JP4061743B2 - Battery electrode, battery, battery electrode active material modification method and electrode active material - Google Patents

Battery electrode, battery, battery electrode active material modification method and electrode active material Download PDF

Info

Publication number
JP4061743B2
JP4061743B2 JP30738198A JP30738198A JP4061743B2 JP 4061743 B2 JP4061743 B2 JP 4061743B2 JP 30738198 A JP30738198 A JP 30738198A JP 30738198 A JP30738198 A JP 30738198A JP 4061743 B2 JP4061743 B2 JP 4061743B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
battery
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30738198A
Other languages
Japanese (ja)
Other versions
JPH11250899A (en
Inventor
ジー フォトー デニス
エス コルブ エリック
クラヴィーク ウロデック
エー マスコ アーサー
シー ジー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPH11250899A publication Critical patent/JPH11250899A/en
Application granted granted Critical
Publication of JP4061743B2 publication Critical patent/JP4061743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池用電極および電池に関し、より詳しくは、電極および電池の電気化学的性能を高めるための改質した固有面を有する電極材料に関する。本発明はまた、電池に使用される表面改質化電極材料の製造方法および電池用電極活物質の固有面を改質する方法に関する。
【0002】
【従来の技術】
リチウムイオンバッテリは、当該技術分野において、ここ数年来知られてきている。このバッテリは工業用途で直ちに利用され、更に高性能で再充電可能なバッテリに対する消費者の要求により、その電気化学的性能特性は高められつつある。実際に、従来技術において、リチウムイオンバッテリの容量最適化に関する文献が数多く存在する。例えば、米国特許第5,449,577号(以下、Dahn特許’577と称する)公報は、電極活物質の「バルク」形態(”bulk”morphology)を変更することによってリチウムイオンバッテリの可逆容量を増加させる方法を開示している。Dahn特許’577公報は、熱と還元性の雰囲気を組合せた状態に電極活物質を曝すことによって、電極活物質を形式的に還元することを開示している。Dahn特許’577の方法において、電極活物質の陰イオン種(通常は酸素)を除去することにより、電池の充放電サイクル中に、より多数の陽イオン(通常はリチウム)を挿入/着脱(intercalate/deintercalate)することが可能となる。
【0003】
米国特許第5,240,794号(以下、Thackeray特許’794 と称する)公報には、電極活物質としてLiMn24を含有する電池の容量を増加させるための方法が開示されている。このThackeray特許’794には、電極活物質を還元性雰囲気中で熱に曝す−Dahn特許’577と類似−ことによって電極活物質の「バルク」形態を変化させる方法が開示されている。
【0004】
プラズマ処理を施すことにより、電極活物質の表面から、そのバルク形態に影響を及ぼすことなく非固有の不純物を除去することにより、バッテリの電気化学的性能特性を高める試みが行なわれた。(参照:Journal of Electrochemical Society, Binder他、第140巻、12号、1993年12月)しかし、この従来技術には電極活物質の固有面の「改質」を開示してはいない。
【0005】
本明細書で使用する「改質された」及び「改質する」の語の意味は、電極活物質の固有面を、その物質のバルク形態を変えずに変更することを意味する。それは、必ずしも電極活物質から原子を形式的に除去することを意味しない。更に、「バルク形態」改質は、特定の電極活物質の結晶格子からの原子の除去を意味する。
【0006】
【発明が解決しようとする課題】
本発明の目的は、電気化学的性能を高め、改質した電極活物質の固有面を有する電極および電池を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは鋭意検討した結果、特定の処理を電極活物質の固有面に施すことにより、上記目的を達成出来ることを見い出し、本発明を達成するに至った。
【0008】
本発明の第一の要旨は、集電基板および電極活物質から成る電池用電極であって、上記電極活物質がリチウム遷移金属酸化物から成り、当該リチウム遷移金属酸化物がアルゴンと酸素との混合ガス雰囲気下で予めプラズマ処理されたものであることを特徴とする電池用電極に存する。
【0009】
第一の要旨の好ましい実施態様では、前記リチウム遷移金属酸化物が、LiCoO 、LiNiO 及びLiMn から成るグループの中から選択される一つ以上である。
【0010】
本発明の第二の要旨は、電解液、第1電極および第2電極から成る電池であって、上記第1電極と第2電極の少なくとも一方が集電基板および電極活物質から成り、当該電極活物質がリチウム遷移金属酸化物から成り、当該リチウム遷移金属酸化物がアルゴンと酸素との混合ガス雰囲気下で予めプラズマ処理されたものであることを特徴とする電池に存する。
【0011】
第二の要旨の好ましい実施態様では、前記リチウム遷移金属酸化物が、LiCoO 、LiNi 及びLiMn から成るグループの中から選択される一つ以上である。
【0012】
本発明の第三の要旨は、リチウム遷移金属酸化物から成る電池用電極活物質の固有面を改質する方法であって、電極活物質をチャンバー内に配置する工程と、上記電極活物質をアルゴンと酸素との混合ガス雰囲気下でプラズマ処理する工程とから成ることを特徴とする方法に存する。
【0013】
第三の要旨の好ましい実施態様では、前記リチウム遷移金属酸化物が、LiCoO 、LiNiO 及びLiMn から成るグループの中から選択される一つ以上である
【0014】
本発明の第四の要旨は、リチウム遷移金属酸化物から成る電極活物質であって、当該電極活物質がアルゴンと酸素との混合ガス雰囲気下でプラズマ処理されたものであることを特徴とする電極活物質に存する。
【0015】
第四の要旨の好ましい実施態様では、前記リチウム遷移金属酸化物が、LiCoO 、LiNiO 及びLiMn から成るグループの中から選択される一つ以上である
【0019】
【発明の実施の態様】
以下、本発明を詳細に説明する。尚、以下に記載する実施例は本発明の原理の例示であるが、本発明は種々の実施態様を取り得るため、本発明は以下の実施態様に限定されない。
【0020】
本発明は、電極活物質の固有面を、そのバルク形態に影響を及ぼすことなく制御可能に改質することによって、電池の容量とレート容量の両者を増加させることに関する。以下に説明する図7〜図11で明らかなように、電池のレート容量を増加させる本発明の何れの方法においても、電極活物質の結晶格子に対して影響を与えない。すなわち、これらの方法により、表面改質される材料のバルク形態が変えられることはない。
【0021】
従来技術においては、電極活物質のバルク形態を改質することによって、リチウムイオンバッテリの電気化学的性能を最大化する試みがなされた。バルク形態の改質(すなわち、格子内の原子を取り除いて他の原子と任意に置換すること)は、電気化学的性能を増加させた電池を製造するための手順の一つである。しかしながら、本発明においては、バルク形態を改質せずに電気化学的性能を高めることを特徴とする電極および電池を開示する。以下に説明するように、(材料のバルク形態を変えることなく)固有面を変えたり/改質することは、本発明による改質化固有面を有する電極を利用しない電池に比べて、容量とレート容量が著しく増加した電池が得られる。
【0022】
【実施例】
本発明を裏付けるために、プラズマ処理の表面処理方法により、電極活物質の固有面の改質を行った。それぞれの実験手順を以下に説明する。
【0023】
<雰囲気制御プラズマ処理>
電極活物質の固有面層を改質するためにプラズマ処理を利用して次の手順で実験を行なった。以下の実施例においては、単にLiCoOについて説明しただけであり、LiNiOやLiMnの様な電池用の電極活物質として適当な他の金属酸化物とリチウム遷移金属酸化物も同様に使用できる。
【0024】
実施例1
第1に、ガス流量コントローラを備えた回転式プラズマリアクタに、100グラムのLiCoO2 を充填した。第2に、プラズマリアクタを約10rpmで回転させながら、真空下でそのLiCoO2 を乾燥させた。第3に、アルゴンを使った5回にわたるパージ/減圧排気サイクルによりプラズマリアクタのチャンバ内から「空気」を排気した。第4に、アルゴンガスと酸素ガスを、それぞれ1.8ml/分と1.9ml/分の流量でプラズマリアクタ内に導入した。第5に、システムの真空度を160ミリtorrに維持してプラズマの発生を開始し、100Wで2時間、プラズマを連続して発生させた。第6に、プラズマ処理を終了した後、リアクターをアルゴンでパージして、チャンバー内の温度と圧力を周囲温度と周囲圧力同化させた。LiCoO2 のサンプルを取り出して、バルク形態特性と容量特性の両者を評価した。
【0031】
比較例1
電極活物質の固有表面の改質処理を行わなかった以外は実施例1と同様の操作を行った
【0032】
<特性評価>
上記実施例および比較例の各サンプルの容量とレート容量を、次の手順を使用して決定した。第1に、表面改質された遷移金属酸化物に、結合剤(PVDF)とカーボンブラックとを添加してペースト状に混合した。第2に、その電極ペーストをアルミニウムメッシュ上に加圧成形した。第3に、3個の電池(表面改質した各サンプル毎に新しい電池を製作した)を作製し、加圧成形された表面改質化電極活物質を持つ電極を作動電極とした。対向電極と基準電極は共にリチウムから作製した。各電池に使用される電解液、すなわち、各実験で使用した電解液の構成は、1モルのLiAsF6 を溶解させたプロピレンカーボネート溶液であった。次に、完全に組み立てた電池を、3.2Vと4.2Vの間で、電池を繰り返し充放電サイクルを行なってその容量を判定した。得られた結果を下記表1に示す。
【0033】
【表1】

Figure 0004061743
【0034】
表1から明らかなように、本発明の処理を施した実施例1の電極は、無処理の比較例1の基準電極に対して、表面改質された電極の容量が大幅に増加した。更に、各表面改質化電極活物質の熱安定性は、特にC/2サイクル中、無処理電極に比べて劇的に向上した。
【0035】
図1には、4時間の充放電レート(C/4)での無処理の電極材料とプラズマ処理を施した電極材料の容量を示す電圧−容量の二次元プロットを、図2には、2時間の充放電レート(C/2)での無処理の電極材料とプラズマ処理を施した電極材料の容量を示す電圧−容量の二次元プロットを、図3には、無処理の電極材料とプラズマ処理を施した電極材料のサイクル中の保持容量を示す電圧−サイクルの2次元プロットを、図4には、2時間の充放電レート(C/2)での無処理の電極材料と超音波処理を施した電極材料の容量を示す電圧−容量の二次元プロットをそれぞれ示す。
【0036】
図1のプラズマ処理LiCoO(C/4レート)に関する特性データから明らかなように、処理された電極材料(△:(Ar/O )プラズマ処理されたLiCoO が、無処理材料(○)に比べて容量が増加していることが解る。更に、図2〜図4から明らかなように、プラズマ処理された電極材料は、C/1、C/2、およびC/4の全てにおいて、容量の増加を示している。
【0038】
表面改質化電極活物質のバルク形態には実際に変化がないことを証明するために、X線回折トレースを行なった。図7に無改質の電極活物質の形態(a)と、プラズマ処理による改質化面を有する電極活物質(b)とを比較したX線回折チャートを示す
【0039】
図7に示すように、プラズマによって改質された電極活物質のチャートは、無改質の電極活物質のX線回折チャートのそれと同一であった。特に、ピーク位置とピーク強さは変化しなかった。図7から解るように、表面改質化サンプルのいずれにもピーク移動は認められなかった。従って、本発明の表面改質処理は、電極活物質の固有面を単に改質するだけで、そのバルク形態を変化させることはなく、更に容量/レート容量を増加し得ることを証明している。
【0040】
図10に無改質のLiMn2 4の形態とそれぞれ超音波処理したLiMn24とを比較したX線回折チャートを、図11に無改質のLiMn2 4の形態と熱処理したLiMn2 4 とを比較したX線回折チャートを示す。図10及び11から解るように、表面改質化サンプルのいずれにもピーク移動は認められなかった。従って、本発明の表面改質処理は、LiCoO2 だけでなく、LiMn2 4のような電池用の電極活物質として適当な他の金属酸化物とリチウム遷移金属酸化物についても同様の効果が得られることが解る。
【0041】
上記の記載と図面は、単に発明の例示であり、本発明はその要旨を逸脱することなく、種々の修正と変更を行なうことが可能である。
【0042】
【発明の効果】
以上説明した本発明の電極は、電気化学的性能を高め、改質した電極活物質の固有面を有するため、そのバルク形態を変化させることはなく、電池の容量/レート容量を増加できるため、その工業的価値は高い。
【図面の簡単な説明】
【図1】4時間の充放電レート(C/4)での無処理の電極材料とプラズマ処理を施した電極材料の電圧−容量の二次元プロット
【図2】2時間の充放電レート(C/2)での無処理の電極材料とプラズマ処理を施した電極材料の電圧−容量の二次元プロット
【図3】2時間の充放電レート(C/2)及び1時間の充放電レート(1C)での無処理の電極材料とプラズマ処理を施した電極材料の容量−サイクルの2次元プロット
【図4】4時間の充放電レート(C/4)での無処理の電極材料とプラズマ処理を施した電極材料の容量−サイクルの2次元プロット
【図5】無改質の電極活物質の形態(a)と、プラズマ処理による改質化面を有する電極活物質(b)とを比較したX線回折チャート [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery electrode and a battery, and more particularly to an electrode material having a modified intrinsic surface for enhancing the electrochemical performance of the electrode and battery. The present invention also relates to a method for producing a surface-modified electrode material used for a battery and a method for modifying a specific surface of a battery electrode active material.
[0002]
[Prior art]
Lithium ion batteries have been known in the art for several years. This battery is immediately utilized in industrial applications, and its electrochemical performance characteristics are being enhanced by consumer demand for higher performance, rechargeable batteries. In fact, in the prior art, there are many documents regarding the capacity optimization of lithium ion batteries. For example, US Pat. No. 5,449,577 (hereinafter referred to as Dahn patent '577) discloses the reversible capacity of a lithium ion battery by changing the “bulk” morphology of the electrode active material. A method of increasing is disclosed. The Dahn patent '577 discloses formally reducing the electrode active material by exposing the electrode active material to a combination of heat and a reducing atmosphere. In the method of Dahn patent '577, by removing the anionic species (usually oxygen) of the electrode active material, a larger number of cations (usually lithium) are inserted / removed (intercalated) during the charge / discharge cycle of the battery. / Deintercalate).
[0003]
US Pat. No. 5,240,794 (hereinafter referred to as “Tackeray Patent '794”) discloses a method for increasing the capacity of a battery containing LiMn 2 O 4 as an electrode active material. The Thackeray patent '794 discloses a method for changing the “bulk” morphology of an electrode active material by exposing the electrode active material to heat in a reducing atmosphere—similar to the Dahn patent' 577 ”.
[0004]
Attempts have been made to enhance the electrochemical performance characteristics of the battery by applying plasma treatment to remove non-specific impurities from the surface of the electrode active material without affecting its bulk morphology. (Reference: Journal of Electrochemical Society, Binder et al., Vol. 140, No. 12, December 1993) However, this prior art does not disclose “modification” of the inherent surface of the electrode active material.
[0005]
As used herein, the terms “modified” and “modify” refer to changing the intrinsic surface of an electrode active material without changing the bulk form of the material. It does not necessarily mean formally removing atoms from the electrode active material. Furthermore, “bulk form” modification means the removal of atoms from the crystal lattice of a particular electrode active material.
[0006]
[Problems to be solved by the invention]
It is an object of the present invention to provide an electrode and a battery that have improved electrochemical performance and have an intrinsic surface of a modified electrode active material.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors diligently studied and found that the above object can be achieved by applying a specific treatment to the specific surface of the electrode active material, thereby achieving the present invention. .
[0008]
A first aspect of the present invention is a battery electrode comprising a current collecting substrate and an electrode active material, wherein the electrode active material comprises a lithium transition metal oxide, and the lithium transition metal oxide comprises argon and oxygen. It exists in the electrode for batteries characterized by having been plasma-treated previously in mixed gas atmosphere.
[0009]
In a preferred embodiment of the first aspect, the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNiO 2 and LiMn 2 O 4 .
[0010]
The second gist of the present invention is a battery comprising an electrolytic solution, a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode comprises a current collecting substrate and an electrode active material. The battery is characterized in that the active material is composed of a lithium transition metal oxide, and the lithium transition metal oxide is previously plasma-treated in a mixed gas atmosphere of argon and oxygen.
[0011]
In a preferred embodiment of the second aspect, the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNi 2 and LiMn 2 O 4 .
[0012]
A third aspect of the present invention is a method for modifying the intrinsic surface of a battery electrode active material comprising a lithium transition metal oxide, the step of arranging the electrode active material in a chamber, and the electrode active material comprising: And a plasma processing step in a mixed gas atmosphere of argon and oxygen.
[0013]
In a preferred embodiment of the third aspect, the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNiO 2 and LiMn 2 O 4.
According to a fourth aspect of the present invention, there is provided an electrode active material comprising a lithium transition metal oxide, wherein the electrode active material is plasma-treated in a mixed gas atmosphere of argon and oxygen. It exists in the electrode active material.
[0015]
In a preferred embodiment of the fourth aspect, the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNiO 2 and LiMn 2 O 4.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In addition, although the Example described below is the illustration of the principle of this invention, since this invention can take a various embodiment, this invention is not limited to the following embodiment.
[0020]
The present invention relates to increasing both battery capacity and rate capacity by controllably modifying the intrinsic surface of an electrode active material without affecting its bulk morphology. As will be apparent from FIGS. 7 to 11 described below, any of the methods of the present invention for increasing the rate capacity of the battery does not affect the crystal lattice of the electrode active material. That is, these methods do not change the bulk form of the surface-modified material.
[0021]
In the prior art, attempts have been made to maximize the electrochemical performance of lithium ion batteries by modifying the bulk morphology of the electrode active material. Bulk form modification (i.e., removing atoms in the lattice and optionally substituting other atoms) is one of the procedures for manufacturing batteries with increased electrochemical performance. However, the present invention discloses electrodes and batteries that are characterized by enhancing electrochemical performance without modifying the bulk morphology. As will be explained below, changing / modifying the specific surface (without changing the bulk form of the material) can be compared to capacity and capacity compared to a battery that does not utilize an electrode with a modified specific surface according to the present invention. A battery with significantly increased rate capacity is obtained.
[0022]
【Example】
In order to support the present invention, the specific surface of the electrode active material was modified by a surface treatment method of plasma treatment . Each experimental procedure is described below.
[0023]
<Atmosphere control plasma treatment>
In order to modify the specific surface layer of the electrode active material , an experiment was performed by the following procedure using plasma treatment. In the following examples, only LiCoO 2 has been described, and other metal oxides and lithium transition metal oxides suitable as electrode active materials for batteries such as LiNiO 2 and LiMn 2 O 4 are similarly used. Can be used.
[0024]
Example 1
First, a rotary plasma reactor equipped with a gas flow controller was charged with 100 grams of LiCoO 2 . Second, the LiCoO 2 was dried under vacuum while rotating the plasma reactor at about 10 rpm. Third, “air” was evacuated from within the chamber of the plasma reactor by five purge / evacuation cycles using argon. Fourth, argon gas and oxygen gas were introduced into the plasma reactor at a flow rate of 1.8 ml / min and 1.9 ml / min, respectively. Fifth, the generation of plasma was started while maintaining the vacuum degree of the system at 160 millitorr, and plasma was continuously generated at 100 W for 2 hours. Sixth, after finishing the plasma treatment, the reactor was purged with argon to assimilate the temperature and pressure in the chamber to ambient and ambient pressure. A sample of LiCoO 2 was taken and evaluated for both bulk morphology and capacity characteristics.
[0031]
Comparative Example 1
The same operation as in Example 1 was performed except that the modification treatment of the specific surface of the electrode active material was not performed.
<Characteristic evaluation>
The capacity and rate capacity of each sample of the above examples and comparative examples was determined using the following procedure. First, a binder (PVDF) and carbon black were added to the surface-modified transition metal oxide and mixed in a paste form. Second, the electrode paste was pressure formed on an aluminum mesh. Third, three batteries (a new battery was manufactured for each surface-modified sample) were prepared, and an electrode having a surface-modified electrode active material that was pressure-formed was used as the working electrode. Both the counter electrode and the reference electrode were made of lithium. The electrolyte solution used in each battery, that is, the electrolyte solution used in each experiment was a propylene carbonate solution in which 1 mol of LiAsF 6 was dissolved. Next, the fully assembled battery was repeatedly charged / discharged between 3.2 V and 4.2 V to determine its capacity. The obtained results are shown in Table 1 below.
[0033]
[Table 1]
Figure 0004061743
[0034]
As is apparent from Table 1, the capacity of the electrode whose surface was modified was significantly increased in the electrode of Example 1 subjected to the treatment of the present invention compared to the reference electrode of Comparative Example 1 which was not treated. Furthermore, the thermal stability of each surface modified electrode active material was dramatically improved compared to the untreated electrode, especially during the C / 2 cycle.
[0035]
FIG. 1 shows a voltage-capacity two-dimensional plot showing the capacities of an untreated electrode material and a plasma-treated electrode material at a charge / discharge rate (C / 4) of 4 hours, and FIG. A voltage-capacity two-dimensional plot showing the capacity of the untreated electrode material and the plasma-treated electrode material at the time charge / discharge rate (C / 2) is shown in FIG. FIG. 4 shows a two-dimensional plot of voltage-cycle showing the retention capacity during the cycle of the treated electrode material. FIG. 4 shows an untreated electrode material and ultrasonic treatment at a charge / discharge rate (C / 2) of 2 hours. 2 shows a two-dimensional plot of voltage-capacitance indicating the capacity of the electrode material subjected to.
[0036]
As is clear from the characteristic data on the plasma-treated LiCoO 2 (C / 4 rate) in FIG. 1, the treated electrode material (Δ: (Ar / O 2 ) plasma-treated LiCoO 2 ) is an untreated material (◯ It can be seen that the capacity has increased compared to). Furthermore, as is apparent from FIGS. 2 to 4, the plasma-treated electrode material shows an increase in capacity at all of C / 1, C / 2, and C / 4.
[0038]
In order to prove that there is no actual change in the bulk form of the surface-modified electrode active material, an X-ray diffraction trace was performed. FIG. 7 shows an X-ray diffraction chart comparing the form (a) of the unmodified electrode active material and the electrode active material (b) having a modified surface by plasma treatment.
[0039]
As shown in FIG. 7, the chart of the electrode active material modified by plasma was the same as that of the X-ray diffraction chart of the unmodified electrode active material. In particular, the peak position and peak intensity did not change. As can be seen from FIG. 7, no peak shift was observed in any of the surface-modified samples. Therefore, it has been proved that the surface modification treatment of the present invention can further increase the capacity / rate capacity by simply modifying the intrinsic surface of the electrode active material without changing its bulk form. .
[0040]
FIG. 10 shows an X-ray diffraction chart comparing the form of unmodified LiMn 2 O 4 and each of ultrasonically treated LiMn 2 O 4, and FIG. 11 shows the form of unmodified LiMn 2 O 4 and heat-treated LiMn. 2 shows an X-ray diffraction chart comparing 2 O 4 . As can be seen from FIGS. 10 and 11, no peak shift was observed in any of the surface-modified samples. Therefore, the surface modification treatment of the present invention has the same effect not only for LiCoO 2 but also for other metal oxides and lithium transition metal oxides suitable as electrode active materials for batteries such as LiMn 2 O 4. You can see that
[0041]
The above description and drawings are merely illustrative of the invention, and the present invention can be modified and changed in various ways without departing from the gist thereof.
[0042]
【The invention's effect】
The electrode of the present invention described above has improved electrochemical performance and has an inherent surface of a modified electrode active material, so that its bulk form is not changed and the capacity / rate capacity of the battery can be increased. Its industrial value is high.
[Brief description of the drawings]
FIG. 1 is a two-dimensional plot of voltage-capacity of an untreated electrode material and a plasma-treated electrode material at a charge / discharge rate of 4 hours (C / 4). FIG. 2) Two-dimensional plot of voltage-capacitance of untreated electrode material and plasma-treated electrode material in FIG. 3 [FIG. 3] 2 hour charge / discharge rate (C / 2) and 1 hour charge / discharge rate (1C 2) Plot of capacity-cycle of untreated electrode material and plasma-treated electrode material in FIG. 4 [FIG. 4] Untreated electrode material and plasma treatment at a charge / discharge rate (C / 4) of 4 hours. Capacity-cycle two-dimensional plot of applied electrode material. FIG. 5 is a comparison X of unmodified electrode active material form (a) and electrode active material (b) having a modified surface by plasma treatment. Line diffraction chart

Claims (8)

集電基板および電極活物質から成る電池用電極であって、上記電極活物質がリチウム遷移金属酸化物から成り、当該リチウム遷移金属酸化物がアルゴンと酸素との混合ガス雰囲気下で予めプラズマ処理されたものであることを特徴とする電池用電極。A battery electrode comprising a current collecting substrate and an electrode active material, wherein the electrode active material comprises a lithium transition metal oxide, and the lithium transition metal oxide is previously plasma-treated in a mixed gas atmosphere of argon and oxygen. A battery electrode characterized in that the battery electrode. 前記リチウム遷移金属酸化物が、LiCoO、LiNiO及びLiMnから成るグループの中から選択される一つ以上である請求項1に記載の電池用電極。The battery electrode according to claim 1, wherein the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNiO 2, and LiMn 2 O 4 . 電解液、第1電極および第2電極から成る電池であって、上記第1電極と第2電極の少なくとも一方が集電基板および電極活物質から成り、当該電極活物質がリチウム遷移金属酸化物から成り、当該リチウム遷移金属酸化物がアルゴンと酸素との混合ガス雰囲気下で予めプラズマ処理されたものであることを特徴とする電池。A battery comprising an electrolytic solution, a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode comprises a current collecting substrate and an electrode active material, and the electrode active material comprises a lithium transition metal oxide. A battery characterized in that the lithium transition metal oxide is previously plasma-treated in a mixed gas atmosphere of argon and oxygen. 前記リチウム遷移金属酸化物が、LiCoO、LiNi及びLiMnから成るグループの中から選択される一つ以上である請求項3に記載の電池。The battery according to claim 3, wherein the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNi 2 and LiMn 2 O 4 . リチウム遷移金属酸化物から成る電池用電極活物質の固有面を改質する方法であって、電極活物質をチャンバー内に配置する工程と、上記電極活物質をアルゴンと酸素との混合ガス雰囲気下でプラズマ処理する工程とから成ることを特徴とする方法。A method for modifying a specific surface of an electrode active material for a battery comprising a lithium transition metal oxide, the step of placing the electrode active material in a chamber, and the electrode active material in a mixed gas atmosphere of argon and oxygen And plasma treatment. 前記リチウム遷移金属酸化物が、LiCoO、LiNiO及びLiMnから成るグループの中から選択される一つ以上である請求項5に記載の方法。The method of claim 5, wherein the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNiO 2 and LiMn 2 O 4 . リチウム遷移金属酸化物から成る電極活物質であって、当該電極活物質がアルゴンと酸素との混合ガス雰囲気下でプラズマ処理されたものであることを特徴とする電極活物質。An electrode active material comprising a lithium transition metal oxide, wherein the electrode active material is plasma-treated in a mixed gas atmosphere of argon and oxygen. 前記リチウム遷移金属酸化物が、LiCoO、LiNiO及びLiMnから成るグループの中から選択される一つ以上である請求項7に記載の電極活物質The electrode active material according to claim 7, wherein the lithium transition metal oxide is one or more selected from the group consisting of LiCoO 2 , LiNiO 2 and LiMn 2 O 4 .
JP30738198A 1997-10-31 1998-10-28 Battery electrode, battery, battery electrode active material modification method and electrode active material Expired - Lifetime JP4061743B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96240397A 1997-10-31 1997-10-31
US08/962403 1997-10-31

Publications (2)

Publication Number Publication Date
JPH11250899A JPH11250899A (en) 1999-09-17
JP4061743B2 true JP4061743B2 (en) 2008-03-19

Family

ID=25505809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30738198A Expired - Lifetime JP4061743B2 (en) 1997-10-31 1998-10-28 Battery electrode, battery, battery electrode active material modification method and electrode active material

Country Status (1)

Country Link
JP (1) JP4061743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249974B1 (en) 2010-04-01 2013-04-03 한국기초과학지원연구원 An elecltrod for lithium secondary battery processed in reducing atmospheres, method for fabricating the same, and lithium secondary battery containing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341407B1 (en) * 2000-05-01 2002-06-22 윤덕용 A Crystall ization method of lithium transition metal oxide thin films by plasma treatm ent
TWI365562B (en) * 2008-10-03 2012-06-01 Ind Tech Res Inst Positive electrode and method for manufacturing the same and lithium battery utilizing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249974B1 (en) 2010-04-01 2013-04-03 한국기초과학지원연구원 An elecltrod for lithium secondary battery processed in reducing atmospheres, method for fabricating the same, and lithium secondary battery containing the same

Also Published As

Publication number Publication date
JPH11250899A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
US20210313557A1 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
US20220255069A1 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
JP6177345B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP7198736B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
JP2020504416A (en) Positive active material for lithium secondary battery, method for producing the same, electrode including the same, and lithium secondary battery including the electrode
JPH11317217A (en) Fluorinated battery electrode, battery comprising the electrodes, and manufacture of them
JP2000164218A (en) Negative electrode active material for lithium secondary battery, and manufacture thereof, and lithium secondary battery including the same
EP2765636B1 (en) Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same
WO2014104466A1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
JP4206267B2 (en) Composite electrode material and electrochemical device using the same
JP3609377B2 (en) Cathode thin film for lithium secondary battery and method for producing the same
JP2023534982A (en) Method for producing positive electrode active material
WO2024146611A1 (en) Lithium ion battery
KR20240095131A (en) Method for manufacturing a positive electrode active material surface-modified using sericin, and a positive electrode active material and lithium secondary battery manufactured using the same
CN1866586A (en) Non-aqueous electrolyte rechargeable battery
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP4061743B2 (en) Battery electrode, battery, battery electrode active material modification method and electrode active material
CN113939930A (en) Composite anode active material, method for preparing same, anode comprising same, and secondary battery
JP7515954B2 (en) Method for producing positive electrode active material
JP2001257003A (en) Lithium secondary battery
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
JP7099033B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
JP2003317708A (en) Method of manufacturing electrode
JP2005187326A (en) Method for producing lithium nickelate
KR102663399B1 (en) Negative electrode active material, negative electrode comprising same, secondary battery comprising same and method for manufacturing negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

EXPY Cancellation because of completion of term