JP4062005B2 - 光導波路基板の製造方法 - Google Patents

光導波路基板の製造方法 Download PDF

Info

Publication number
JP4062005B2
JP4062005B2 JP2002223703A JP2002223703A JP4062005B2 JP 4062005 B2 JP4062005 B2 JP 4062005B2 JP 2002223703 A JP2002223703 A JP 2002223703A JP 2002223703 A JP2002223703 A JP 2002223703A JP 4062005 B2 JP4062005 B2 JP 4062005B2
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
optical
groove
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002223703A
Other languages
English (en)
Other versions
JP2004062064A (ja
Inventor
隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002223703A priority Critical patent/JP4062005B2/ja
Publication of JP2004062064A publication Critical patent/JP2004062064A/ja
Application granted granted Critical
Publication of JP4062005B2 publication Critical patent/JP4062005B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【0001】
本発明は、光導波路モジュールに用いる光導波路基板の製造方法に関する。
【0002】
【従来の技術】
光導波路モジュールは、光導波路基板(「平面光導波路(PLC)」とも呼ばれる)と光ファイバとを光学的に接続して一体化した装置である。光導波路基板は、通常、基板に光導波路コアを設けることにより製造される。この光導波路コアと光ファイバとは、互いの光軸が一致するように位置合わせ、すなわち調芯されている。
【0003】
低損失の光導波路モジュールを得るためには、光導波路コアと光ファイバの位置合わせが重要である。特開昭61−55616号公報および特開昭62−17711号公報では、光導波路コアに位置合わせされた溝を基板の端部に設け、その溝内に光ファイバを収容することにより、光ファイバと光導波路コアとを位置合わせする。
【0004】
【発明が解決しようとする課題】
溝の内部に光ファイバを収容する場合、溝の内面と光ファイバとの間に光ファイバを挿入できる程度のクリアランスが必要となる。しかし、このクリアランスは、光ファイバの固定位置精度を劣化させる原因ともなる。クリアランスがあるため、光ファイバの位置が溝の内部で変化しやすい。これは、光ファイバと光導波路コアとの光軸ズレを招く。
【0005】
特開昭63−311212号公報には、V溝の側面で光ファイバを支持する技術が開示されている。溝の内部に光ファイバを収容するのではないので、V溝の内面と光ファイバとの間にクリアランスを設ける必要はない。
【0006】
しかし、V溝には、石英基板に形成することが難しいという欠点がある。基板がシリコン製であれば、シリコン結晶面に沿った異方性エッチングを実行することにより、V溝を比較的容易に形成できる。しかし、基板が石英製の場合は、この手法は使用できない。また、機械加工では、十分な低損失が得られるようにV溝と光導波路コアとを位置合わせすることは難しい。
【0007】
近年では、石英系光導波路コアを設ける基板の材料としては、シリコンよりも石英の方が好ましいとされている。これは、複屈折によって生じる光導波路コアの温度特性(特に偏波依存性)を抑制するためである。このため、石英基板への形成に適した光ファイバ整列用の溝が要望されている。
【0008】
そこで、この発明は、光ファイバと光導波路コアの光軸ズレが生じにくく、石英基板への形成に適した光ファイバ整列用の溝を光導波路モジュールに提供することを課題とする。
【0009】
【課題を解決するための手段】
この発明の光導波路モジュールは、光導波路基板および光ファイバを備えている。光導波路基板は、光導波路コアと、この光導波路コアを支持する基板とを有している。光導波路コアは、一本でも、複数本でもよい。この基板は、この基板の端部に位置する低位部と、低位部に隣接する高位部とを有している。光導波路コアの一端面は、低位部と高位部との境界において高位部の側面に位置している。低位部の上面には、光導波路コアの光軸の延長線に沿って延びる溝が設けられている。この溝は、一本でも、複数本でもよい。光ファイバの一端部は、この溝に配置されている。光ファイバのコアの端面は、高位部の側面に位置する光導波路コアの端面と対向している。溝の開口幅は、光ファイバの外径よりも小さい。光ファイバの上記の一端部は、溝のエッジによって支持されている。
【0010】
上記の溝は、そのエッジで光ファイバを支持する。溝の内部に光ファイバを収容しないので、溝の内面と光ファイバとの間にクリアランスを必要としない。このため、光ファイバと光導波路コアとの間で光軸ズレが生じにくい。また、溝の側面で光ファイバを支持する必要がないので、溝の内面を基板上面に対して傾斜させる必要もない。このため、基板の材料が石英であっても、エッチングなどによって容易に溝を形成できる。
【0011】
この発明の光導波路モジュールは、光ファイバを収容する光フェルールと、光フェルールおよび光導波路基板を支持する支持部材とをさらに備えていてもよい。支持部材は、支持部材の端部に位置する低位部と、低位部に隣接する高位部と、を有していてもよい。この場合、光導波路基板は、支持部材の高位部に配置される。また、光フェルールは、支持部材の低位部に配置される。光フェルールは、第1および第2の端面を有していてもよい。この場合、光ファイバの上記の一端部は、光フェルールの第1の端面から溝まで延在していてもよい。また、光ファイバの他端部は、光フェルールの第2の端面付近まで延在していてもよい。
【0012】
支持部材を使用することで、光導波路基板に光フェルールを設置するための領域を設ける必要がなくなる。これにより、光導波路基板の面積を抑えられる。支持部材は、段差加工によって安価に製造できる。したがって、光導波路モジュールの製造コストが少なくて済む。
【0013】
この発明の光導波路基板製造方法の第1態様では、光導波路コアが埋め込まれた基板を用意する。この光導波路コアは、基板の一端部まで延在している。この基板端部の上面には、溝が形成される。この溝は、光導波路コアのうち上記基板端部の手前に位置する部分の光軸の延長線に沿って延在している。この後、上記基板端部のうち溝を含む領域の上面部分が一定の厚さだけ除去される。これにより、光導波路コアのうち上記基板端部の手前に位置する部分の端面が露出する。
【0014】
この発明の光導波路基板製造方法の第1態様では、光導波路コアが埋め込まれた基板を用意する。この光導波路コアは、基板の一端部まで延在している。この基板端部の上面部分は、一定の厚さだけ除去される。これにより、光導波路コアのうち上記基板端部の手前に位置する部分の端面が露出する。この後、上記基板端部の上面に溝が形成される。この溝は、光導波路コアのうち上記基板端部の手前に位置する部分の光軸の延長線に沿って延在している。
【0015】
この第1または第2態様の方法によれば、エッジ部で光ファイバを支持する光ファイバ整列用の溝を基板に形成することができる。この発明の光導波路モジュールで使用される光導波路基板は、この方法によって製造することができる。
【0016】
【発明の実施の形態】
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。
【0017】
図1および図2を参照しながら、この実施形態の光導波路モジュール1の構成を説明する。図1は、この実施形態の光導波路モジュール1を示す部分破断平面図である。図2は、図1のII−II線に沿った光導波路モジュール1の断面図である。光導波路モジュール1の内部には、光導波路基板10、補強基板20および二つの光フェルール30が収容されている。光導波路基板10および光フェルール30は、補強基板20の上面に設置されている。二つの光フェルール30は、光導波路基板10の両側に配置されている。光導波路基板10、補強基板20および光フェルール30は、モールド樹脂44によって覆われている。
【0018】
光導波路基板10は、基板11と、その基板11内に埋め込まれた光導波路コア12から構成されている。光導波路コア12は、ほぼ正方形の断面を有する柱状体である。基板11のうち光導波路コア12の側面に接する部分は、光導波路コア12よりも低い屈折率を有している。
【0019】
光導波路基板10の上面には、段差が設けられている。すなわち、基板11は、高位部11aと、高位部11aの両側に隣接して配置された低位部11bから構成されている。二つの低位部11bは、基板11の両端部に位置している。高位部11aおよび低位部11bは、ともに平坦な上面を有している。これらの上面は、互いに略平行であり、ともに水平方向に延在している。高位部11aの上面は、低位部11bの上面よりも高い。
【0020】
光導波路コア12は、一方の低位部11bから他方の低位部11bに向かって高位部11aを貫通するように延在している。光導波路コア12の一端面は、低位部11bと高位部11aとの境界において高位部11aの側面に位置している。
【0021】
基板11および光導波路コア12は、ともに石英(SiO2)を主成分とするガラスから構成されている。石英基板上に石英系の光導波路を設けると、様々な光回路を自由に作製できるという利点が得られる。以下では、この理由を説明する。
【0022】
AWG(Arrayed Waveguide Grating)に代表されるような光回路では、石英系光導波路を形成する基板の材質に応じた線膨張係数差が生じる。例えば、石英系光導波路を石英基板上に形成した場合、複屈折(TE偏波とTM偏波の屈折率差)Bは10-5のオーダである。これに対して、石英系光導波路をシリコン(Si)基板上に形成した場合、複屈折Bは10-4のオーダである。AWGの重要な特性として、TE偏波およびTM偏波間の透過スペクトルの透過中心波長差(PDλ)が挙げられる。PDλとBとは比例関係にあるため、シリコン基板を用いる方が石英基板を用いる場合よりもPDλが大きくなる。例えば、AWGの透過波長間隔を0.8nmとすると、石英系光導波路を石英基板上に形成した場合、PDλは0.05nmである。これに対して、石英系光導波路をシリコン基板上に形成した場合、PDλは0.5nmである。このように、石英系光導波路を石英基板上に形成すると透過中心波長差を抑えられるので、様々な光回路を作製しやすい。このような検討は、IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 6, NO. 5, MAY 1994 pp.626-628に記載されている。
【0023】
補強基板20は、その上面において光導波路基板10と光フェルール30を支持する。補強基板20の上面には、段差が設けられている。すなわち、補強基板20は、高位部20aと、高位部20aの両側に位置する低位部20bから構成されている。高位部20aおよび低位部20bは、ともに平坦な上面を有している。これらの上面は、互いに平行であり、ともに水平方向に延在している。高位部20aの上面は、低位部20bの上面よりも高い。光導波路基板10は、高位部20aの上面に設置されている。光フェルール30は、低位部20bの上面に設置されている。
【0024】
補強基板20は、光ファイバ32と光導波路コア12の光軸の高さを一致させるために設けられている。補強基板20を使用せずに、基板11に光フェルール30設置用の段差を設けても、光ファイバ32と光導波路コア12の光軸を一致させることは可能である。しかし、基板11に光フェルール設置部を設けると、基板11の面積が大きくなる。これにより、一枚のウェーハから取れる光導波路基板10のチップ数が減少し、歩留りの低下や製造コストの増加を招いてしまう。特に、光導波路基板10の製造には多くの加工工数が必要となるので、この問題は顕著である。そこで、この実施形態では、光導波路基板10とは別個に補強基板20を用意することにした。補強基板20は、平板に段差加工を施すだけで安価に製造できる。この結果、光導波路モジュール1の製造コストを低減できる。
【0025】
補強基板20は、基板11と同じ材料(この実施形態では、石英)から構成されていることが好ましい。材料が同一だと、補強基板20と基板11との接触面で生じる線膨張係数差を抑えることができる。これに応じて、線膨張係数差によって生じる光導波路の応力複屈折も抑えられる。したがって、光導波路コア12の伝送特性の温度依存性や偏波依存性を抑えられる。
【0026】
光フェルール30は、複数本の光ファイバ32を収容している。これらの光ファイバ32は、等間隔で並列に配置されている。これらの光ファイバ32の先端部は、光フェルール30の前端面30aから光導波路基板10に向かって突出している。光ファイバ32の先端部は、光導波路基板10の上面で等間隔に並列配置される。光ファイバ32の先端部は、平板状の押えガラス40によって上から基板11に向かって押圧されている。一方、光ファイバ32の後端部は、光フェルールの後端面30bの付近まで延在している。光フェルール30のうち光ファイバ群の両側方に位置する部分には、2本のガイドピン36が挿入されている。これらのガイドピン36は、光フェルール30を貫通している。ガイドピン36の一方の端部は、光フェルール30の後端面30bから外側に突出している。
【0027】
光フェルール30は、好ましくは、プラスチック成形物である。この場合、光導波路モジュール1を安価に製造することができる。というのも、プラスチック成形物は、大量生産が可能だからである。
【0028】
光ファイバ32のコアと光導波路コア12とは、位置合わせされている。つまり、互いに対向する光ファイバ32の端部の光軸と光導波路コア12の端部の光軸とは、実質的に一直線上に位置している。光ファイバ32の端面と光導波路コア12の端面とは、所定の距離をおいて対向している。
【0029】
光ファイバ32と光導波路コア12の端面間の間隙は、屈折率整合材42によって充填されている。屈折率整合材42は、光ファイバ32のコアおよび光導波路コア12と実質的に等しい屈折率を有している。屈折率整合材42は透光性である。光ファイバ32と光導波路とは、屈折率整合材42を介して光学的に結合されている。屈折率整合材42は、光ファイバ32の端面および光導波路コア12の端面での光反射を低減する。また、屈折率整合材42は、光ファイバ32と光導波路コア12の間を伝搬する光の結合損失を低減する役割を持つ。
【0030】
屈折率整合材42としては、シリコーン系の樹脂接着剤を使用することができる。シリコーン系の樹脂は、アクリル系の樹脂に比べて軟質である。例えば、シリコーン系紫外線硬化樹脂の硬度は、ショアA20程度であるのに対し、アクリル系紫外線硬化樹脂の硬度は、ショアA100程度である。軟質の材料を屈折率整合材42として使用すると、光ファイバ32に与えるストレスが少なくて済む。このため、光ファイバ32の断線や、光ファイバ32への外部応力により生じる損失の増加を防ぐことができる。
【0031】
光ファイバ32および光導波路基板10は、ともにシングルモードである。光ファイバ32および光導波路基板10は、実質的に同一のモードフィールド径を有している。これは、光ファイバ32および光導波路基板10間の結合損失を抑えるためである。
【0032】
光導波路基板10、補強基板20、光フェルール30、および押えガラス40は、モールド樹脂44によって封止成形されている。光導波路モジュール1の表面は、モールド樹脂44で覆われている。これにより、光導波路モジュール1の信頼性が高まる。モールド樹脂44は、光導波路モジュール1内部への水分の侵入を防ぐ。これにより、屈折率整合材42の付着力の劣化や屈折率の変化による信頼性の低下が防止される。ただし、光モジュール30の後端面30bは、モールド樹脂44によって覆われることなく、露出している。これは、光コネクタなど他の光学部品を後端面30bを介して光モジュール30に接続するためである。
【0033】
モールド樹脂44は、封止材の一種である。封止材として樹脂を使用することにより、光導波路モジュール1を安価にパッケージングすることができる。モールド樹脂44は、好ましくは、エポキシ系樹脂である。エポキシ系樹脂を使用すれば、光モジュール30との密着性の良好な封止成形が可能である
以下では、図3および図4を参照しながら、光ファイバ32の整列方法を説明する。ここで、図3は、図2のIII−III線に沿った光導波路基板10および光ファイバ32の断面図である。図4は、光導波路基板10上の光ファイバ32の配置を示す斜視図である。図面の簡単のため、図3および図4では、屈折率整合材42やモールド樹脂44の図示が省略されている。また、図3には、高位部11aの側面および光導波路コア12の端面が想像線で示されている。
【0034】
図3および図4に示されるように、各光ファイバ32は、一本の溝14に配置されている。これらの溝14は、低位部11bの上面において等間隔に設置されている。溝14は、光導波路コア12の光軸の延長線8に沿って延在している。溝14に光ファイバ32が配置されると、光ファイバ32が光導波路コア12に対して調芯される。このため、光フェルール30内で光ファイバ32に多少の位置ズレがあっても、光ファイバ32と光導波路コア12とを適切に光学結合させることができる。光フェルール30に高い精度は要求されないので、光導波路モジュール1は、安価に製造することができる。
【0035】
溝14の断面は、矩形状をしている。この実施形態では、溝14の深さDは20μmであり、溝14の開口幅Wは80μmである。光導波路コア12の下面から高位部11aの上面までの距離Aは、30μmである。低位部11bの上面から光導波路コア12の下面までの距離Bは、20μmである。光ファイバ32の光軸の間隔Cは、250μmである。光ファイバ32の外径Eは、125μmである。
【0036】
光ファイバ32は、溝14の二つのエッジ14aのみによって支持されている。溝14の開口幅Wが光ファイバ32の外径Eよりも小さいため、溝14のエッジ14aのみが光ファイバ32の側面に接触している。光ファイバ32は、溝14の底部には接触しない。このように、溝14は、その底部や側面で光ファイバを支持する従来の光ファイバ整列用溝とは異なる。
【0037】
図1および図2に示されるように、押えガラス40は、光ファイバ32が溝14に倣うように、光ファイバ32を上方から押圧する。光ファイバ32が溝14に押しつけられているので、光ファイバ32が溝14から外れにくい。これにより、光ファイバ32と光導波路コア12との間の結合損失が抑えられる。
【0038】
図5は、光導波路モジュール1へのテープファイバ80の取付けを示す平面図である。図5(a)に示されるように、デープファイバ80は、光導波路モジュール1の光ファイバ32と同数の光ファイバ82を収容している。テープファイバ80の先端には、硬質のコネクタ部84が設けられている。コネクタ部84内において光ファイバ82の両側方には、ガイドピン孔86が設けられている。ガイドピン36の端部をガイドピン孔86に挿入すると、光導波路モジュール1にテープファイバ80が接続される(図5(b))。このとき、光導波路モジュール1内の光ファイバ32とテープファイバ80内の光ファイバ82とが光学的に接続される。したがって、一方のテープファイバ80によって伝送された光を、光導波路モジュール1を介して、他方のテープファイバ80へ伝送することができる。
【0039】
以下では、図6〜図12を参照して光導波路モジュール1の組立手順を説明する。ここで、図6〜図8および図10〜図12は、各組立工程での光導波路モジュール1を示す平面図である。また、図9は、光フェルール30の構成を示す平面図である。
【0040】
まず、光導波路基板10を用意する(図6)。基板11は、その低位部11bに複数本の溝14を有している。光導波路コア12は、高位部11a中を延在している。一本の光導波路コア12の両端面に、それぞれ溝14が一本ずつ対向している。各溝14は、光導波路コア12の光軸の延長線8に沿って延びている。
【0041】
ここで、図13〜図19を参照しながら、光導波路基板10の製造方法を説明する。図13〜図19は、光導波路基板10の製造工程を示す平面図、正面図および側面図である。
【0042】
まず、基体71を用意する(図13)。基体71は、石英ガラス製の平板である。基体71は、複数本の光導波路コア12を有している。これらの光導波路コア12は、等間隔で互いに平行に並列配置された直線導波路である。光導波路コア12は、基体71と同様に、石英ガラスから構成されている。光導波路コア12の屈折率は、基体71のうち光導波路コア12の側面に付着している部分の屈折率よりも高い。つまり、光導波路コア12とその周囲の部分は、それぞれコアとクラッドに当たる。
【0043】
次に、基体71の上面に一定の厚さのレジスト層50を設ける(図14)。レジスト層50は、基体71の上面全体を覆う。
【0044】
次いで、基体71の両端部71bにおいてレジスト層50に複数本の溝52を形成する(図15)。溝52は、フォトリソグラフィ技術を用いて形成される。一本の光導波路の両端部12bの上方に、それぞれ溝52が一本ずつ配置される。溝52は、光導波路の中間部12aの光軸の延長線に沿って形成される。ここで、中間部12aは、光導波路コア12のうち基体の端部71bの手前に位置する部分、すなわち基体の中間部71aに位置する部分を指す。この実施形態では、光導波路コア12が直線導波路なので、溝52は、光導波路の端部12bの光軸に沿って延びている。光導波路コア12は、溝52の中央部の直下に位置している。
【0045】
次に、レジスト層50をマスクとするドライエッチング加工によって基体71の上面に複数本の溝13を形成し、その後、レジスト層50を除去する(図16)。このドライエッチングは、基体71を垂直方向に削る。このため、溝13は、矩形状の横断面を有している。具体的には、反応性イオンエッチング(RIE)を使用する。RIEは、石英製の基体71を垂直方向に削るのに適している。
【0046】
溝13は、光導波路基板10の溝14とほぼ同一の寸法および形状を有している。溝13の幅および深さは、光導波路基板10の溝14と実質的に同一である。したがって、溝13の幅は、光ファイバ32の外径よりも小さい。また、溝13は、光ファイバ32を溝13に配置したときに光ファイバ32の側面が溝13の底部に接触しない程度の深さを有している。
【0047】
溝13の2次元的な位置は、レジスト層50の溝52に対応している。溝13は、基体71の両端部71bの上面に設けられる。溝13は、基板11aの中間部71aまでは延在しない。一本の光導波路の両端部12bの上方に、それぞれ溝13が一本ずつ配置されている。溝13は、光導波路の中間部12aの光軸の延長線に沿って延在している。光導波路コア12は、溝13の中央部の直下に位置している。
【0048】
続いて、中間部71aの上面に一定の厚さのレジスト層54を設ける(図17)。端部71bの上面および溝13には、レジスト層が被着されず、露出したままとされる。レジスト層54は、フォトリソグラフィ技術を用いて形成される。
【0049】
次に、レジスト層54をマスクとするドライエッチング加工によって、基体の両端部71bを垂直方向に所定の厚さだけ除去し、その後、レジスト層54を除去する(図18)。具体的には、反応性イオンエッチング(RIE)を行う。RIEにより、基体の両端部71bの上面部分が一定の厚さだけ除去される。これにより、両端部71bの上面は、中間部71aの上面よりも一定の距離だけ低くなる。この結果、基体71の上面に段差が形成される。中間部71aの上面は、端部71bの上面よりも高い。したがって、中間部71aは高位部であり、端部71bは低位部である。
【0050】
両端部71bの上面には、溝13に対応する溝14が残る。また、エッチングにより、光導波路の両端部12bが除去される。図18の符号8は、光導波路コア12の光軸の延長線を示している。延長線8は、光導波路コア12の端面から光軸方向に沿って光導波路コア12の外側に延びる直線である。溝14は、延長線8の下方において延長線8に沿って延在している。延長線8は、溝14の中央部の直上に位置している。溝14の間隔は、光導波路コア12の間隔と等しい。
【0051】
この後、基体71の上面に等方性エッチングを施すと、光導波路基板10が得られる(図19)。基体71は基板11に該当し、中間部71aは高位部11aに該当し、端部71bは低位部11bに該当する。エッチャントとしては、バッファド沸酸(BHF)を使用することができる。等方性エッチングにより、溝のエッジ14aがわずかに鈍る、すなわち丸みを帯びる。光ファイバ32は溝のエッジ14aによって支持されるため、エッジ14aがあまりに鋭利だと、光ファイバ32が断線するおそれがある。このため、この実施形態では、エッジ14aに丸みを付けて、光ファイバ32の断線を防止している。
【0052】
この製造方法で使用する反応性イオンエッチング(RIE)は、基体71が切り出される石英ウェーハの全面に施すことができる。RIEは、光導波路コア12の形成にも使用することができる。複数の基体71を含むウェーハにRIEを用いて光導波路コア12および溝14を一括形成した後、複数の基体71を切り出せば、光導波路基板10を効率良く安価に製造できる。
【0053】
このようにして光導波路基板10を製造した後、光導波路基板10を補強基板20の上面に載置し、固定する(図7)。光導波路基板10は、補強基板の高位部20aの上面に設置される。
【0054】
次に、補強基板の両端部20bに光フェルール30を載置し、固定する(図8)。このとき、光ファイバ32は、溝14に配置され、そのエッジ14aによって支持される。光ファイバ32のコアの端面と光導波路コア12の端面との間には、間隙90が形成される。
【0055】
図9に示されるように、光フェルール30は、複数本の光ファイバ32と、光コネクタ嵌合用のガイドピン36を収容している。光ファイバ32の先端部は、光フェルールの先端面30aから突出している。ガイドピン36は、貫通孔34に挿入される。図1に示されるように、ガイドピン36の一方の端部は、フェルール30の後端面30bから突出している。
【0056】
図2に示されるように、光フェルールの前端面30aは、補強基板の高位部20aの側面に突き当てられる。また、光フェルール30の下面は、低位部20bの上面に接する。補強基板の低位部20bは、光フェルール30が低位部20bに載置されると光ファイバ32の先端部が溝のエッジ14aと接触するような高さを有している。また、低位部20bは、光フェルール30が低位部20bに載置されると光ファイバ32のコアの端面と光導波路の端面との間に上記の間隙90が生じるような長さを有している。
【0057】
次いで、押えガラス40を光ファイバ32の上に置き、光ファイバ32を押さえる(図10)。これにより、光ファイバ32が溝14から外れることを防ぎ、光ファイバ32を溝14に正確に位置決めすることができる。
【0058】
続いて、高位部11aと低位部11bの境界部分に屈折率整合材42を塗布する(図11)。これにより、光ファイバ32と光導波路コア12の端面間の間隙90に屈折率整合材42が充填される。
【0059】
次に、補強基板20の表面をモールド樹脂44で被覆する(図12)。これにより、光導波路基板10、補強基板20、光フェルール30および押えガラス40がモールド一体化され、光導波路モジュール1が得られる。モールド樹脂44は、光フェルールの後端面30bは被覆しない。光フェルールの後端面30bの付近には、光ファイバ32の端面が露出する。この露出端面を介して、光ファイバ32を別の光ファイバまたはその他の光学部品に光学的に接続することができる。
【0060】
以下では、この実施形態の利点を説明する。光導波路モジュール1は、主に三つの利点を有している。
【0061】
第1に、光ファイバ32と光導波路コア12との間で光軸ズレが生じにくい。これは、溝14が、そのエッジ14aで光ファイバ32を支持するからである。溝14の内部に光ファイバ32を収容しないので、溝14の内面と光ファイバ32との間にクリアランスを必要としない。このため、光軸ズレが生じにくい。
【0062】
第2に、石英基板11への溝14の形成が容易である。これも、溝14が、そのエッジ14aで光ファイバ32を支持することに起因する。V溝のように溝の内面で光ファイバを支持しないので、溝14の内面を基板11の上面に対して傾斜させる必要がない。溝14を形成するために石英基板11を斜めに削る必要がないので、例えばエッチングにより、容易に十分な精度で溝14を形成できる。
【0063】
第3に、溝14の寸法に対する精度要求が緩やかである。これも、溝14が、そのエッジ14aで光ファイバ32を支持するからである。溝14は光ファイバ32を内部に収容しないので、溝14には、光ファイバ32との嵌め合い性は要求されない。溝14の精度として要求されるのは、光導波路コア12との調芯性だけである。溝14の開口幅が適切であれば、溝14の深さには多少の誤差が許される。このため、光導波路モジュール1は、歩留り良く製造できる。これに対し、光ファイバを内部に収容する従来の溝は、その寸法に対する精度要求が厳しい。この溝は、光ファイバとの嵌め合い性とコア位置調整性(光軸調整性)の双方を満たす必要があるからである。この溝では、開口幅および深さの双方について、誤差はほとんど許されない。このため、この溝を採用する光導波路モジュールは、高い歩留りで製造することが難しい。
【0064】
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
【0065】
上記実施形態では、溝14の横断面の形状は、矩形である。しかし、本発明では、光ファイバ整列用の溝の横断面は、溝のエッジで光ファイバを支持できるものであれば、他の形状であってもよい。例えば、溝の横断面は、台形または逆台形であってもよい。ただし、石英基板に溝を形成するときは、その加工容易性から、矩形状が最も適している。
【0066】
上記実施形態では、溝14を形成するため、基体端部71bの上面に仮の溝13を形成してから基体端部71bの上面部分を一定の厚さだけ除去する。しかし、基体端部71bの上面部分を一定の厚さだけ除去してから、溝14を形成しても良い。基体端部71bの上面部分をある程度の厚さだけ除去すると、光導波路コアの中間部12aの端面が露出する。この後、中間部12bの光軸の延長線に沿って溝14を形成すれば、上記実施形態と同じ光導波路基板を製造できる。
【0067】
【発明の効果】
この発明の光導波路モジュールは、そのエッジで光ファイバを支持する溝を用いて光ファイバを整列する。溝の内面と光ファイバとの間にクリアランスを必要としないので、光ファイバと光導波路コアとの間で光軸ズレが生じにくい。また、溝の内面を基板上面に対して傾斜させる必要もないので、基板の材料が石英であっても容易に溝を形成できる。
【図面の簡単な説明】
【図1】この発明の実施形態に係る光導波路モジュール1の部分破断平面図である。
【図2】光導波路モジュール1の側断面図である。
【図3】光導波路基板10および光ファイバ32の横断面図である。
【図4】光導波路基板10および光ファイバ32の斜視図である。
【図5】光導波路モジュール1へのテープファイバ80の取付けを示す平面図である。
【図6】光導波路モジュール1の組立工程を示す平面図である。
【図7】光導波路モジュール1の組立工程を示す平面図である。
【図8】光導波路モジュール1の組立工程を示す平面図である。
【図9】フェルール30の構成を示す平面図である。
【図10】光導波路モジュール1の組立工程を示す平面図である。
【図11】光導波路モジュール1の組立工程を示す平面図である。
【図12】光導波路モジュール1の組立工程を示す平面図である。
【図13】光導波路基板10の製造工程を示す平面図および正面図である。
【図14】光導波路基板10の製造工程を示す平面図および正面図である。
【図15】光導波路基板10の製造工程を示す平面図および正面図である。
【図16】光導波路基板10の製造工程を示す平面図および正面図である。
【図17】光導波路基板10の製造工程を示す平面図、正面図および側面図である。
【図18】光導波路基板10の製造工程を示す平面図、正面図および側面図である。
【図19】光導波路基板10の製造工程を示す正面図である。
【符号の説明】
1…光導波路モジュール、10…光導波路基板、11…基体、12…光導波路コア、14…光ファイバ整列用の溝、14a…エッジ部、20…支持部材としての補強基板、30…光フェルール、32…光ファイバ、40…押えガラス、42…屈折率整合材、44…封止材としてのモールド樹脂。

Claims (2)

  1. 光導波路基板と、光ファイバと、前記光ファイバを収容する光フェルールとを備え、
    前記光導波路基板は、光導波路コアと、前記光導波路コアを支持する基板と、を有しており、
    前記基板は、石英を主成分とするガラスから構成されると共に、前記基板の端部に位置する低位部と、前記低位部に隣接する高位部と、を有しており、
    前記光導波路コアの一端面は、前記低位部と前記高位部との境界において前記高位部の側面に位置し、
    前記低位部の上面には、前記基板の等方性エッチングによって丸みがつけられたエッジを有すると共に、前記光導波路コアの光軸の延長線に沿って延びる矩形状の溝が設けられており、
    前記光ファイバの一端部は、前記光フェルールの第1端面から突出して前記溝に配置されており、かつ前記光ファイバの他端部は、前記光フェルールの第2端面に露出しており、
    前記光ファイバのコアの端面は、前記高位部の側面に位置する前記光導波路コアの端面と所定の距離をおいて対向しており、
    前記溝の開口幅は、前記光ファイバの外径よりも小さく、
    前記光ファイバの前記一端部は、前記溝のエッジによって支持されている光導波路モジュールにおける光導波路基板の製造方法であって、
    前記光導波路コアが埋め込まれた基板を用意する第1工程であって、前記光導波路コアは、前記基板の一端部まで延在している第1工程と、
    前記基板の前記一端部の上面に溝を形成する第2工程であって、前記溝は、前記光導波路コアの光軸の延長線に沿って延在し、前記溝の開口幅は、前記光ファイバの外径よりも小さく形成される第2工程と、
    前記基板の前記一端部のうち前記溝を含む領域の上面部分を一定の厚さだけ除去し、前記光導波路コアの中間部の端面を露出させる第3工程と、
    前記第3工程の後に、前記基板の上面のうち前記溝を含む領域に等方性エッチングを施すことにより、前記溝のエッジを鈍らせる第4工程と
    を備える光導波路基板の製造方法。
  2. 光導波路基板と、光ファイバと、前記光ファイバを収容する光フェルールとを備え、
    前記光導波路基板は、光導波路コアと、前記光導波路コアを支持する基板と、を有しており、
    前記基板は、石英を主成分とするガラスから構成されると共に、前記基板の端部に位置する低位部と、前記低位部に隣接する高位部と、を有しており、
    前記光導波路コアの一端面は、前記低位部と前記高位部との境界において前記高位部の側面に位置し、
    前記低位部の上面には、前記基板の等方性エッチングによって丸みがつけられたエッジを有すると共に、前記光導波路コアの光軸の延長線に沿って延びる矩形状の溝が設けられており、
    前記光ファイバの一端部は、前記光フェルールの第1端面から突出して前記溝に配置されており、かつ前記光ファイバの他端部は、前記光フェルールの第2端面に露出しており、
    前記光ファイバのコアの端面は、前記高位部の側面に位置する前記光導波路コアの端面と所定の距離をおいて対向しており、
    前記溝の開口幅は、前記光ファイバの外径よりも小さく、
    前記光ファイバの前記一端部は、前記溝のエッジによって支持されている光導波路モジュールにおける光導波路基板の製造方法であって、
    前記光導波路コアが埋め込まれた基板を用意する第1工程であって、前記光導波路コアは、前記基板の一端部まで延在している第1工程と、
    前記基板の前記一端部の上面部分を一定の厚さだけ除去し、前記光導波路コアの中間部の端面を露出させる第2工程と、
    前記基板の前記一端部の上面に溝を形成する第3工程であって、前記溝は、前記光導波路コアの光軸の延長線に沿って延在し、前記溝の開口幅は、前記光ファイバの外径よりも小さく形成される第3工程と、
    前記第3工程の後に、前記基板の上面のうち前記溝を含む領域に等方性エッチングを施すことにより、前記溝のエッジを鈍らせる第4工程と
    を備える光導波路基板の製造方法。
JP2002223703A 2002-07-31 2002-07-31 光導波路基板の製造方法 Expired - Fee Related JP4062005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223703A JP4062005B2 (ja) 2002-07-31 2002-07-31 光導波路基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223703A JP4062005B2 (ja) 2002-07-31 2002-07-31 光導波路基板の製造方法

Publications (2)

Publication Number Publication Date
JP2004062064A JP2004062064A (ja) 2004-02-26
JP4062005B2 true JP4062005B2 (ja) 2008-03-19

Family

ID=31943392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223703A Expired - Fee Related JP4062005B2 (ja) 2002-07-31 2002-07-31 光導波路基板の製造方法

Country Status (1)

Country Link
JP (1) JP4062005B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003637A (ja) * 2004-03-31 2008-01-10 Hitachi Chem Co Ltd 光素子結合構造体及び光ファイバー構造体
KR20070001202A (ko) * 2004-03-31 2007-01-03 히다치 가세고교 가부시끼가이샤 광소자 결합 구조체 및 광화이버 구조체
JP6491418B2 (ja) * 2014-03-14 2019-03-27 日立金属株式会社 光ファイバコネクタ
TWI717047B (zh) * 2019-10-04 2021-01-21 財團法人工業技術研究院 測試裝置與異質整合結構
JP2022178806A (ja) * 2021-05-21 2022-12-02 エヌ・ティ・ティ・アドバンステクノロジ株式会社 光コネクタおよびその製造方法
JP2023042413A (ja) * 2021-09-14 2023-03-27 株式会社ジーフォー 密閉型音響出力装置

Also Published As

Publication number Publication date
JP2004062064A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
KR100248049B1 (ko) 정렬용 플랫폼을 이용한 광섬유의 수동정렬 장치
US7603021B2 (en) Optical fiber component, optical waveguide module, and manufacturing method
US5787214A (en) Connection between an integrated optical waveguide and an optical fibre
CA2572741C (en) Packaging for a fiber-coupled optical device
US7283710B2 (en) Optical waveguide device
US6904220B2 (en) Optical waveguide, optical module, and method for producing same module
WO2002016981A1 (en) Phasar athermalization using a slab waveguide
US20020076189A1 (en) Method for preparing optical fibers for connection to other fibers or to planar waveguides and device for such connection
US6231244B1 (en) Optical fiber array
JP4349372B2 (ja) 光モジュール及び光モジュールの製造方法
JP4062005B2 (ja) 光導波路基板の製造方法
JP3065300B2 (ja) 光ファイバ及び光導波路素子の接続構造
JP4259386B2 (ja) 光接続構造及びその製造方法並びに光デバイス
JP2005345708A (ja) 光導波路フィルムおよびその作製方法と接続方法
WO2007080740A1 (ja) 光導波路デバイス及び光導波路デバイスの製造装置
US20030035643A1 (en) Structure for attaching an optical fiber to a planar waveguide and method thereof
JP4562185B2 (ja) 光導波路基板及びその製造方法
JP3298975B2 (ja) 光結合器と光ファイバとの接続構造および接続方法
US20030021545A1 (en) Connection of optical fibres to optical devices
KR100584115B1 (ko) 광 스플리터 및 그의 제조방법
KR20150117876A (ko) 광 정렬 일체형 구조의 폴리머 광소자 및 그의 제조 방법
Yoshitake et al. Polymer optical waveguide devices for FTTH
JP2006039078A (ja) 光学モジュール
EP1302795A1 (en) Apparatus and method for coupling an optical fibre to an optical waveguide
JPH10282361A (ja) 光ファイバ保持部材、導波路型光部品及び光導波路デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees