivated. There are cases where the cylinder is in an operation period where cylinder deactivation is not possible. Nevertheless, if the control of the active vibration isolating support device is switched between the control of the all cylinder state and the control of the cylinder deactivation state at the moment when the command signal is output, the engine is substantially all cylinders. The active vibration isolation support device controls the cylinder deactivation state even though the engine is in the state, or the active vibration isolation support device controls the all cylinder state even though the engine is substantially in the cylinder deactivation state In the meantime, the active vibration isolating support device may not be able to exhibit an effective vibration isolating effect.
[0006]
The present invention has been made in view of the above-described circumstances, and an object thereof is to allow an active vibration-proof support device to exhibit an effective vibration-proof function when switching between an all-cylinder state and a cylinder deactivation state of an engine.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the actuator of the active vibration isolating support device that controls the operation of the actuator by the control means so as to suppress the transmission of the vibration of the engine capable of stopping the cylinder. In the drive control device, the control means sets a timing for switching the operation cycle of the actuator based on the operation state when a switching signal for switching the operation state of the engine between the cylinder deactivation state and the all cylinder state is output. An actuator drive control device for an active vibration-proof support device is proposed.
[0008]
According to the above configuration, when a switching signal for switching the engine operating state between the cylinder deactivation state and the all cylinder state is output, the timing for switching the operation cycle of the actuator is determined based on the engine operating state at that time. Therefore, it is possible to prevent the operating state of the engine from being inconsistent with the control state of the active vibration isolation support device, and to exhibit an effective vibration isolation function in the active vibration isolation support device.
[0009]
According to the invention described in claim 2, in addition to the configuration of claim 1, in the engine, the cylinder that can be stopped and the cylinder that cannot be stopped in an all cylinder state are alternately exploded, and the control When the switching signal for switching the engine operating state from the all-cylinder state to the cylinder deactivation state is output, when the cylinder in the operation period is a cylinder capable of deactivation, the means for starting the operation period of the next next cylinder In addition, an actuator drive control device for an active vibration-proof support device is proposed in which the operation cycle of the actuator is switched.
[0010]
According to the above configuration, if the switching signal for switching from the all cylinder state to the cylinder deactivation state is output, the operation period of the next cylinder, that is, the operation of the next deactivation cylinder Since the operation cycle of the actuator is switched at the start of the period, the control state of the active type anti-vibration support device is switched at the timing when the operating state of the engine is switched from the all cylinder state to the cylinder deactivation state. The effect can be exhibited effectively.
[0011]
According to a third aspect of the present invention, in addition to the configuration of the first aspect, the engine is configured such that a cylinder that can be stopped and a cylinder that cannot be stopped in an all-cylinder state are alternately exploded, and the control When the switching signal for switching the engine operating state from the all-cylinder state to the cylinder deactivation state is output, when the cylinder in the operation period is a cylinder that cannot be deactivated, in accordance with the start of the operation period of the next cylinder An actuator drive control device for an active vibration isolating support device is proposed, characterized in that the operation cycle of the actuator is switched.
[0012]
According to the above configuration, when the switching signal for switching from the all cylinder state to the cylinder deactivation state is output, the operation period of the next cylinder, that is, the operation period of the next deactivation cylinder is determined. Since the operation cycle of the actuator is switched at the start, the control state of the active vibration isolating support device is switched in accordance with the timing at which the engine operating state is switched from the all cylinder state to the cylinder deactivation state, and the anti-vibration effect is achieved. It can be exhibited effectively.
[0013]
According to the invention described in claim 4, in addition to the configuration of claim 1, in the engine, the cylinder that can be stopped and the cylinder that cannot be stopped in an all cylinder state are alternately exploded, and the control When a switching signal for switching the operating state of the engine from the cylinder deactivation state to the all cylinder state is output, when the cylinder in the operation period is a cylinder capable of deactivation, the means starts the operation period of the next next cylinder. In addition, an actuator drive control device for an active vibration-proof support device is proposed in which the operation cycle of the actuator is switched.
[0014]
According to the above configuration, if the switching signal for switching from the cylinder deactivation state to the all cylinder state is output, the operation period of the next cylinder, that is, the operation of the next deactivation cylinder Since the operation cycle of the actuator is switched at the start of the period, the control state of the active anti-vibration support device is switched according to the timing at which the engine operating state is substantially switched from the cylinder deactivation state to the all-cylinder state. The effect can be exhibited effectively.
[0015]
According to the invention described in claim 5, in addition to the configuration of claim 1, in the engine, the cylinder that can be stopped and the cylinder that cannot be stopped in an all-cylinder state are alternately exploded, and the control When the switching signal for switching the engine operating state from the cylinder deactivation state to the all-cylinder state is output, when the cylinder in the operation period is a cylinder that cannot be deactivated, in accordance with the start of the operation period of the next cylinder An actuator drive control device for an active vibration isolating support device is proposed, characterized in that the operation cycle of the actuator is switched.
[0016]
According to the above configuration, when the switching signal for switching from the cylinder deactivation state to the all cylinder state is output, the operation period of the next cylinder, that is, the operation period of the next deactivation cylinder is determined. Since the operation cycle of the actuator is switched at the start, the control state of the active vibration isolating support device is switched in accordance with the timing at which the engine operating state is substantially switched from the cylinder deactivation state to the all cylinder state, and the anti-vibration effect is achieved. It can be exhibited effectively.
[0017]
The electronic control unit U of the embodiment corresponds to the control means of the present invention.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0019]
1 to 8 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an active vibration isolating support device, FIG. 2 is a sectional view taken along line 2-2 in FIG. 1, and FIG. FIG. 4 is an enlarged view of the main part of FIG. 1, FIG. 5 is a diagram showing the ignition sequence of the V-type 6-cylinder engine, and FIG. 6 explains the switching timing between the all cylinder state and the cylinder deactivation state. FIG. 7 is a flowchart illustrating switching control between the all cylinder state and the cylinder deactivation state, and FIG. 8 is a flowchart illustrating an actuator control method.
[0020]
The active vibration isolation support device M (active control mount: ACM) shown in FIGS. 1 to 4 is for elastically supporting an engine E capable of cylinder deactivation control of an automobile on a vehicle body frame F. Control is performed by an electronic control unit U to which a crank pulse sensor Sa that detects a crank pulse that is output as the crankshaft of the engine E rotates and an engine ECU 10 that controls cylinder deactivation of the engine E are connected. This crank pulse is output 24 times per rotation of the crankshaft, that is, once every 15 ° of the crank angle.
[0021]
The active vibration isolating support device M has a substantially axisymmetric structure with respect to the axis L, and has an inner cylinder 12 welded to a plate-like mounting bracket 11 coupled to the engine E, and an outer periphery of the inner cylinder 12. The outer cylinder 13 is coaxially arranged, and the upper and lower ends of the first elastic body 14 made of thick rubber are joined to the inner cylinder 12 and the outer cylinder 13 by vulcanization adhesion. A disc-shaped first orifice forming member 15 having an opening 15b in the center, a second orifice forming member 16 having a bowl-shaped cross section with an open upper surface and formed in an annular shape, and a bowl shape having the same upper surface opened The third orifice forming member 17 having an annular shape and formed in an annular shape is integrated by welding, and the outer circumferences of the first orifice forming member 15 and the second orifice forming member 16 are overlapped to form the outer cylinder. 13 is fixed to a caulking fixing portion 13a provided at a lower portion.
[0022]
The outer periphery of the second elastic body 18 formed of film-like rubber is fixed to the inner periphery of the third orifice forming member 17 by vulcanization adhesion, and is fixed to the inner periphery of the second elastic body 18 by vulcanization adhesion. The cap member 19 is fixed by press-fitting to the movable member 20 arranged on the axis L so as to be movable up and down. The outer periphery of the diaphragm 22 is fixed to the ring member 21 fixed to the caulking fixing portion 13a of the outer cylinder 13 by vulcanization bonding, and the cap member 23 fixed to the inner periphery of the diaphragm 22 by vulcanization bonding is the movable member. It is fixed to the member 20 by press fitting.
[0023]
Accordingly, the first liquid chamber 24 in which the liquid is sealed is defined between the first elastic body 14 and the second elastic body 18, and the second liquid chamber 25 in which the liquid is sealed between the second elastic body 18 and the diaphragm 22. Is partitioned. The first liquid chamber 24 and the second liquid chamber 25 communicate with each other through the upper orifice 26 and the lower orifice 27 formed by the first to third orifice forming members 15, 16, and 17.
[0024]
The upper orifice 26 is an annular passage formed between the first orifice forming member 15 and the second orifice forming member 16, and communicates with the first orifice forming member 15 on one side of a partition wall 26a provided in a part thereof. A hole 15a is formed, and a communication hole 16a is formed in the second orifice forming member 16 on the other side of the partition wall 26a. Accordingly, the upper orifice 26 is formed over a substantially one-round range from the communication hole 15a of the first orifice forming member 15 to the communication hole 16a of the second orifice forming member 16 (see FIG. 2).
[0025]
The lower orifice 27 is an annular passage formed between the second orifice forming member 16 and the third orifice forming member 17, and the second orifice forming member 16 is connected to the second orifice forming member 16 on one side of a partition wall 27a provided in a part thereof. A communication hole 16a is formed, and a communication hole 17a is formed in the third orifice forming member 17 on the other side of the partition wall 27a. Therefore, the lower orifice 27 is formed over a substantially one-round range from the communication hole 16a of the second orifice forming member 16 to the communication hole 17a of the third orifice forming member 17 (see FIG. 3).
[0026]
From the above, the first liquid chamber 24 and the second liquid chamber 25 communicate with each other by the upper orifice 26 and the lower orifice 27 connected in series.
[0027]
An annular mounting bracket 28 for fixing the active vibration isolating support device M to the vehicle body frame F is fixed to the caulking fixing portion 13 a of the outer cylinder 13. The movable member 20 is attached to the lower surface of the mounting bracket 28. An actuator housing 30 that constitutes the outline of the actuator 29 for driving is welded.
[0028]
A yoke 32 is fixed to the actuator housing 30, and a coil 34 wound around the bobbin 33 is accommodated in a space surrounded by the actuator housing 30 and the yoke 32. A bottomed cylindrical bearing 36 is fitted to the cylindrical portion 32a of the yoke 32 fitted to the inner periphery of the annular coil 34. A disk-shaped armature 38 facing the upper surface of the coil 34 is slidably supported on the inner peripheral surface of the actuator housing 30, and a step portion 38 a formed on the inner periphery of the armature 38 is engaged with the upper portion of the bearing 36. Match. The armature 38 is biased upward by a disc spring 42 disposed between the armature 38 and the upper surface of the bobbin 33, and is positioned by engaging with a locking portion 30 a provided in the actuator housing 30.
[0029]
A cylindrical slider 43 is slidably fitted to the inner periphery of the bearing 36, and a shaft portion 20 a extending downward from the movable member 20 loosely penetrates the upper bottom portion of the bearing 36 and is fixed inside the slider 43. Connected to the boss 44. A coil spring 41 is disposed between the upper bottom portion of the bearing 36 and the slider 43, and the bearing 36 is biased upward and the slider 43 is biased downward by the coil spring 41.
[0030]
When the coil 34 of the actuator 29 is in a demagnetized state, the elastic force of the coil spring 41 acts downward on the slider 43 slidably supported by the bearing 36 and is disposed between the bottom surface of the yoke 32. The spring force of the coil spring 45 is acting upward, and the slider 43 stops at a position where the spring forces of both the coil springs 41 and 45 are balanced. When the coil 34 is excited from this state and the armature 38 is attracted downward, the coil spring 41 is compressed by being pushed by the stepped portion 38a and sliding the bearing 36 downward. As a result, the elastic force of the coil spring 41 increases and the slider 43 descends while compressing the coil spring 45, so the movable member 20 connected to the slider 43 via the boss 44 and the shaft portion 20a descends, The second elastic body 18 connected to the movable member 20 is deformed downward and the volume of the first liquid chamber 24 is increased. Conversely, when the coil 34 is demagnetized, the movable member 20 rises, the second elastic body 18 is deformed upward, and the volume of the first liquid chamber 24 decreases.
[0031]
Thus, when low-frequency engine shake vibration occurs during the traveling of the automobile, the upper orifice 26 changes when the first elastic body 14 is deformed by the load input from the engine E and the volume of the first liquid chamber 24 changes. The liquid goes back and forth between the first liquid chamber 24 and the second liquid chamber 25 connected via the lower orifice 27. When the volume of the first liquid chamber 24 is enlarged / reduced, the volume of the second liquid chamber 25 is reduced / expanded accordingly, but the volume change of the second liquid chamber 25 is absorbed by the elastic deformation of the diaphragm 22. At this time, the shape and size of the upper orifice 26 and the lower orifice 27 and the spring constant of the first elastic body 14 are set so as to exhibit a low spring constant and a high damping force in the frequency region of the engine shake vibration. Vibration transmitted from the engine E to the vehicle body frame F can be effectively reduced.
[0032]
In the frequency region of the engine shake vibration, the actuator 29 is kept in an inoperative state.
[0033]
When vibration having a higher frequency than the engine shake vibration, that is, vibration during idling due to rotation of the crankshaft of engine E or vibration during cylinder deactivation occurs, the first liquid chamber 24 and the second liquid chamber 25 are connected. Since the liquid in the upper orifice 26 and the lower orifice 27 is in a stick state and cannot exhibit the anti-vibration function, the actuator 29 is driven to exhibit the anti-vibration function.
[0034]
The electronic control unit U controls energization to the coil 34 on the basis of signals from the crank pulse sensor Sa and the engine ECU 10 in order to activate the actuator 29 of the active vibration isolating support device M to exhibit the vibration isolating function.
[0035]
As shown in FIG. 5, the engine E of the present embodiment is a 4-cycle V type 6 cylinder engine, and includes three cylinders # 1, # 2 and # 3 capable of stopping cylinders in one bank. The other bank is provided with three cylinders # 4, # 5, and # 6 that cannot be deactivated. The order of ignition of the six cylinders # 1 to # 6 is # 1 → # 4 → # 2 → # 5 → # 3 → # 6, and the cylinders in both banks explode alternately. At the time of cylinder deactivation, the three cylinders # 1, # 2 and # 3 in one bank are deactivated all at once.
[0036]
One cycle of the cylinder deactivation state is composed of a deactivation of the cylinder capable of deactivating the cylinder and a subsequent explosion of the cylinder incapable of deactivation of the cylinder. The start of the deactivation of the cylinder is the start of the operation period of the cylinder capable of deactivation. The end of the cylinder deactivation state ends with the end of the operation period of the cylinder incapable of cylinder deactivation.
[0037]
In the 4-cycle V-type 6-cylinder engine E of the present embodiment, the explosion is performed six times for every two rotations of the crankshaft in the entire cylinder state, so that the third vibration that generates three vibrations for one rotation of the crankshaft. In addition, since the explosion is performed three times for every two rotations of the crankshaft in the cylinder deactivation state, a 1.5th order vibration state is generated in which 1.5 times of vibration is generated for one rotation of the crankshaft.
[0038]
Next, the contents of the switching control between the all cylinder state and the cylinder deactivation state will be described based on the time chart of FIG.
[0039]
When a switching command for switching from the all cylinder state to the cylinder deactivation state is output at the position (1) in FIG. 6 (A), the cylinder that is the operation period of the # 2 cylinder that can be deactivated and the cylinder that becomes the next operation period is Since the # 5 cylinder is incapable of cylinder deactivation, the active vibration isolation support device M vibrates the engine E when the cylinder deactivation control is started in synchronization with the start of the operation period of the # 5 cylinder incapable of cylinder deactivation. There is a possibility that the effective anti-vibration effect cannot be exhibited by improper operation that does not match the condition. In this case, therefore, the control of all cylinders is continued until the operation period of the # 5 cylinder incapable of stopping the cylinder, which becomes the next operation period, and the cylinder # 3 cylinder in which the cylinder can be stopped in the next operation period. The control of the cylinder deactivation state is started at the start of the operation period (actually controlled to the cylinder deactivation state).
[0040]
In addition, at the position (3) in FIG. 6B, when a switching command for switching from the all cylinder state to the cylinder deactivation state is output, the cylinder that is the operation period of the # 5 cylinder incapable of cylinder deactivation and is the next operation period Since the # 3 cylinder is capable of cylinder deactivation, control of the cylinder deactivation state is started in accordance with the start of the operation period of the # 3 cylinder (actually controlled to the cylinder deactivation state).
[0041]
In addition, when a switching command for switching from the cylinder deactivation state to the all cylinder state is output at the position (2) in FIG. 6 (A), the operation period of the # 1 cylinder capable of deactivating the cylinder (actually controlled to the cylinder deactivation state). The cylinder that will be the next operating period is the # 4 cylinder that cannot be deactivated. However, if the control of the all cylinder state is started at the start of the operating period of the # 4 cylinder that cannot deactivate the cylinder. There is a possibility that the active vibration isolating support device M may not perform its effective anti-vibration effect due to improper operation that does not match the vibration state of the engine E due to the influence of the # 1 cylinder which has been deactivated before that. Therefore, in this case, the control of the cylinder deactivation state is continued until the operation period of the cylinder # 4 which can be deactivated next, which becomes the operation period, and the cylinder # 2 which can be deactivated in the next operation period is further increased. The control of the entire cylinder state is started at the start of the operation period.
[0042]
Also, at the position (4) in FIG. 6 (B), when a switching command for switching from the cylinder deactivation state to the all cylinder state is output, the cylinder that is the operation period of the # 4 cylinder incapable of cylinder deactivation and the cylinder that will be the next operation period Is a # 2 cylinder capable of cylinder deactivation, so that the control of all cylinder states is started at the start of the operation period of the # 2 cylinder.
[0043]
The above operation will be described in more detail based on the flowchart of FIG.
[0044]
First, in step S1, a cylinder deactivation command signal, that is, whether the all cylinder state or the cylinder deactivation state is commanded is read from the engine ECU 10, and in step S2, the number of the cylinder currently in operation is read. In the subsequent step S3, if there is a control state switching command, and if the cylinder deactivation command is being issued in step S4, that is, if a switch from the all cylinder state to the cylinder deactivation state is instructed, the cylinders currently in operation in step S5 It is determined whether the cylinder can be deactivated.
[0045]
If the cylinder in the current operation period is not a cylinder that can be deactivated in step S5, vibration in the cylinder deactivation state (1.5th-order vibration) is estimated from the start of the operation cycle of the next cylinder in step S9. In S10, cylinder deactivation control parameters are calculated. The paths of steps S4, S5, S9, and S10 correspond to the state (3) in the time chart of FIG.
[0046]
If the cylinder currently in operation in step S5 is a cylinder that can be deactivated, in step S11 until 1TDC (top dead center) elapses in step S6, that is, until the operation period of the next cylinder passes. All cylinder state vibrations (tertiary vibrations) are estimated, and all cylinder control parameters are calculated in step S12. If the operation period of the next cylinder has passed in step S6, the cylinder deactivation vibration (1.5th order vibration) is estimated in step S9, and the cylinder deactivation control parameters are calculated in step S10. The paths of steps S4, S5, S6, S11, and S12, or the paths of steps S4, S5, S6, S9, and S10 correspond to the state (1) in the time chart of FIG.
[0047]
On the other hand, if the cylinder deactivation command is not being issued in step S4, that is, if switching from the cylinder deactivation state to the all-cylinder state is commanded, whether or not the cylinder currently in operation is a cylinder capable of deactivation in step S7. Determine whether.
[0048]
If the cylinder in the current operation period is not a cylinder that can be deactivated in step S7, in step S11, vibration of all cylinder states (tertiary vibration) is estimated from the start of the operation cycle of the next cylinder, and in step S12. Calculate all cylinder control parameters. The paths in steps S4, S7, S11, and S12 correspond to the state (4) in the time chart of FIG.
[0049]
If the cylinder currently in operation in step S7 is a cylinder that can be deactivated, in step S9 until 1TDC (top dead center) elapses in step S8, that is, until the operation period of the next cylinder passes. A cylinder deactivation state vibration (1.5th order vibration) is estimated, and a cylinder deactivation control parameter is calculated in step S10. When the operation period of the next cylinder has passed in step S8, vibration in all cylinder states (tertiary vibration) is estimated in step S11, and parameters for all cylinder control are calculated in step S12. The path of steps S4, S7, S8, S9, and S10, or the path of steps S4, S7, S8, S11, and S12 corresponds to state (2) in the time chart of FIG.
[0050]
Finally, based on the parameters calculated in steps S10 and S12, a drive command value for the active vibration isolating support device M is determined in step S13.
[0051]
Next, details of steps S9, S10, S11, S12, and S13 of the flowchart of FIG. 7 will be described based on the flowchart of FIG.
[0052]
First, in step S21, a crank pulse output from the crank pulse sensor Sa every 15 ° of the crank angle is read, and in step S22, the read crank pulse is compared with a reference crank pulse (TDC signal of a specific cylinder). To calculate the crank pulse time interval. In the next step S23, the crank angular speed ω is calculated by dividing the crank angle of 15 ° by the time interval of the crank pulse, and in step S24, the crank angular speed ω is time differentiated to calculate the crank angular acceleration dω / dt. In the following step S25, the torque Tq around the crankshaft of the engine E is set as I, and the inertia moment around the crankshaft of the engine E is set as I.
Tq = I × dω / dt
Calculate by This torque Tq is zero assuming that the crankshaft is rotating at a constant angular velocity ω, but in the expansion stroke, the angular velocity ω increases due to acceleration of the piston, and in the compression stroke, the angular velocity ω decreases due to deceleration of the piston. Since crank angular acceleration dω / dt is generated, torque Tq proportional to the crank angular acceleration dω / dt is generated.
[0053]
In the next step S26, the maximum and minimum values of the torques that are temporally adjacent are determined, and in step S27, the active vibration isolation support device that supports the engine E as a deviation between the maximum and minimum values of the torque, that is, the amount of torque fluctuation. The amplitude at the position of M is calculated. In step S28, the duty waveform and timing (phase) of the current applied to the coil 34 of the actuator 29 are determined.
[0054]
As described above, in the transition period in which the engine E is switched from the all cylinder state to the cylinder deactivation state, not immediately after the switching command is output, but in accordance with the start of the operation period of the first cylinder that can be deactivated, that is, the engine Since the control of the active vibration isolation support device M is switched in accordance with the timing when E substantially shifts from the all cylinder state to the cylinder deactivation state, the active vibration isolation support device M performs an inappropriate operation during the transition period. Therefore, it is possible to avoid a situation where the effective anti-vibration function cannot be exhibited.
[0055]
Further, in the transition period when the engine E switches from the cylinder deactivation state to the all cylinder state, not immediately after the switching command is output, but at the start of the cylinder operation period during which the first cylinder deactivation is possible, that is, the engine E is cylinder deactivation. Since the control of the active vibration isolating support device M is switched in accordance with the timing of the transition from the state to the all-cylinder state, the active vibration isolating support device M performs an inappropriate operation during the transition period and is effective in preventing the vibration. The situation where the vibration function cannot be exhibited can be avoided.
[0056]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0057]
For example, the active vibration-proof support device M is not limited to a liquid-sealed device, and may use a piezo element.
[0058]
In the embodiment, the active vibration isolating support apparatus M that supports the engine E of the automobile is illustrated. However, the active vibration isolation support apparatus M of the present invention can be applied to support an engine other than the automobile.
[0059]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the switching signal for switching the engine operating state between the cylinder deactivation state and the all cylinder state is output, based on the engine operating state at that time. Since the timing to switch the actuator operation cycle is determined, it is possible to prevent the operating state of the engine from being inconsistent with the control state of the active anti-vibration support device, and to provide an effective anti-vibration function for the active anti-vibration support device. It can be demonstrated.
[0060]
According to the second aspect of the present invention, if the switching signal for switching from the all cylinder state to the cylinder deactivation state is output, the operation period of the next cylinder, that is, the operation period of the next cylinder, that is, Since the operation cycle of the actuator is switched in accordance with the start of the operation period of the next deactivatable cylinder, the control of the active vibration isolating support device is performed in accordance with the timing at which the engine operation state is substantially switched from the all cylinder state to the cylinder deactivation state. The state can be switched, and the anti-vibration effect can be exhibited effectively.
[0061]
According to the third aspect of the present invention, if the switching signal for switching from the all cylinder state to the cylinder deactivation state is output, the operation period of the next cylinder, that is, Since the operation cycle of the actuator is switched in accordance with the start of the operation period of the cylinder that can be deactivated, the control state of the active vibration isolating support device is adjusted according to the timing at which the engine operation state is switched from the all cylinder state to the cylinder deactivation state. Switching and effectively exhibiting the anti-vibration effect.
[0062]
According to the fourth aspect of the present invention, if the switching signal for switching from the cylinder deactivation state to the all cylinder state is output, the operation period of the next next cylinder, that is, the operation period of the next cylinder, Since the operation cycle of the actuator is switched in accordance with the start of the operation period of the next deactivatable cylinder, the active vibration isolating support device is controlled in accordance with the timing at which the engine operation state is substantially switched from the cylinder deactivation state to the all cylinder state. The state can be switched, and the anti-vibration effect can be exhibited effectively.
[0063]
According to the fifth aspect of the present invention, when the switching signal for switching from the cylinder deactivation state to the all cylinder state is output, the operation period of the next cylinder, that is, Since the operation cycle of the actuator is switched in accordance with the start of the operation period of the cylinder that can be deactivated, the control state of the active vibration isolating support device is adjusted in accordance with the timing at which the engine operation state is substantially switched from the cylinder deactivation state to the all cylinder state. Switching and effectively exhibiting the anti-vibration effect.
[Brief description of the drawings]
1 is a longitudinal sectional view of an active vibration isolating support device. FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a sectional view taken along line 3-3 in FIG. FIG. 5 is a diagram showing the ignition sequence of a V-type 6-cylinder engine. FIG. 6 is a time chart for explaining the switching timing between the all cylinder state and the cylinder deactivation state. Flowchart explaining control [FIG. 8] Flowchart showing actuator control method [Explanation of symbols]
E Engine U Electronic control unit (control means)
29 Actuator

Claims (5)

気筒休止可能なエンジン(E)の振動の伝達を抑制すべく制御手段(U)でアクチュエータ(29)の作動を制御する能動型防振支持装置のアクチュエータ駆動制御装置において、
前記制御手段(U)は、エンジン(E)の運転状態を気筒休止状態と全筒状態との間で切り替える切替信号が出力されたときの前記運転状態に基づいて、アクチュエータ(29)の作動周期を切り替えるタイミングを決定することを特徴とする、能動型防振支持装置のアクチュエータ駆動制御装置。
In the actuator drive control device of the active vibration isolating support device, the operation of the actuator (29) is controlled by the control means (U) so as to suppress the transmission of vibration of the engine (E) capable of cylinder deactivation.
The control means (U) operates the operation cycle of the actuator (29) based on the operation state when a switching signal for switching the operation state of the engine (E) between the cylinder deactivation state and the all cylinder state is output. An actuator drive control device for an active vibration isolating support device, characterized in that the timing for switching between is determined.
前記エンジン(E)は全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、
前記制御手段(U)は、エンジン(E)の運転状態を全筒状態から気筒休止状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止可能気筒である場合に、次の次の気筒の作動期間の開始に合わせてアクチュエータ(29)の作動周期を切り替えることを特徴とする、請求項1に記載の能動型防振支持装置のアクチュエータ駆動制御装置。
In the engine (E), a cylinder that can be stopped and a cylinder that cannot be stopped in an all-cylinder state are alternately exploded,
When the switching signal for switching the operation state of the engine (E) from the all-cylinder state to the cylinder deactivation state is output, the control means (U) performs the next operation when the cylinder in the operation period is a deactivatable cylinder. The actuator drive control device for an active vibration-proof support device according to claim 1, wherein the operation cycle of the actuator (29) is switched in accordance with the start of the operation period of the cylinder.
前記エンジン(E)は全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、
前記制御手段(U)は、エンジン(E)の運転状態を全筒状態から気筒休止状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止不能気筒である場合に、次の気筒の作動期間の開始に合わせてアクチュエータ(29)の作動周期を切り替えることを特徴とする、請求項1に記載の能動型防振支持装置のアクチュエータ駆動制御装置。
In the engine (E), a cylinder that can be stopped and a cylinder that cannot be stopped in an all-cylinder state are alternately exploded,
When the switching signal for switching the operation state of the engine (E) from the all-cylinder state to the cylinder deactivation state is output, the control means (U) 2. The actuator drive control device for an active vibration-proof support device according to claim 1, wherein the operation cycle of the actuator (29) is switched in accordance with the start of the operation period.
前記エンジン(E)は全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、
前記制御手段(U)は、エンジン(E)の運転状態を気筒休止状態から全筒状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止可能気筒である場合に、次の次の気筒の作動期間の開始に合わせてアクチュエータ(29)の作動周期を切り替えることを特徴とする、請求項1に記載の能動型防振支持装置のアクチュエータ駆動制御装置。
In the engine (E), a cylinder that can be stopped and a cylinder that cannot be stopped in an all-cylinder state are alternately exploded,
When the switching signal for switching the operation state of the engine (E) from the cylinder deactivation state to the all cylinder state is output, the control means (U) The actuator drive control device for an active vibration-proof support device according to claim 1, wherein the operation cycle of the actuator (29) is switched in accordance with the start of the operation period of the cylinder.
前記エンジン(E)は全筒状態において休止可能な気筒と休止不能な気筒とが交互に爆発するものであり、
前記制御手段(U)は、エンジン(E)の運転状態を気筒休止状態から全筒状態に切り替える切替信号が出力されたとき、作動期間にある気筒が休止不能気筒である場合に、次の気筒の作動期間の開始に合わせてアクチュエータ(29)の作動周期を切り替えることを特徴とする、請求項1に記載の能動型防振支持装置のアクチュエータ駆動制御装置。
In the engine (E), a cylinder that can be stopped and a cylinder that cannot be stopped in an all-cylinder state are alternately exploded,
When the switching signal for switching the operation state of the engine (E) from the cylinder deactivation state to the all-cylinder state is output, the control means (U) 2. The actuator drive control device for an active vibration-proof support device according to claim 1, wherein the operation cycle of the actuator (29) is switched in accordance with the start of the operation period.
JP2003165537A 2003-06-10 2003-06-10 Actuator drive controller for active anti-vibration support device Expired - Fee Related JP3838646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165537A JP3838646B2 (en) 2003-06-10 2003-06-10 Actuator drive controller for active anti-vibration support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165537A JP3838646B2 (en) 2003-06-10 2003-06-10 Actuator drive controller for active anti-vibration support device

Publications (2)

Publication Number Publication Date
JP2005003051A JP2005003051A (en) 2005-01-06
JP3838646B2 true JP3838646B2 (en) 2006-10-25

Family

ID=34091987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165537A Expired - Fee Related JP3838646B2 (en) 2003-06-10 2003-06-10 Actuator drive controller for active anti-vibration support device

Country Status (1)

Country Link
JP (1) JP3838646B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581720B2 (en) 2005-07-11 2009-09-01 Honda Motor Co., Ltd. Vibration isolation system and method for engine, and control system and method for active vibration isolation support system
JP4657037B2 (en) * 2005-07-11 2011-03-23 本田技研工業株式会社 Control device for active anti-vibration support device
JP4490880B2 (en) * 2005-07-12 2010-06-30 本田技研工業株式会社 Vibration isolator for multi-cylinder engine
JP4657056B2 (en) * 2005-08-05 2011-03-23 本田技研工業株式会社 Control device for active anti-vibration support device
JP4711912B2 (en) * 2006-08-29 2011-06-29 本田技研工業株式会社 Control device for active anti-vibration support device

Also Published As

Publication number Publication date
JP2005003051A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP3811469B2 (en) Actuator drive controller for active anti-vibration support device
US6641120B2 (en) Method for controlling drive of actuator of active vibration isolation support system
JP4657056B2 (en) Control device for active anti-vibration support device
JP4284399B2 (en) Anti-vibration support device for engine
JP4890384B2 (en) Method for detecting natural frequency of engine and control method for active vibration isolating support device
JP3803603B2 (en) Actuator drive control method for active vibration isolation support device
JP4657037B2 (en) Control device for active anti-vibration support device
JP3838646B2 (en) Actuator drive controller for active anti-vibration support device
JP3914177B2 (en) Actuator drive controller for active anti-vibration support device
US7192014B2 (en) Active vibration isolation support system
JP3914176B2 (en) Actuator drive controller for active anti-vibration support device
JP4057956B2 (en) Actuator drive controller for active anti-vibration support device
JP4110015B2 (en) Actuator drive controller for active anti-vibration support device
JP4490880B2 (en) Vibration isolator for multi-cylinder engine
JP4206368B2 (en) Active anti-vibration support device
JP4110048B2 (en) Actuator drive controller for active anti-vibration support device
JP4036448B2 (en) Actuator drive controller for active anti-vibration support device
JP4065152B2 (en) Engine vibration prevention control device
JP2007057074A (en) Active vibration control supporting device
JP2005249013A (en) Active vibration-control support device
JP2004036435A (en) Control method for preventing vibration of cylinder rest engine
JP2005280687A (en) Vibrationproofing control device of engine and vibrationproofing control device of vehicle
JP4615879B2 (en) Active anti-vibration support device
JP2004301297A (en) Active vibration control support device
JP2004036531A (en) Engine vibration preventive controlling method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Ref document number: 3838646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees