JP4061573B2 - Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method - Google Patents

Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method Download PDF

Info

Publication number
JP4061573B2
JP4061573B2 JP2002120822A JP2002120822A JP4061573B2 JP 4061573 B2 JP4061573 B2 JP 4061573B2 JP 2002120822 A JP2002120822 A JP 2002120822A JP 2002120822 A JP2002120822 A JP 2002120822A JP 4061573 B2 JP4061573 B2 JP 4061573B2
Authority
JP
Japan
Prior art keywords
conductive
catalyst
producing
vibration
conductive powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120822A
Other languages
Japanese (ja)
Other versions
JP2003033668A (en
Inventor
健二 香取
俊明 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002120822A priority Critical patent/JP4061573B2/en
Priority to KR1020037013802A priority patent/KR100875499B1/en
Priority to CNA028122062A priority patent/CN1516620A/en
Priority to PCT/JP2002/004726 priority patent/WO2002094438A1/en
Priority to US10/477,840 priority patent/US7294603B2/en
Publication of JP2003033668A publication Critical patent/JP2003033668A/en
Priority to US11/692,364 priority patent/US7838457B2/en
Application granted granted Critical
Publication of JP4061573B2 publication Critical patent/JP4061573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • B01J35/40
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0232Coating by pulverisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、導電性触媒粒子の製造方法及びガス拡散性触媒電極の製造方法、並びに導電性触媒粒子の製造方法に用いる装置に関するものである。
【0002】
【従来の技術】
従来、ガス拡散性触媒電極は、導電性粉体としてのカーボンに触媒としての白金が担持されている触媒粒子を、撥水性樹脂としての例えばフッ素樹脂及びイオン伝導体と共にシート状に成形する(特開平5−36418)か、或いはカーボンシート上に塗布する工程を経て製造される。
【0003】
この電極を、固体高分子型燃料電池等の燃料電池を構成する水素分解用電極として用いた場合、白金等の触媒によって燃料がイオン化され、生じた電子は導電性カーボンを伝って流れ、また水素をイオン化することで生じるプロトン(H+)はイオン伝導体を介してイオン伝導膜に流れる。ここで、ガスを通す間隙、電気を通すカーボン、イオンを通すイオン伝導体及び燃料や酸化剤をイオン化するための触媒物質が必要になる。
【0004】
通常、導電性粉体としてのカーボン粉体の表面に白金(触媒物質)を付着させる方法としては、まず白金をイオン化して液状として、この白金を含有する溶液にカーボンを浸漬することでカーボン粉体に白金を付着させ、次いで還元及び熱処理を行うことで、カーボン粉体の表面上に微粒子白金として付着させる方法がある(特許第2879649号)。
【0005】
【発明に至る経過】
しかしながら、上述したような従来の方法は、カーボン粉体上に白金を担持させるために還元及び熱処理を行うことが必要であり、例えばこの熱処理における温度が低い場合、白金の結晶性が悪くなり、良好な触媒特性を得ることができないという問題点を抱えている。
【0006】
また、上述したような白金等の触媒物質によって燃料がイオン化され、生じた電子は導電性カーボンを伝って流れ、また水素をイオン化することで生じるプロトン(H+)はイオン伝導体を介してイオン伝導膜に流れる。従って、カーボン粉体とイオン伝導体は接する必要があるため、通常、カーボン粉体に白金を担持した後、イオン伝導体を塗布する。しかしながら、白金(触媒物質)はガスと接した部分のみにおいて機能するため、イオン伝導体によってガスとの接触部が無くなった白金(触媒物質)は機能しない。
【0007】
これに代わり、カーボン粉体にイオン伝導体を塗布した後、白金を担持させる方法がある。しかしながら、白金の結晶性を良好にするために熱処理を行わなければならないが、イオン伝導体は一般的に耐熱性が低いため、白金の結晶性を良好にする熱処理温度まで加熱すると、イオン伝導体が劣化してしまう。
【0008】
図11(A)は、従来の製造方法でカーボン粉体1に白金18を担持させて得られる導電性触媒粒子を示す概略断面図であって、また図11(B)は、カーボン粉体1にイオン伝導体19を付着させた後、更にその上に白金18を担持させて得られる導電性触媒粒子を示す概略断面図である。
【0009】
図11(A)より明らかなように、液相から得られる白金を担持した導電性触媒粒子は、白金18がカーボン粉体1の表面上において球状で存在するため、白金18がカーボン粉体1の表面上から離れ易く、また製造工程において白金量を多く必要とする。更には、白金18が球状で存在するため、白金18の表面のみが触媒物質として機能して、内部は機能せず、白金量に対して触媒能の効率は低い。また、図示省略したが、カーボン粉体1の表面上に存在する細孔にも白金18が入り込んでしまう。
【0010】
さらに、図11(B)に示すように、カーボン粉体にイオン伝導体19を塗布した後、白金18を担持させる場合、上述したように白金18の結晶性を良好にするための熱処理が必要となるが、イオン伝導体19は一般的に耐熱性が低く、白金18の結晶性を良好にする熱処理温度まで加熱すると、イオン伝導体19が劣化してしまう。
【0011】
本発明者らは、上述したような問題点を解決すべく鋭意検討した結果、より少ない触媒量で良好な触媒作用を有するガス拡散性触媒電極を、特願2000−293517号において提案した。
【0012】
即ち、特願2000−293517号(以下、先願発明と称する。)に係る発明によれば、図12に示すようなスパッタ法等の物理蒸着法を用いて、導電性粉体1の表面に、触媒物質を付着させることにより、図13に示すような、導電性粉体1の表面にのみ、触媒物質18が付着した導電性触媒粒子を得ることができる。
【0013】
即ち、図13(A)に示すように、物理蒸着法を用いれば、これにより得られる導電性触媒粒子は、触媒物質18が導電性粉体1の表面にのみ付着している。従って、より少ない量で良好な触媒作用を得ることができ、また触媒物質18とガスとの接触面積が十分に確保されるので、反応に寄与する触媒物質18の比表面積が大きくなり、触媒能も向上する。
【0014】
また、図13(B)に示すように、導電性粉体1の表面に、イオン伝導体19を付着させ、更にこのイオン伝導体19の表面に、物理蒸着法により触媒物質18を付着させても、物理蒸着法によって触媒物質18を付着させるので、従来のように触媒物質の結晶性を良好にするための熱処理を行う必要がなくなり、イオン伝導体19の性能を損なうことなく、触媒物質18を付着させることができる。
【0015】
【発明が解決しようとする課題】
しかしながら、本発明者は、先願発明は上記した優れた特長をもちつつも、改善すべき点があることを見出した。
【0016】
図12に示すように、先願発明による製造方法によれば、スパッタ法等の物理蒸着法によって、導電性粉体1の表面にのみ、触媒物質を付着させる。このとき、容器4の最表面に存在する導電性粉体1に、触媒物質が付着するのみであり、容器4内に配置した導電性粉体全体への均一な触媒物質の付着は困難であった。
【0017】
本発明は、上述した先願発明の特長を生かしつつ、その不十分な点を改善するためになされたものであって、その目的は、全ての導電性粉体に均一に触媒物質を付着することができる、導電性触媒粒子の製造方法及びガス拡散性触媒電極の製造方法、並びに導電性触媒粒子の製造方法に用いる装置を提供することにある。
【0018】
【課題を解決するための手段】
即ち、本発明は、導電性粉体を振動させながら、この導電性粉体の表面に、物理蒸着法により触媒物質を付着させる際、前記導電性粉体と、振動増幅手段とを振動面上に配置し、これらを同時に振動させる、導電性触媒粒子の製造方法において前記導電性粉体の表面にイオン伝導体を付着させ、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質を付着させることを特徴とする、導電性触媒粒子の製造方法に係るものである。
また、本発明の導電性触媒粒子の製造方法を実施するために、導電性粉体を振動させる振動手段と、この導電性粉体の表面に触媒物質を付着させる物理蒸着手段と、前記振動の増幅手段とを有する、導電性触媒粒子の製造装置において、前記導電性粉体の表面にイオン伝導体が付着され、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質が付着されることを特徴とする、導電性触媒粒子の製造装置に係るものである。
【0022】
さらに、導電性粉体と、振動増幅手段とを振動面上に配置し、これらを振動させながら、前記導電性粉体の表面に、物理蒸着法により触媒物質を付着させて導電性触媒粒子を得る工程と、得られたこの導電性触媒粒子を含むガス拡散性触媒電極を作製する工程とを有する、ガス拡散性触媒電極の製造方法において、前記導電性粉体の表面にイオン伝導体を付着させ、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質を付着させることを特徴とする、ガス拡散性触媒電極の製造方法に係るものである。
【0023】
本発明によれば、前記導電性粉体と、前記振動増幅手段とを前記振動面上に配置し、これらを振動させながら、前記導電性粉体の表面に、前記物理蒸着法により前記触媒物質を付着させるので、前記導電性粉体は、より振動されて十分に混合され、前記振動面上の一箇所に留まることがなくなる。従って、導電性粉体は、粉体層の表面のみならず、内部のものも表面へ出て、前記触媒物質を全ての前記導電性粉体に対して均一に付着させることができる。
【0024】
また、前記導電性粉体の表面に、前記物理蒸着法によって、前記触媒物質を付着させるので、低温で、結晶性の良好な触媒物質を前記導電性粉体の表面にのみ(即ち、前記導電性粉体の表面に存在する細孔から内部に入り込まずに)付着することができ、得られる前記導電性触媒粒子は、より少ない量で良好な触媒作用を呈し、また前記触媒物質とガスとの接触面積が十分に確保されるので、反応に寄与する前記触媒物質の比表面積が大きくなり、触媒能も向上する。
しかも、前記導電性粉体の表面に前記イオン伝導体を付着させ、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質を付着させているので、前記触媒物質の結晶性を良好にするための熱処理を行う必要がなくなり、前記イオン伝導体の性能を損なうことなく、前記触媒物質を付着させることができる。
【0025】
【発明の実施の形態】
以下、実施の形態に基づいて本発明を更に具体的に説明する。
【0026】
前記物理蒸着法として、前記触媒物質をターゲットとするスパッタ法を用いることが望ましい。前記スパッタ法は、容易に生産することが可能で、生産性が高く、また成膜性も良好である。
【0027】
また、前記スパッタ法のほかに、前記物理蒸着法としてパルスレーザーデポジション法を用いてもよい。前記パルスレーザーデポジション法は、成膜における制御が容易であり、成膜性も良好である。
【0028】
前記スパッタ法又はパルスレーザーデポジション法によって、前記触媒物質を付着させるので、低温で、結晶性の良好な触媒物質を前記導電性粉体の表面にのみ(即ち、前記導電性粉体に存在する細孔内に入り込まずに)付着することができ、得られる前記導電性触媒粒子は、より少ない量で良好な触媒作用を得ることができ、また前記触媒物質とガスとの接触面積が十分に確保されるので、反応に寄与する前記触媒物質の比表面積が大きくなり、触媒能も向上することができる。
【0029】
前記物理的手段は、真空蒸着装置、スパッタ装置及びパルスレーザーデポジション装置のうちの少なくとも1つであるのがよい。
【0030】
ここで、特表平11−510311において、カーボンシート上に貴金属をスパッタ成膜する例が記載されているが、本発明に基づく製造方法は、導電性を有する粉体の表面に前記触媒物質を付着させるので、前記特表平11−510311に比べ、反応に寄与する前記触媒物質の比表面積をより大きくすることができ、触媒能の向上を図ることができる。以下の説明では、導電性粉体の表面にイオン伝導体が付着されているが、便宜上、このイオン伝導体については説明及び図示を省略することがある。
【0031】
図1は、本発明に基づく導電性触媒粒子の製造装置の概略断面図である。
【0032】
図1に示すように、導電性粉体1の表面に、前記物理蒸着法としての、例えば、前記触媒物質をターゲット2とする前記スパッタ法によって、前記触媒物質を付着させる際、前記振動増幅手段として表面が平滑なボール3を用い、導電性粉体1とボール3とを混合させて、底面が略平面状の同一容器4内の振動面20上に配置し、例えば電磁コイル式又は超音波ホーンからなる振動子5によって、前記振動をかけることが好ましい。このように構成された振動装置21を用いることにより、導電性粉体1は、ボール3とぶつかり合って混ざり合い、流動し、前記振動面上の一箇所に留まることがなくなる。そして、前記スパッタ法により、容器4内では導電性粉体1の粉体層の表面のみならず、内部のものも表面へ出ることになり、導電性粉体1の全体に対して、より均一に前記触媒物質を付着させることができる。
【0033】
この場合、ボール3は、直径1〜10mmのセラミックス又は金属製のボールであることが好ましい。
【0034】
図2に、前記導電性粉体及び前記振動増幅手段としての前記ボールを配置した容器4の概略図を示すように、前記導電性粉体の分布領域の面積Sに対する、前記ボールの総面積Aの比率を30〜80%とすることが好ましい。この比率が小さすぎると、導電性粉体1の混合が不十分となり、また大きすぎると、導電性粉体1の割合が小さくなってスパッタによる触媒物質の付着効率が悪くなり、触媒物質の付着した触媒粒子の生産効率が不十分となる。
【0035】
図3に、導電性粉体1及び前記振動増幅手段としてのボール3を配置した容器4の一部拡大概略断面図を示すように、導電性粉体1がなす層厚tに対し、前記振動増幅手段としてのボール3の径Rを10〜70%とすることが好ましい。この径がその範囲外であると、上記の面積比率の場合と同様の理由で不利となる。
【0036】
また、振動子5によって導電性粉体1及び前記振動増幅手段としてのボール3に与える前記振動の周波数は、導電性粉体1を十二分に混合するには、5〜200Hzであることが好ましく、また、前記振動の振幅も同様の理由から±(0.5〜20)mmであることが好ましい(以下、その他の実施の形態の場合も同様)。
【0037】
上述したような、好ましいとする各条件範囲内の環境下、前記導電性粉体の表面に、例えば前記スパッタ法によって前記触媒物質を付着させれば、前記導電性粉体は、より一層の良好な振動をすることができるので、前記導電性粉体の表面に、前記触媒物質をより一層均一に付着することが可能である。上記した各範囲から外れた場合、即ち、前記ボールの径が1mm未満の場合又は10mmを超える場合、前記振動数が5Hz未満の場合又は200Hzを超える場合、或いは、前記振幅が±0.5mm未満の場合等には、前記導電性粉体は良好な振動をすることができず、流動せずに前記容器の底部に滞留したままの前記導電性粉体が生じ、均一な成膜ができなくなることがある。また、前記振幅が20mmを超えた場合、前記導電性粉体の飛び出すおそれがあり、収量が減少することがある。
【0038】
本発明に基づく製造方法は、前記ボールに代えて、前記振動増幅手段として、ワイヤーが平面的にみて略渦巻状、略同心円状又は略折返し状のパターンをなすように一体に形成された部品を用い、この部品を容器の底面上に少なくとも一部が非固定状態で(この非固定状態とは、それ自体が三次元的に自由に振動するような状態である:以下、同様)設置し、この部品上に、前記導電性粉体を配置し、前記振動をかけてもよい。
【0039】
図4は、前記振動増幅手段として、ワイヤーが平面的にみて渦巻状のパターンをなすように一体に形成された部品6を用いた、本発明に基づく振動装置の概略図である。
【0040】
図5は、前記振動増幅手段として、ワイヤーが平面的にみて同心円状のパターンをなすように一体に形成された(即ち、径方向に連結された)部品7を用いた、本発明に基づく振動装置の概略断面図である。
【0041】
図6は、前記振動増幅手段として、ワイヤーが平面的にみて折返し状のパターンをなすように一体に形成された部品8を用いた、本発明に基づく振動装置の概略断面図である。
【0042】
図4〜図6に示されるいずれの場合も、前記部品6、7又は8を容器4の底面上に非固定状態で設置し、この部品6、7又は8上に、導電性粉体1を配置し、前記振動をかけると、部品6、7又は8の形状は保持されたまま振動するため、導電性粉体1は、より一層振動され、より良好に流動することができる。このとき、前記スパッタ法等の前記物理蒸着法により、導電性粉体1の表面に、前記触媒物質を付着すれば、容器4内の導電性粉体1は、その表面のみならず内部のものも含めて全体にわたって、均一に前記触媒物質を付着することができる。
【0043】
こうした効果を得る上で、渦巻状、同心円状又は折返し状のパターンに形成された前記ワイヤーは直径1〜10mmの金属製ワイヤーであり、渦巻状、同心円状又は折返し状のパターンに形成された前記部品の外径が前記容器の内径より5mm小さく、またパターンのピッチが5〜15mmであることが好ましい。これらの値を外れた条件の場合、導電性粉体1の混合が不十分となり易く、また触媒物質の付着効率が低下し易い。
【0044】
また、上記したボールを用いた場合と同様の理由から、前記導電性粉体がなす層厚に対し、前記振動増幅手段としての、前記ワイヤーが平面的にみて渦巻状、同心円状又は折返し状のパターンをなすように一体に形成された前記部品の厚みが10〜70%であることが好ましい。
【0045】
上記した製造方法によって得ることができる導電性触媒粒子は、図13(A)に示すように、触媒物質18が、例えば導電性粉体1の表面に存在する細孔(図示省略)に入り込まずに、導電性粉体1の表面にのみ付着している。従って、より少ない触媒量で良好な触媒作用を得ることができ、また触媒物質18とガスとの接触面積が十分に確保されるので、反応に寄与する触媒物質18の比表面積が大きくなり、触媒能も向上する。
【0046】
図13(B)は、本発明の製造方法によって得られた導電性触媒粒子を示し、導電性粉体1の表面にイオン伝導体19を付着させ、更にこのイオン伝導体19の表面に、前記物理蒸着法により触媒物質18を付着させている。この場合、前記物理蒸着法によって触媒物質18を付着させるので、従来のように触媒物質18の結晶性を良好にするための熱処理を行う必要がなくなり、イオン伝導体19の性能を損なうことなく、触媒物質18を付着させることができる。
【0047】
図13に示す(A)、(B)のいずれの前記導電性触媒粒子も、触媒能と導電性を共に発揮する上で、導電性粉体1に対して、触媒物質18を10〜1000重量%の割合で付着させることが好ましく、触媒物質18としては、Pt、Ir又はRhからなる貴金属材料を用いることが好ましい。
【0048】
導電性粉体1の電気抵抗は10-3Ω・m以下であることが好ましく、カーボン、ITO(Indium tin oxide:インジウム酸化物にスズをドープした導電性酸化物)及びSnO2のうちの少なくとも1種を用いることが好ましい。
【0049】
導電性粉体1としてカーボンを用いるとき、このカーボンの比表面積を300m2/g以上とすることが好ましく、300m2/g未満の場合、前記導電性触媒粒子としての特性が低下することがある。
【0050】
また、前記導電性触媒粒子を用いて、前記ガス拡散性触媒電極を作製した場合、ガス透過性が重要な性能となるが、導電性粉体1としてカーボンを用いるとき、このカーボンの吸油量を200ml/100g以上とすることで、良好なガス透過性を得ることができる。
【0051】
本発明に基づく製造方法により得られる前記導電性触媒粒子は、それ自体でもプレス加工等により触媒層を形成できるが、樹脂によって結着して成膜すると、上記導電性触媒粉体を多孔性のガス透過性集電体上に十分な強度で保持できるので、前記ガス拡散性触媒電極の製造上、より好ましい。
【0052】
前記ガス拡散性触媒電極は、上述したように、実質的に、前記導電性触媒粒子のみからなるか、或いは前記導電性触媒粒子の他に、この粒子を結着するための樹脂等の他成分を含有していてもよい。後者の場合、前記他成分としては、結着性及び排水性の点で撥水性樹脂(例えばフッ素系)を、ガス透過性の点で造孔剤(例えばCaCO3)を、及びプロトン等の移動性の点でイオン伝導体等を用いるのがよい。さらに、前記導電性触媒粒子を多孔性のガス透過性集電体(例えばカーボンシート)上に保持させることが好ましい。
【0053】
本発明に基づく製造方法により得られる前記ガス拡散性触媒電極は、燃料電池又は水素製造装置として構成されている電気化学デバイスに適用することができる。
【0054】
即ち、第1極と、第2極と、これらの両極間に挟持されたイオン伝導体とからなる基本的構造体において、前記第1極及び第2極のうち少なくとも前記第1極に本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極を適用することができる。
【0055】
さらに具体的にいうと、第1極及び第2極のうちの少なくとも一方が、ガス電極である電気化学デバイスなどに対し、本発明に基づく製造法によって得られる前記ガス拡散性触媒電極を好ましく適用することが可能である。
【0056】
図7は、前記ガス拡散性触媒電極を用いた具体例の燃料電池を示す。ここで、図7中の触媒層9は、本発明に基づく製造方法によって得られる前記導電性粉体(例えばカーボン粉体)の表面にのみ前記触媒物質(例えば白金)が付着している前記導電性触媒粒子の他、場合によっては、イオン伝導体、撥水性樹脂(例えばフッ素系)及び造孔剤(CaCO3)との混合物からなる混合層であり、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極は、触媒層9と、多孔性のガス透過性集電体としての例えばカーボンシート10とからなる多孔性のガス拡散性触媒電極である。但し、狭義には、触媒層9のみをガス拡散性触媒電極と称してもよい。また、前記ガス拡散性触媒電極を用いた第1極と、第2極との間には、イオン伝導部11が挟着されている。
【0057】
この燃料電池は、互いに対向する、端子12付きの、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極を用いた負極(燃料極又は水素極)13、及び端子14付きの、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極(但し、これは必ずしも正極に用いる必要はない。)を用いた正極(酸素極)15を有し、これらの両極間にイオン伝導部11が挟着されている。使用時には、負極13側ではH2流路16中に水素が通される。燃料(H2)が流路16を通過する間に水素イオンを発生し、この水素イオンは負極13で発生した水素イオン及びイオン伝導部11で発生した水素イオンと共に正極15側へ移動し、そこでO2流路17を通る酸素(空気)と反応し、これにより所望の起電力が取り出される。
【0058】
かかる燃料電池は、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極が前記第1極及び第2極を構成しているので、良好な触媒作用を有しており、また前記触媒物質とガス(H2)との接触面積が十分に確保されるので、反応に寄与する前記触媒物質の比表面積が大きくなり、触媒能も向上して、良好な出力特性が得られる。また、負極13中で水素イオンが解離し、またイオン伝導部11で水素イオンが解離しつつ、負極13側から供給される水素イオンが正極15側へ移動するので、水素イオンの伝導率が高い特徴がある。
【0059】
図8には、上記第1極及び前記第2極に、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極を用いた具体例の水素製造装置を示す。
【0060】
ここで、各電極における反応を以下に示す。
正極:H2O→2H++1/2O2+2e-
負極:2H++2e-→H2
必要な理論電圧は、1.23V以上となる。
【0061】
図8中の触媒層9’は、本発明に基づく製造方法によって得られる前記導電性粉体(例えばカーボン粉体)の表面にのみ前記触媒物質(例えば白金)が付着している前記導電性触媒粒子の他、場合によっては、イオン伝導体、撥水性樹脂(例えばフッ素系)及び造孔剤(CaCO3)との混合物からなる混合層であり、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極は、触媒層9’と、多孔性のガス透過性集電体としての例えばカーボンシート10’とからなる多孔性のガス拡散性触媒電極である。また、前記ガス透過性触媒電極を用いた第1極と、第2極との間には、イオン伝導部11’が挟着されている。
【0062】
この水素製造装置は、使用時には、正極15’側では水蒸気又は水蒸気含有大気が供給され、この水蒸気又は水蒸気含有大気は正極15’側にて分解され、電子及びプロトン(水素イオン)を発生し、この発生した電子及びプロトンが負極13’側へ移動し、この負極13’側にて水素ガスへと転化し、これにより所望の水素ガスが生成される。
【0063】
かかる水素製造装置は、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極が前記第1極及び第2極のうち少なくとも前記第1極を構成しているので、上記した負極13’における水素の生成に必要なプロトン及び電子が電極内を円滑に移動することができる。
【0064】
本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極中に、或いは前記電気化学デバイスを構成する前記第1極と、第2極との両極間に挟持された前記イオン伝導部に、使用可能な前記イオン伝導体としては、一般的なナフィオン(デュポン社製のパーフルオロスルホン酸樹脂)のほかにもフラレノール(ポリ水酸化フラーレン)等のフラーレン誘導体が挙げられる。
【0065】
図9に示す如く、フラーレン分子に複数の水酸基を付加した構造を持つフラレノール(Fullerenol)は、1992年にChiangらによって最初に合成例が報告された(Chiang,L.Y.;Swirczewski,J.W.;Hsu,C.S.;Chowdhury,S.K.;Cameron,S.;Creegan,K.,J.Chem.Soc,Chem.Commun.1992,1791)。
【0066】
本出願人は、そうしたフラレノールを図10(A)に概略図示するように凝集体とし、近接し合ったフラレノール分子(図中、○はフラーレン分子を示す。)の水酸基同士に相互作用が生じるようにしたところ、この凝集体はマクロな集合体として高いプロトン伝導特性(換言すれば、フラレノール分子のフェノール性水酸基からのH+の解離性)を発揮することを初めて知見することができた。
【0067】
また、上記フラレノール以外に、例えば、複数のOSO3H基をもつフラーレンの凝集体を前記イオン伝導体として用いることもできる。OH基がOSO3H基と置き換わった図10(B)に示すようなポリ水酸化フラーレン、すなわち硫酸水素エステル化フラレノールは、やはりChiangらによって1994年に報告されている(Chiang.L.Y.;Wang, L.Y.;Swirczewski,J.W.; Soled,S.; Cameron,S.,J.Org.Chem.1994,59,3960)。硫酸水素エステル化されたフラーレンには、ひとつの分子内にOSO3H基のみを含むものもあるし、或いはこの基と水酸基をそれぞれ複数、持たせることも可能である。
【0068】
上述したフラレノール及び硫酸水素エステル化フラレノールを多数凝集させた時、それがバルクとして示すプロトン伝導性は、分子内に元々含まれる大量の水酸基やOSO3H基に由来するプロトンが移動に直接関わるため、雰囲気から水蒸気分子などを起源とする水素、プロトンを取り込む必要はなく、また、外部からの水分の補給、とりわけ外気より水分等を吸収する必要もなく、雰囲気に対する制約はない。従って、乾燥雰囲気下においても、継続的に使用することができる。
【0069】
また、これらの分子の基体となっているフラーレンは特に求電子性の性質を持ち、このことが酸性度の高いOSO3H基のみならず、水酸基等においても水素イオンの電離の促進に大きく寄与していると考えられ、優れたプロトン伝導性を示す。また、一つのフラーレン分子中にかなり多くの水酸基及びOSO3H基等を導入することができるため、伝導に関与するプロトンの、伝導体の単位体積あたりの数密度が非常に多くなるので、実効的な伝導率を発現する。
【0070】
上記フラレノール及び硫酸水素エステル化フラレノールは、その殆どが、フラーレンの炭素原子で構成されているため、重量が軽く、変質もし難く、また汚染物質も含まれていない。フラーレンの製造コストも急激に低下しつつある。資源的、環境的、経済的にみて、フラーレンは他のどの材料にもまして、理想に近い炭素系材料であると考えられる。
【0071】
さらに、フラーレン分子に、例えば上記−OH、−OSO3H以外に−COOH、−SO3H、−OPO(OH)2のいずれかを有するものでも使用可能である。
【0072】
上記フラレノール等を合成するには、フラーレン分子の粉末に対し、例えば酸処理や加水分解等の公知の処理を適宜組み合わせて施すことにより、フラーレン分子の構成炭素原子に所望の基を導入することができる。
【0073】
ここで、上記イオン伝導部を構成する前記イオン伝導体として、上記フラーレン誘導体を用いた場合、このイオン伝導体が実質的にフラーレン誘導体のみからなるか、或いは結合剤によって結着されていることが好ましい。
【0074】
なお、上記フラーレン誘導体を加圧成形して得られる膜状の上記フラーレン誘導体のみからなる、上記第1極と、第2極とに挟持されたイオン伝導体に代わり、結合剤によって結着されているフラーレン誘導体をイオン伝導部5に用いてもよい。この場合、結合剤によって結着されることによって、強度の十分なイオン伝導部を形成できる。
【0075】
ここで、上記結合剤として使用可能な高分子材料としては、公知の成膜性を有するポリマーの1種又は2種以上が用いられ、そのイオン伝導部中の配合量は、通常、20重量%以下に抑える。20重量%を超えると、水素イオンの伝導性を低下させる恐れがあるからである。
【0076】
このような構成のイオン伝導部も、上記フラーレン誘導体をイオン伝導体として含有するので、上記した実質的にフラーレン誘導体のみからなるイオン伝導体と同様の水素イオン伝導性を発揮することができる。
【0077】
しかも、フラーレン誘導体単独の場合と違って高分子材料に由来する成膜性が付与されており、フラーレン誘導体の粉末圧縮成形品に比べ、強度が大きく、かつガス透過防止能を有する柔軟なイオン伝導性薄膜(厚みは通常300μm以下)として用いることができる。
【0078】
なお、上記高分子材料としては、水素イオンの伝導性をできるだけ阻害(フラーレン誘導体との反応による)せず、成膜性を有するものなら、特に限定はしない。通常は電子伝導性をもたず、良好な安定性を有するものが用いられる。その具体例を挙げると、ポリフルオロエチレン、ポリフッ化ビニリデン、ポリビニルアルコールなどがあり、これらは次に述べる理由からも、好ましい高分子材料である。
【0079】
まず、ポリフルオロエチレンが好ましいのは、他の高分子材料に比べ、少量の配合量で強度のより大きな薄膜を容易に成膜できるからである。この場合の配合量は、3重量%以下、好ましくは0.5〜1.5重量%と少量ですみ、薄膜の厚みは通常、100μmから1μmまでと薄くできる。
【0080】
また、ポリフッ化ビニリデンやポリビニルアルコールが好ましいのは、より優れたガス透過防止能を有するイオン伝導性薄膜が得られるからである。この場合の配合量は5〜15重量%の範囲とするのがよい。
【0081】
ポリフルオロエチレンにせよ、ポリフッ化ビニリデンやポリビニルアルコールにせよ、それらの配合量が上述したそれぞれの範囲の下限値を下回ると、成膜に悪影響を及ぼすことがある。
【0082】
本実施の形態の各フラーレン誘導体が結合剤によって結着されてなるイオン伝導部の薄膜を得るには、加圧成形や押出し成形を始め、公知の成膜法を用いればよい。
【0083】
【実施例】
以下、実施例に基づいて本発明を具体的に説明する。
【0084】
実施例1
図1に示した装置を用いて、スパッタターゲット、振動子及び容器を設置し、前記容器中には、導電性粉体及びボールを配置した。前記スパッタターゲットは粒径100mmの白金を用いた。前記ボールは径3mmのステンレス製のボールを、前記導電性粉体は表面積800m2/g、吸油量360ml/100gのカーボン粉体を用いた。そして、前記振動子を用いて、振幅±5mm、振動数36Hzの振動を発生させながら、スパッタを行った。
【0085】
上記した条件のもと、容器内にカーボン粉体1g及びステンレス製のボール35gを投入して、ガスはAr(1Pa)を導入し、ターゲットに400WのRFを印加し、カーボン粉体及びボールに対し振動子により振動を加えながら、スパッタを30分間行ったところ、カーボン粉体は重量が1.66gに増加しており、0.66gの白金がカーボン上に付着した。これは40wt%Pt担持カーボンの重量比に相当する。
【0086】
次いで、カーボンシート上に、テフロン(登録商標)からなるバインダーとカーボン(白金が付着していないもの)を混練してなる溶剤を、乾燥後20μmとなるように塗布し、これを染み込み防止層とした。
【0087】
また、上記の方法によって得られた、白金を担持したカーボン粉体を、バインダーとしてのパーフルオロスルホン酸及び有機溶媒としてのnPA(ノルマルプロピルアルコール)と共に混練し、この混合液を、カーボンシート上に塗布形成した染み込み防止層上に、塗布乾燥させた。乾燥後の塗布厚は10μmであった。これを実施例1のガス拡散性触媒電極とする。このガス拡散性触媒電極をイオン交換膜(パーフルオロスルホン酸)の両面側に配置し、図7に示すような燃料電池を作製し、出力を測定した。なお、実施例1で得られた出力(単位mW/cm2)を相対値で100%とし、これを基準値とした。
【0088】
実施例2
図4に示した装置を用いて、スパッタターゲット、振動子及び容器を設置し、ワイヤーが平面的にみて渦巻状のパターンをなすように一体に形成された部品を、前記容器の底面上に非固定状態で設置し、この部品上に、前記導電性粉体を配置した。この部品は、直径1.6mmのステンレス製のワイヤーから形成されており、その外径は前記容器の内径より5mm小さく、パターンのピッチは5〜10mmであった。この部品は、上述したように非固定状態で前記容器の底面上に設置されているので、カーボン粉体の表面に白金をスパッタにより付着させる際、カーボン粉体と共に振動した。
【0089】
この装置を用いてカーボン粉体の表面に白金を付着させたこと以外は、実施例1と同様にして、図7に示すような燃料電池を作製した。この燃料電池の出力を測定したところ、実施例1に対して、120%の出力が得られた。
【0090】
実施例3
白金を担持させるカーボン粉体の吸油量を150ml/100gとしたこと以外は、実施例1と同様にして、図7に示すような燃料電池を作製した。この燃料電池の出力を測定したところ、実施例1に対して、65%の出力が得られた。
【0091】
実施例4
白金を担持させるカーボン粉体の比表面積を200m2/gとしたこと以外は、実施例1と同様にして、図7に示すような燃料電池を作製した。この燃料電池の出力を測定したところ、実施例1に対して、65%の出力が得られた。
【0092】
比較例1
カーボン粉体に白金を担持させるにあたり、液相法を用いた。カーボン粉体を白金含有量10g/lのヘキサアミン白金(IV)塩化物([Pt(IV)(NH3)6]Cl4)水溶液に室温で1時間浸漬してイオン交換を行った。次いで、これを洗浄後、水素気流中180℃にて還元して、白金担持粉体を得た。この白金担持粉体を、前記導電性触媒粒子として用いたこと以外は、実施例1と同様にして、図7に示すような燃料電池を作製し、出力を測定したところ、実施例1に対して、50%の出力が得られた。
【0093】
比較例2
前記振動増幅手段としてのボールを用いず、また振動させずに、カーボン粉体の表面に、スパッタ法により白金を付着させたこと以外は、実施例1と同様にして、図7に示すような燃料電池を作製した。この燃料電池の出力を測定したところ、実施例1に対して、30%の出力が得られた。
【0094】
比較例3
振動装置の容器中にボールを配置せずに、導電性粉体としてのカーボン粉体のみを配置し、振動させながら、白金をスパッタ法により付着させたこと以外は、実施例1と同様にして、図7に示すような燃料電池を作製した。この燃料電池の出力を測定したところ、実施例1に対して、60%の出力が得られた。
【0095】
以上より明らかなように、本発明に基づく製造方法は、前記導電性粉体としてのカーボン粉体と、前記振動増幅手段としてのボール等を前記振動面上に配置し、これらを振動させながら、前記カーボン粉体の表面に、スパッタ法等の前記物理蒸着法により白金等の前記触媒物質を付着させるので、前記カーボン粉体は、より振動され、前記振動面上の一箇所に留まることがなくなる。従って、前記容器中に配置された前記カーボン粉体の全体に対して、均一に前記白金を付着させることができる。そして、この導電性触媒粒子を含有する前記ガス拡散性触媒電極を用いて作製した燃料電池は、より一層の高い出力が得られた。
【0096】
また、本発明に基づく製造方法は、前記カーボン粉体の表面に、スパッタ法等の前記物理蒸着法によって、前記触媒物質としての白金を付着させるので、低温で、結晶性の良好な白金を前記カーボン粉体の表面にのみ付着することができ、得られる前記導電性触媒粒子は、より少ない量で良好な触媒作用を得ることができ、また前記白金とガスとの接触面積が十分に確保されるので、反応に寄与する前記白金の比表面積が大きくなり、触媒能も向上する。そして、この導電性触媒粒子を含有する前記ガス拡散性触媒電極を用いて作製した燃料電池は、より一層の高い出力が得られた。
【0097】
実施例3は、白金を担持させるカーボン粉体の吸油量が150ml/100gであり、200ml/100g未満としたため、ガス透過性が低下し易く、出力が低下することがあった。
【0098】
実施例4は、白金を担持させるカーボン粉体の比表面積が200m2/gであり、300m2/g未満としたため、前記導電性触媒粒子としての特性が低下し易く、出力が低下することがあった。
【0099】
比較例1は、カーボン粉体に白金を担持させるにあたり、液相法を用いたので、白金がカーボン粉体の表面上において球状で存在し、離脱し易く、触媒能の効率が低かった。
【0100】
比較例2は、カーボン粉体の表面に、スパッタ法により白金を付着させるにあたり、前記振動増幅手段としてのボールを用いず、また振動させなかったので、本発明に基づく振動装置を用いても前記容器の最表面に存在するカーボン粉体にしか、白金が付着しなかった。従って、容器内の全てのカーボン粉体に対し、均一に白金を付着することができなかったので、出力が低下した。
【0101】
比較例3は、カーボン粉体の表面に、スパッタ法により白金を付着させるにあたり、カーボン粉体を振動させたが、前記振動増幅手段としてのボールを用いなかったため、容器内の全てのカーボン粉体に対し、均一に白金を付着することができず、出力が低下した。
【0102】
以上に説明した実施例は、本発明の技術的思想に基づいて種々に変形が可能である。
【0103】
例えば、前記振動増幅手段として、前記ボール又は前記渦巻状の部品を用いたが、図5に示すような同心円状の部品や、図6に示すような折返し状の部品を用いてもよい。いずれも、実施例2と同等の優れた結果が得られた。
【0104】
また、前記導電性粉体として前記カーボン粉体を用いたが、この他にも前記ITOやSnO2等も使用可能である。
【0105】
さらに、本発明に基づく製造方法によって得られる前記ガス拡散性触媒電極を用いた前記燃料電池について説明したが、前記ガス拡散性触媒電極は、前記燃料電池の逆反応である、前記水素製造装置にも応用できる。
【0106】
【発明の作用効果】
本発明によれば、前記導電性粉体と、前記振動増幅手段とを前記振動面上に配置し、これらを振動させながら、前記導電性粉体の表面に、前記物理蒸着法により前記触媒物質を付着させるので、前記導電性粉体は、より振動されて十分に混合され、前記振動面上の一箇所に留まることがなくなる。従って、導電性粉体は、粉体層の表面のみならず、内部のものも表面へ出て、全ての前記導電性粉体に対して均一に前記触媒物質を付着させることができる。
【0107】
また、前記導電性粉体の表面に、前記物理蒸着法によって、前記触媒物質を付着させるので、低温で、結晶性の良好な触媒物質を前記導電性粉体の表面にのみ付着することができ、得られる前記導電性触媒粒子は、より少ない量で良好な触媒作用を得ることができ、また前記触媒物質とガスとの接触面積が十分に確保されるので、反応に寄与する前記触媒物質の比表面積が大きくなり、触媒能も向上する。
しかも、前記導電性粉体の表面に前記イオン伝導体を付着させ、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質を付着させているので、前記触媒物質の結晶性を良好にするための熱処理を行う必要がなくなり、前記イオン伝導体の性能を損なうことなく、前記触媒物質を付着させることができる。
【図面の簡単な説明】
【図1】本発明に基づく導電性触媒粒子の製造装置の概略断面図である。
【図2】同、製造装置における、容器の一部拡大概略図である。
【図3】同、製造装置の一部拡大概略断面図である。
【図4】同、製造装置に用いる振動装置の概略断面図である。
【図5】同、他の振動装置の概略断面図である。
【図6】同、更に他の振動装置の概略断面図である。
【図7】本発明に基づく導電性触媒粒子の製造方法によって得られるガス拡散性触媒電極を用いた燃料電池の概略構成図である。
【図8】同、製造方法によって得られるガス拡散性触媒電極を用いた水素製造装置の概略構成図である。
【図9】本発明の実施の形態に使用可能なフラーレン誘導体の一例であるポリ水酸化フラーレンの構造図である。
【図10】同、フラーレン誘導体の例を示す模式図である。
【図11】従来の製造方法でカーボン粉体に白金を担持させて得られる導電性触媒粒子を示す概略断面図である。
【図12】先願発明による導電性触媒粒子の製造装置の概略断面図である。
【図13】本発明に基づく製造方法で得られる導電性触媒粒子を示す概略断面図である。
【符号の説明】
1…導電性粉体、2…ターゲット、3…ボール、4…容器、
5…振動子(電磁コイル式等)、6…渦巻状の振動増幅手段、
7…同心円状の振動増幅手段、8…折返し状の振動増幅手段、
9、9’…触媒層、10、10’…ガス透過性集電体、
11、11’…イオン伝導部、12、14…端子、13、13’…負極、
15、15’…正極、16…H2流路、17…O2流路、
18…触媒物質(白金)、19…イオン伝導体、20…振動面、21…振動装置
[0001]
[Technical field to which the invention belongs]
  The present invention relates to a method for producing conductive catalyst particles, a method for producing gas diffusible catalyst electrodes, and an apparatus used for a method for producing conductive catalyst particles.
[0002]
[Prior art]
Conventionally, a gas diffusive catalyst electrode is formed by molding catalyst particles in which platinum as a catalyst is supported on carbon as a conductive powder together with, for example, a fluororesin and an ion conductor as a water repellent resin (special feature). No. 5-36418) or manufactured through a process of coating on a carbon sheet.
[0003]
When this electrode is used as an electrode for hydrogen decomposition constituting a fuel cell such as a polymer electrolyte fuel cell, the fuel is ionized by a catalyst such as platinum, and the generated electrons flow through conductive carbon, and hydrogen Proton (H+) Flows to the ion conducting membrane through the ion conductor. Here, a gap through which gas passes, carbon through which electricity passes, an ion conductor through which ions pass, and a catalyst material for ionizing fuel and oxidant are required.
[0004]
Usually, as a method of attaching platinum (catalyst substance) to the surface of carbon powder as conductive powder, first, platinum is ionized into a liquid state, and carbon powder is immersed in a solution containing platinum. There is a method in which platinum is attached to the body, followed by reduction and heat treatment, so as to adhere as fine particle platinum on the surface of the carbon powder (Japanese Patent No. 2879649).
[0005]
[Course to Invention]
However, the conventional method as described above requires reduction and heat treatment to support platinum on the carbon powder. For example, when the temperature in this heat treatment is low, the crystallinity of platinum deteriorates, There is a problem that good catalytic properties cannot be obtained.
[0006]
In addition, the fuel is ionized by the catalyst material such as platinum as described above, and the generated electrons flow through the conductive carbon, and protons (H generated by ionizing hydrogen)+) Flows to the ion conducting membrane through the ion conductor. Accordingly, since the carbon powder and the ionic conductor need to be in contact with each other, the ionic conductor is usually applied after platinum is supported on the carbon powder. However, since platinum (catalyst substance) functions only in the part in contact with the gas, platinum (catalyst substance) having no contact part with the gas by the ion conductor does not function.
[0007]
As an alternative, there is a method of supporting platinum after applying an ion conductor to carbon powder. However, heat treatment must be performed to improve the crystallinity of platinum. However, since ion conductors generally have low heat resistance, when heated to a heat treatment temperature that improves the crystallinity of platinum, the ion conductor Will deteriorate.
[0008]
FIG. 11 (A) is a schematic cross-sectional view showing conductive catalyst particles obtained by supporting platinum 18 on carbon powder 1 by a conventional manufacturing method, and FIG. 11 (B) shows carbon powder 1 FIG. 3 is a schematic cross-sectional view showing conductive catalyst particles obtained by attaching platinum conductor 18 on the ion conductor 19 after the ion conductor 19 is attached thereto.
[0009]
As is clear from FIG. 11 (A), the platinum-supported conductive catalyst particles carrying platinum obtained from the liquid phase are present in a spherical shape on the surface of the carbon powder 1. It is easy to move away from the surface of the metal and requires a large amount of platinum in the production process. Further, since the platinum 18 exists in a spherical shape, only the surface of the platinum 18 functions as a catalytic substance, the inside does not function, and the efficiency of the catalytic activity is low with respect to the amount of platinum. Although not shown, platinum 18 also enters the pores existing on the surface of the carbon powder 1.
[0010]
Further, as shown in FIG. 11B, when the platinum 18 is supported after the ion conductor 19 is applied to the carbon powder, the heat treatment for improving the crystallinity of the platinum 18 is necessary as described above. However, the ionic conductor 19 generally has low heat resistance, and when heated to a heat treatment temperature that improves the crystallinity of the platinum 18, the ionic conductor 19 is deteriorated.
[0011]
As a result of intensive studies to solve the above-described problems, the present inventors have proposed a gas diffusive catalytic electrode having a good catalytic action with a smaller amount of catalyst in Japanese Patent Application No. 2000-293517.
[0012]
That is, according to the invention according to Japanese Patent Application No. 2000-293517 (hereinafter referred to as the prior application invention), the surface of the conductive powder 1 is applied to the surface of the conductive powder 1 using a physical vapor deposition method such as a sputtering method as shown in FIG. By attaching the catalyst substance, conductive catalyst particles having the catalyst substance 18 attached only to the surface of the conductive powder 1 as shown in FIG. 13 can be obtained.
[0013]
That is, as shown in FIG. 13A, when the physical vapor deposition method is used, the catalyst material 18 is attached only to the surface of the conductive powder 1 in the conductive catalyst particles obtained by this. Therefore, good catalytic action can be obtained with a smaller amount, and a sufficient contact area between the catalytic substance 18 and the gas is ensured, so that the specific surface area of the catalytic substance 18 contributing to the reaction is increased, and the catalytic ability is increased. Will also improve.
[0014]
Further, as shown in FIG. 13B, an ion conductor 19 is attached to the surface of the conductive powder 1, and a catalyst substance 18 is attached to the surface of the ion conductor 19 by physical vapor deposition. However, since the catalyst material 18 is deposited by physical vapor deposition, it is not necessary to perform a heat treatment for improving the crystallinity of the catalyst material as in the prior art, and the performance of the ion conductor 19 is not impaired. Can be attached.
[0015]
[Problems to be solved by the invention]
However, the present inventor has found that the invention of the prior application has points to be improved while having the above-described excellent features.
[0016]
As shown in FIG. 12, according to the manufacturing method according to the prior invention, the catalyst substance is attached only to the surface of the conductive powder 1 by physical vapor deposition such as sputtering. At this time, the catalyst substance only adheres to the conductive powder 1 existing on the outermost surface of the container 4, and it is difficult to uniformly apply the catalyst substance to the entire conductive powder arranged in the container 4. It was.
[0017]
  The present invention has been made in order to improve the insufficiency while taking advantage of the above-mentioned features of the invention of the prior application, and its purpose is to uniformly attach a catalytic substance to all conductive powders. An object of the present invention is to provide a device for use in a method for producing conductive catalyst particles, a method for producing gas diffusible catalyst electrodes, and a method for producing conductive catalyst particles.
[0018]
[Means for Solving the Problems]
  That is, according to the present invention, when the catalyst material is adhered to the surface of the conductive powder by physical vapor deposition while vibrating the conductive powder, the conductive powder and the vibration amplification means are placed on the vibration surface. Method for producing conductive catalyst particles, which are arranged in the same and vibrate them simultaneouslyIn,According to a method for producing conductive catalyst particles, an ion conductor is attached to a surface of the conductive powder, and further, the catalyst substance is attached to the surface of the ion conductor by the physical vapor deposition method. Is.
  AlsoIn order to carry out the method for producing conductive catalyst particles of the present invention, vibration means for vibrating the conductive powder, physical vapor deposition means for attaching a catalyst substance to the surface of the conductive powder, and amplification of the vibration An apparatus for producing conductive catalyst particles,In the conductive catalyst particles, the ionic conductor is attached to the surface of the conductive powder, and the catalyst substance is further attached to the surface of the ionic conductor by the physical vapor deposition method. In production equipmentIt is concerned.
[0022]
  Further, the conductive powder and the vibration amplifying means are disposed on the vibration surface, and while vibrating them, the catalyst material is adhered to the surface of the conductive powder by physical vapor deposition to form the conductive catalyst particles. And a method for producing a gas diffusible catalyst electrode comprising the steps of: obtaining a gas diffusible catalyst electrode containing the obtained conductive catalyst particles.In the gas diffusive catalytic electrode, an ion conductor is attached to the surface of the conductive powder, and the catalyst substance is further attached to the surface of the ion conductor by the physical vapor deposition method. In manufacturing methodIt is concerned.
[0023]
According to the present invention, the catalyst material is disposed on the surface of the conductive powder by the physical vapor deposition while the conductive powder and the vibration amplifying unit are disposed on the vibration surface and are vibrated. Therefore, the conductive powder is more vibrated and sufficiently mixed, and does not stay at one place on the vibration surface. Accordingly, not only the surface of the powder layer but also the inside of the conductive powder comes to the surface, and the catalyst substance can be uniformly attached to all the conductive powders.
[0024]
  In addition, since the catalyst material is attached to the surface of the conductive powder by the physical vapor deposition method, the catalyst material having good crystallinity is deposited only on the surface of the conductive powder at a low temperature (that is, the conductive material). The conductive catalyst particles obtained can adhere to the catalyst powder in a smaller amount, and can adhere to the catalyst material and the gas. Is sufficiently secured, the specific surface area of the catalytic substance contributing to the reaction is increased, and the catalytic performance is also improved.
  In addition, the ionic conductor is adhered to the surface of the conductive powder, and the catalytic material is further adhered to the surface of the ionic conductor by the physical vapor deposition method, so that the crystallinity of the catalytic material is good. It is not necessary to perform heat treatment to make the catalyst material, and the catalyst substance can be adhered without impairing the performance of the ion conductor.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically based on embodiments.
[0026]
As the physical vapor deposition method, it is desirable to use a sputtering method using the catalyst material as a target. The sputtering method can be easily produced, has high productivity, and has good film formability.
[0027]
In addition to the sputtering method, a pulse laser deposition method may be used as the physical vapor deposition method. The pulse laser deposition method is easy to control in film formation and has good film formability.
[0028]
Since the catalyst material is deposited by the sputtering method or the pulse laser deposition method, the catalyst material having good crystallinity is present only on the surface of the conductive powder (that is, in the conductive powder at a low temperature). The conductive catalyst particles obtained can be obtained in a smaller amount and have good catalytic action, and the contact area between the catalyst substance and the gas is sufficient. Thus, the specific surface area of the catalytic substance contributing to the reaction is increased, and the catalytic ability can be improved.
[0029]
The physical means may be at least one of a vacuum deposition apparatus, a sputtering apparatus, and a pulse laser deposition apparatus.
[0030]
  Here, in Japanese Patent Laid-Open No. 11-510311, an example is described in which a noble metal is sputter-deposited on a carbon sheet. However, in the production method according to the present invention, the catalyst substance is applied to the surface of a conductive powder. Since it is adhered, the specific surface area of the catalyst substance contributing to the reaction can be increased and the catalytic performance can be improved as compared with the above-mentioned Japanese National Patent Publication No. 11-510311.In the following description, an ion conductor is attached to the surface of the conductive powder, but for convenience, the description and illustration of the ion conductor may be omitted.
[0031]
FIG. 1 is a schematic sectional view of an apparatus for producing conductive catalyst particles according to the present invention.
[0032]
As shown in FIG. 1, when the catalyst material is adhered to the surface of the conductive powder 1 by the sputtering method using the catalyst material as a target 2 as the physical vapor deposition method, for example, the vibration amplification means The ball 3 having a smooth surface is used, and the conductive powder 1 and the ball 3 are mixed and placed on the vibration surface 20 in the same container 4 having a substantially flat bottom surface. The vibration is preferably applied by a vibrator 5 made of a horn. By using the vibration device 21 configured as described above, the conductive powder 1 collides with the ball 3, mixes and flows, and does not stay at one place on the vibration surface. Then, by the sputtering method, not only the surface of the powder layer of the conductive powder 1 but also the inside of the container 4 is exposed to the surface in the container 4, and is more uniform with respect to the entire conductive powder 1. The catalyst material can be adhered to the substrate.
[0033]
In this case, the ball 3 is preferably a ceramic or metal ball having a diameter of 1 to 10 mm.
[0034]
FIG. 2 shows a schematic view of the container 4 in which the conductive powder and the ball as the vibration amplifying means are arranged, and the total area A of the balls with respect to the area S of the distribution area of the conductive powder. The ratio is preferably 30 to 80%. If this ratio is too small, mixing of the conductive powder 1 will be insufficient, and if it is too large, the ratio of the conductive powder 1 will be small and the adhesion efficiency of the catalytic material by sputtering will be deteriorated, and the catalytic material will adhere. The production efficiency of the catalyst particles is insufficient.
[0035]
FIG. 3 shows a partially enlarged schematic cross-sectional view of a container 4 in which the conductive powder 1 and the ball 3 as the vibration amplifying means are arranged, and the vibration with respect to the layer thickness t formed by the conductive powder 1. It is preferable that the diameter R of the ball 3 as the amplifying means is 10 to 70%. If the diameter is out of the range, it is disadvantageous for the same reason as in the case of the area ratio.
[0036]
Moreover, the frequency of the vibration applied to the conductive powder 1 and the ball 3 as the vibration amplification means by the vibrator 5 is 5 to 200 Hz in order to mix the conductive powder 1 sufficiently. The amplitude of the vibration is preferably ± (0.5 to 20) mm for the same reason (hereinafter, the same applies to other embodiments).
[0037]
If the catalyst material is adhered to the surface of the conductive powder, for example, by the sputtering method in an environment within each preferable range of conditions as described above, the conductive powder is further improved. Therefore, the catalyst substance can be more uniformly attached to the surface of the conductive powder. When deviating from the above ranges, that is, when the ball diameter is less than 1 mm or more than 10 mm, when the frequency is less than 5 Hz or more than 200 Hz, or when the amplitude is less than ± 0.5 mm In such a case, the conductive powder cannot vibrate well, and the conductive powder stays at the bottom of the container without flowing, resulting in a non-uniform film formation. Sometimes. In addition, when the amplitude exceeds 20 mm, the conductive powder may jump out and the yield may be reduced.
[0038]
In the manufacturing method according to the present invention, instead of the ball, as the vibration amplification means, a wire is integrally formed so as to form a substantially spiral, substantially concentric or substantially folded pattern when viewed in plan. And at least a part of this part is placed on the bottom surface of the container in a non-fixed state (this non-fixed state is a state in which it itself freely vibrates in three dimensions: the same applies hereinafter) The conductive powder may be disposed on the component and subjected to the vibration.
[0039]
FIG. 4 is a schematic view of a vibration device according to the present invention using, as the vibration amplifying means, a component 6 integrally formed so that a wire forms a spiral pattern when seen in a plan view.
[0040]
FIG. 5 shows a vibration according to the present invention, in which the component 7 is integrally formed (that is, radially connected) so that the wire forms a concentric pattern in plan view as the vibration amplifying means. It is a schematic sectional drawing of an apparatus.
[0041]
FIG. 6 is a schematic cross-sectional view of a vibration device according to the present invention using, as the vibration amplification means, a component 8 that is integrally formed so that a wire forms a folded pattern when seen in a plan view.
[0042]
In any case shown in FIGS. 4 to 6, the component 6, 7 or 8 is placed on the bottom surface of the container 4 in an unfixed state, and the conductive powder 1 is placed on the component 6, 7 or 8. When placed and subjected to the vibration, the shape of the component 6, 7 or 8 vibrates while being held, so that the conductive powder 1 can be further vibrated and flow better. At this time, if the catalyst material is attached to the surface of the conductive powder 1 by the physical vapor deposition method such as the sputtering method, the conductive powder 1 in the container 4 is not only the surface but also the internal one. In addition, the catalyst substance can be uniformly deposited over the entire surface.
[0043]
  In obtaining such an effect, the wire formed in a spiral, concentric or folded pattern is a metal wire having a diameter of 1 to 10 mm, and the spiral, concentric or folded pattern is formed in the pattern. The outer diameter of the component is preferably 5 mm smaller than the inner diameter of the container, and the pattern pitch is preferably 5 to 15 mm. When the conditions deviate from these values, the mixing of the conductive powder 1 tends to be insufficient, and the adhesion efficiency of the catalyst substance tends to decrease.
[0044]
Further, for the same reason as the case of using the above-described ball, the wire as the vibration amplifying means has a spiral shape, a concentric shape, or a folded shape as viewed in a plane with respect to the layer thickness formed by the conductive powder. It is preferable that the thickness of the parts integrally formed so as to form a pattern is 10 to 70%.
[0045]
  AboveAs shown in FIG. 13 (A), the conductive catalyst particles that can be obtained by the manufacturing method are such that the catalyst substance 18 does not enter pores (not shown) present on the surface of the conductive powder 1, for example. It adheres only to the surface of the conductive powder 1. Accordingly, a good catalytic action can be obtained with a smaller amount of catalyst, and a sufficient contact area between the catalyst substance 18 and the gas is ensured, so that the specific surface area of the catalyst substance 18 contributing to the reaction is increased, and the catalyst The performance is also improved.
[0046]
  FIG. 13 (B)Shows conductive catalyst particles obtained by the production method of the present invention.The ion conductor 19 is attached to the surface of the conductive powder 1, and the catalyst substance 18 is attached to the surface of the ion conductor 19 by the physical vapor deposition method.HaveThe In this case, since the catalyst material 18 is attached by the physical vapor deposition method, it is not necessary to perform a heat treatment for improving the crystallinity of the catalyst material 18 as in the prior art, and without impairing the performance of the ion conductor 19, A catalytic material 18 can be deposited.
[0047]
  Each of the conductive catalyst particles of (A) and (B) shown in FIG. 13 exhibits 10 to 1000 weight of the catalyst substance 18 with respect to the conductive powder 1 in order to exhibit both catalytic ability and conductivity. %, And the catalyst material 18 includes Pt, IrOrRhConsist ofIt is preferable to use a noble metal material.
[0048]
The electric resistance of the conductive powder 1 is 10-3Ω · m or less is preferable, carbon, ITO (indium tin oxide: indium oxide doped with tin) and SnO2It is preferable to use at least one of them.
[0049]
When carbon is used as the conductive powder 1, the specific surface area of this carbon is 300 m.2/ G or more, preferably 300 m2When it is less than / g, the characteristics as the conductive catalyst particles may be deteriorated.
[0050]
Further, when the gas diffusive catalyst electrode is produced using the conductive catalyst particles, gas permeability is an important performance. When carbon is used as the conductive powder 1, the oil absorption amount of the carbon is reduced. Good gas permeability can be obtained by setting it as 200 ml / 100g or more.
[0051]
The conductive catalyst particles obtained by the production method according to the present invention can themselves form a catalyst layer by press working or the like. However, when the conductive catalyst particles are formed by binding with a resin, the conductive catalyst powder is made porous. Since it can hold | maintain with sufficient intensity | strength on a gas-permeable electrical power collector, it is more preferable on manufacture of the said gas-diffusible catalyst electrode.
[0052]
As described above, the gas diffusive catalyst electrode is substantially composed of only the conductive catalyst particles, or other components such as a resin for binding the particles in addition to the conductive catalyst particles. May be contained. In the latter case, the other component includes a water-repellent resin (for example, fluorine-based) in terms of binding and drainage, and a pore-forming agent (for example, CaCO in terms of gas permeability).Three) And an ion conductor or the like in terms of mobility such as protons. Furthermore, it is preferable to hold the conductive catalyst particles on a porous gas-permeable current collector (for example, a carbon sheet).
[0053]
The gas diffusive catalyst electrode obtained by the production method according to the present invention can be applied to an electrochemical device configured as a fuel cell or a hydrogen production apparatus.
[0054]
That is, in a basic structure composed of a first pole, a second pole, and an ionic conductor sandwiched between the two poles, at least the first pole of the first pole and the second pole is the present invention. The gas diffusive catalyst electrode obtained by the production method based on the above can be applied.
[0055]
More specifically, the gas diffusible catalyst electrode obtained by the production method according to the present invention is preferably applied to an electrochemical device or the like in which at least one of the first electrode and the second electrode is a gas electrode. Is possible.
[0056]
FIG. 7 shows a fuel cell of a specific example using the gas diffusive catalyst electrode. Here, the catalyst layer 9 in FIG. 7 is the conductive layer in which the catalytic substance (for example, platinum) is attached only to the surface of the conductive powder (for example, carbon powder) obtained by the manufacturing method according to the present invention. In addition to the conductive catalyst particles, in some cases, an ion conductor, a water-repellent resin (for example, fluorine-based), and a pore-forming agent (CaCOThreeThe gas diffusive catalyst electrode obtained by the production method according to the present invention comprises a catalyst layer 9 and, for example, a carbon sheet 10 as a porous gas permeable current collector. This is a porous gas diffusible catalyst electrode. However, in a narrow sense, only the catalyst layer 9 may be referred to as a gas diffusing catalyst electrode. Moreover, the ion conduction part 11 is pinched | interposed between the 1st pole using the said gas-diffusible catalyst electrode, and a 2nd pole.
[0057]
This fuel cell is provided with a negative electrode (fuel electrode or hydrogen electrode) 13 using the gas diffusible catalyst electrode obtained by the manufacturing method according to the present invention, which has a terminal 12 facing each other, and a terminal 14. The gas diffusible catalyst electrode obtained by the production method based on the above (however, it is not necessarily used for the positive electrode) has a positive electrode (oxygen electrode) 15, and the ion conducting portion 11 is between these two electrodes. It is pinched. In use, H on the negative electrode 13 side2Hydrogen is passed through the channel 16. Fuel (H2) Generate hydrogen ions while passing through the flow path 16, and these hydrogen ions move to the positive electrode 15 side together with the hydrogen ions generated at the negative electrode 13 and the hydrogen ions generated at the ion conducting portion 11, where O2It reacts with oxygen (air) passing through the flow path 17 and thereby a desired electromotive force is taken out.
[0058]
Such a fuel cell has good catalytic action because the gas diffusive catalyst electrode obtained by the production method according to the present invention constitutes the first electrode and the second electrode, and the catalyst substance And gas (H2) Is sufficiently secured, the specific surface area of the catalyst substance contributing to the reaction is increased, the catalytic ability is improved, and good output characteristics are obtained. In addition, hydrogen ions are dissociated in the negative electrode 13, and hydrogen ions are dissociated in the ion conducting unit 11, and hydrogen ions supplied from the negative electrode 13 side move to the positive electrode 15 side, so that the hydrogen ion conductivity is high. There are features.
[0059]
FIG. 8 shows a hydrogen production apparatus of a specific example in which the gas diffusible catalyst electrode obtained by the production method according to the present invention is used for the first electrode and the second electrode.
[0060]
Here, the reaction in each electrode is shown below.
Positive electrode: H2O → 2H++ 1 / 2O2+ 2e-
Negative electrode: 2H++ 2e-→ H2
The required theoretical voltage is 1.23V or higher.
[0061]
The catalyst layer 9 ′ in FIG. 8 is the conductive catalyst in which the catalyst substance (for example, platinum) is attached only to the surface of the conductive powder (for example, carbon powder) obtained by the manufacturing method according to the present invention. In addition to particles, in some cases, ion conductors, water-repellent resins (for example, fluorine-based), and pore formers (CaCOThreeThe gas diffusive catalyst electrode obtained by the production method according to the present invention includes a catalyst layer 9 ′ and, for example, a carbon sheet 10 ′ as a porous gas-permeable current collector. Is a porous gas diffusive catalyst electrode. Further, an ion conducting portion 11 ′ is sandwiched between the first electrode using the gas permeable catalyst electrode and the second electrode.
[0062]
In use, this hydrogen production apparatus is supplied with water vapor or water vapor-containing air on the positive electrode 15 ′ side, and the water vapor or water vapor-containing air is decomposed on the positive electrode 15 ′ side to generate electrons and protons (hydrogen ions). The generated electrons and protons move to the negative electrode 13 ′ side, and are converted into hydrogen gas on the negative electrode 13 ′ side, whereby desired hydrogen gas is generated.
[0063]
In such a hydrogen production apparatus, the gas diffusive catalyst electrode obtained by the production method according to the present invention constitutes at least the first electrode of the first electrode and the second electrode. Protons and electrons necessary for generating hydrogen can smoothly move in the electrode.
[0064]
Used in the gas diffusive catalyst electrode obtained by the production method according to the present invention, or in the ion conducting portion sandwiched between both the first electrode and the second electrode constituting the electrochemical device. Examples of the possible ion conductor include fullerene derivatives such as fullerenol (polyhydroxide fullerene) in addition to general Nafion (perfluorosulfonic acid resin manufactured by DuPont).
[0065]
As shown in FIG. 9, fullerenol having a structure in which a plurality of hydroxyl groups are added to a fullerene molecule was first reported in 1992 by Chiang et al. (Chiang, LY; Swirczewski, JW; Hsu, CS). ; Chowdhury, SK; Cameron, S .; Creegan, K., J. Chem. Soc, Chem. Commun. 1992, 1791).
[0066]
The present applicant makes such fullerenol an aggregate as schematically shown in FIG. 10 (A), so that an interaction occurs between the hydroxyl groups of the adjacent fullerenol molecules (in the figure, ◯ indicates a fullerene molecule). As a result, this aggregate is a macro aggregate and has high proton conductivity (in other words, H from the phenolic hydroxyl group of the fullerenol molecule).+For the first time.
[0067]
In addition to the above fullerenol, for example, a plurality of OSOThreeAggregates of fullerene having an H group can also be used as the ionic conductor. OH group is OSOThreeA polyhydroxylated fullerene as shown in FIG. 10 (B), ie, a hydrogen sulfate esterified fullerenol, replaced with an H group was also reported in 1994 by Chiang et al. (Chiang.LY; Wang, LY; Swirczewski, JW Soled, S .; Cameron, S., J. Org. Chem. 1994, 59, 3960). Hydrogen sulfate esterified fullerene has an OSO in one molecule.ThreeSome include only the H group, or a plurality of each of these groups and hydroxyl groups can be provided.
[0068]
When many of the above-mentioned fullerenol and hydrogen sulfate esterified fullerenol are agglomerated, the proton conductivity that is shown as a bulk is the large amount of hydroxyl groups and OSO originally contained in the molecule.ThreeSince protons derived from the H group are directly involved in movement, it is not necessary to take in hydrogen or protons originating from water vapor molecules from the atmosphere, and it is also necessary to replenish moisture from the outside, especially to absorb moisture from the outside air. There are no restrictions on the atmosphere. Therefore, it can be used continuously even in a dry atmosphere.
[0069]
In addition, fullerene, which is the base of these molecules, has particularly electrophilic properties, which is a highly acidic OSO.ThreeIt is considered that not only the H group but also the hydroxyl group or the like greatly contributes to the promotion of ionization of hydrogen ions, and exhibits excellent proton conductivity. In addition, a large number of hydroxyl groups and OSO are contained in one fullerene molecule.ThreeSince an H group or the like can be introduced, the number density of protons involved in conduction per unit volume of the conductor is extremely increased, so that effective conductivity is exhibited.
[0070]
Most of the above-mentioned fullerenol and hydrogen sulfate esterified fullerenol are composed of carbon atoms of fullerene, and thus are light in weight, hardly change in quality, and contain no pollutants. Fullerene production costs are also rapidly decreasing. From the viewpoint of resources, environment, and economy, fullerene is considered to be a near ideal carbon-based material more than any other material.
[0071]
In addition, fullerene molecules may include,ThreeIn addition to H, -COOH, -SOThreeH, -OPO (OH)2Those having any of the above can also be used.
[0072]
In order to synthesize the fullerenol and the like, a desired group may be introduced into the constituent carbon atoms of the fullerene molecule by appropriately combining known treatments such as acid treatment and hydrolysis with the fullerene molecule powder. it can.
[0073]
Here, when the fullerene derivative is used as the ionic conductor constituting the ionic conduction part, the ionic conductor may be substantially made of only the fullerene derivative or bound by a binder. preferable.
[0074]
Instead of the ionic conductor sandwiched between the first electrode and the second electrode, which is composed only of the film-like fullerene derivative obtained by pressure-molding the fullerene derivative, the binder is bound by a binder. Any fullerene derivative may be used for the ion conducting portion 5. In this case, an ion conducting portion having sufficient strength can be formed by being bound by the binder.
[0075]
Here, as the polymer material that can be used as the binder, one or two or more kinds of polymers having a known film-forming property are used, and the compounding amount in the ion conductive part is usually 20% by weight. Keep it below. This is because if it exceeds 20% by weight, the conductivity of hydrogen ions may be reduced.
[0076]
Since the ion conducting part having such a configuration also contains the fullerene derivative as an ion conductor, it can exhibit the same hydrogen ion conductivity as the above-described ion conductor consisting essentially of the fullerene derivative.
[0077]
In addition, unlike the case of fullerene derivative alone, it has film-forming properties derived from polymer materials, and has a higher strength and more flexible ion conduction than gas fullerene derivative powder compression molded products. Can be used as a conductive thin film (thickness is usually 300 μm or less).
[0078]
The polymer material is not particularly limited as long as it does not inhibit hydrogen ion conductivity as much as possible (by reaction with the fullerene derivative) and has film-forming properties. Usually, those having no electronic conductivity and good stability are used. Specific examples thereof include polyfluoroethylene, polyvinylidene fluoride, polyvinyl alcohol and the like, and these are preferable polymer materials for the following reason.
[0079]
First, polyfluoroethylene is preferable because a thin film having a higher strength can be easily formed with a small amount of blending than other polymer materials. In this case, the blending amount is as small as 3% by weight or less, preferably 0.5 to 1.5% by weight, and the thickness of the thin film can be reduced from 100 μm to 1 μm.
[0080]
Moreover, the reason why polyvinylidene fluoride and polyvinyl alcohol are preferred is that an ion conductive thin film having a better gas permeation preventing ability can be obtained. In this case, the blending amount is preferably in the range of 5 to 15% by weight.
[0081]
Whether it is polyfluoroethylene, polyvinylidene fluoride or polyvinyl alcohol, if the blending amount thereof falls below the lower limit value of each of the above ranges, the film formation may be adversely affected.
[0082]
In order to obtain a thin film of an ion conducting portion in which each fullerene derivative of this embodiment is bound by a binder, a known film forming method may be used including pressure molding and extrusion molding.
[0083]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0084]
Example 1
Using the apparatus shown in FIG. 1, a sputtering target, a vibrator, and a container were installed, and conductive powder and a ball were placed in the container. The sputter target was platinum having a particle size of 100 mm. The ball is a stainless steel ball having a diameter of 3 mm, and the conductive powder has a surface area of 800 m.2/ G, carbon powder having an oil absorption of 360 ml / 100 g was used. Then, sputtering was performed using the vibrator while generating vibration with an amplitude of ± 5 mm and a vibration frequency of 36 Hz.
[0085]
Under the conditions described above, 1 g of carbon powder and 35 g of stainless steel balls are placed in the container, Ar (1 Pa) is introduced as the gas, 400 W RF is applied to the target, and the carbon powder and balls are applied. On the other hand, when sputtering was performed for 30 minutes while applying vibration with a vibrator, the weight of the carbon powder increased to 1.66 g, and 0.66 g of platinum adhered to the carbon. This corresponds to the weight ratio of 40 wt% Pt-supported carbon.
[0086]
Next, a solvent formed by kneading a binder made of Teflon (registered trademark) and carbon (without platinum) on the carbon sheet was applied to a thickness of 20 μm after drying. did.
[0087]
Further, the platinum-supported carbon powder obtained by the above method is kneaded with perfluorosulfonic acid as a binder and nPA (normal propyl alcohol) as an organic solvent, and this mixed solution is placed on a carbon sheet. It was applied and dried on the soaking prevention layer. The coating thickness after drying was 10 μm. This is referred to as the gas diffusible catalyst electrode of Example 1. This gas diffusive catalyst electrode was disposed on both sides of an ion exchange membrane (perfluorosulfonic acid) to produce a fuel cell as shown in FIG. 7, and the output was measured. The output obtained in Example 1 (unit: mW / cm2) As a relative value, which was 100%.
[0088]
Example 2
  Using the apparatus shown in FIG. 4, a sputter target, a vibrator, and a container are installed, and a part integrally formed so that the wire forms a spiral pattern when seen in a plan view is placed on the bottom surface of the container. It installed in the fixed state and arrange | positioned the said electroconductive powder on this component. This part was formed from a stainless steel wire having a diameter of 1.6 mm, and its outer diameter was 5 mm smaller than the inner diameter of the container, and the pattern pitch was 5 to 10 mm. As described above, since this component is placed on the bottom surface of the container in an unfixed state as described above, when platinum is deposited on the surface of the carbon powder by sputtering, it vibrates with the carbon powder.
[0089]
A fuel cell as shown in FIG. 7 was produced in the same manner as in Example 1 except that platinum was attached to the surface of the carbon powder using this apparatus. When the output of this fuel cell was measured, an output of 120% was obtained with respect to Example 1.
[0090]
Example 3
A fuel cell as shown in FIG. 7 was produced in the same manner as in Example 1 except that the oil absorption of the carbon powder supporting platinum was 150 ml / 100 g. When the output of this fuel cell was measured, an output of 65% with respect to Example 1 was obtained.
[0091]
Example 4
The specific surface area of carbon powder supporting platinum is 200m.2A fuel cell as shown in FIG. 7 was produced in the same manner as in Example 1 except that the amount was / g. When the output of this fuel cell was measured, an output of 65% with respect to Example 1 was obtained.
[0092]
Comparative Example 1
A liquid phase method was used for supporting platinum on the carbon powder. Carbon powder is converted to hexaamine platinum (IV) chloride ([Pt (IV) (NHThree)6] ClFour) Ion exchange was performed by dipping in an aqueous solution at room temperature for 1 hour. Next, this was washed and then reduced at 180 ° C. in a hydrogen stream to obtain a platinum-supported powder. A fuel cell as shown in FIG. 7 was produced and the output was measured in the same manner as in Example 1 except that this platinum-supported powder was used as the conductive catalyst particles. An output of 50% was obtained.
[0093]
Comparative Example 2
As shown in FIG. 7, in the same manner as in Example 1 except that platinum was adhered to the surface of the carbon powder by sputtering without using the ball as the vibration amplifying means and without vibrating. A fuel cell was fabricated. When the output of this fuel cell was measured, an output of 30% was obtained with respect to Example 1.
[0094]
Comparative Example 3
Except for placing the carbon powder as the conductive powder without placing the ball in the container of the vibration device, and adhering the platinum by sputtering while vibrating, the same as in Example 1. A fuel cell as shown in FIG. 7 was produced. When the output of this fuel cell was measured, an output of 60% was obtained with respect to Example 1.
[0095]
As is clear from the above, the manufacturing method according to the present invention is arranged such that the carbon powder as the conductive powder and the ball as the vibration amplifying means are arranged on the vibration surface, and these are vibrated, Since the catalytic substance such as platinum is attached to the surface of the carbon powder by the physical vapor deposition method such as sputtering, the carbon powder is more vibrated and does not stay at one place on the vibration surface. . Therefore, the platinum can be uniformly adhered to the entire carbon powder disposed in the container. And the fuel cell produced using the said gas-diffusible catalyst electrode containing this electroconductive catalyst particle obtained much higher output.
[0096]
Further, in the production method according to the present invention, platinum as the catalyst substance is attached to the surface of the carbon powder by the physical vapor deposition method such as sputtering. The conductive catalyst particles that can be attached only to the surface of the carbon powder can obtain good catalytic action in a smaller amount, and the contact area between the platinum and the gas is sufficiently secured. Therefore, the specific surface area of the platinum contributing to the reaction is increased, and the catalytic ability is also improved. And the fuel cell produced using the said gas-diffusible catalyst electrode containing this electroconductive catalyst particle obtained much higher output.
[0097]
In Example 3, since the oil absorption of the carbon powder supporting platinum was 150 ml / 100 g and less than 200 ml / 100 g, the gas permeability was likely to be lowered, and the output was sometimes lowered.
[0098]
In Example 4, the specific surface area of the carbon powder supporting platinum is 200 m.2/ G, 300m2Since it was less than / g, the characteristic as the said electroconductive catalyst particle tends to fall, and the output may fall.
[0099]
In Comparative Example 1, since the liquid phase method was used to support platinum on the carbon powder, the platinum was present in a spherical shape on the surface of the carbon powder, was easily detached, and the catalytic efficiency was low.
[0100]
Since the comparative example 2 did not use the ball as the vibration amplifying means when the platinum was deposited on the surface of the carbon powder by the sputtering method, and it was not vibrated, the vibration device according to the present invention was used. Platinum adhered only to the carbon powder present on the outermost surface of the container. Therefore, platinum could not be uniformly adhered to all the carbon powders in the container, and the output was lowered.
[0101]
In Comparative Example 3, the carbon powder was vibrated when platinum was deposited on the surface of the carbon powder by sputtering, but the balls as the vibration amplifying means were not used. On the other hand, platinum could not be uniformly deposited, and the output decreased.
[0102]
The embodiments described above can be variously modified based on the technical idea of the present invention.
[0103]
For example, although the ball or the spiral part is used as the vibration amplification means, a concentric part as shown in FIG. 5 or a folded part as shown in FIG. 6 may be used. In either case, excellent results equivalent to those of Example 2 were obtained.
[0104]
Moreover, although the said carbon powder was used as said electroconductive powder, in addition to this, the said ITO and SnO2Etc. can also be used.
[0105]
Furthermore, although the said fuel cell using the said gas diffusible catalyst electrode obtained by the manufacturing method based on this invention was demonstrated, the said gas diffusible catalyst electrode is the reverse reaction of the said fuel cell. Can also be applied.
[0106]
[Effects of the invention]
According to the present invention, the catalyst material is disposed on the surface of the conductive powder by the physical vapor deposition while the conductive powder and the vibration amplifying unit are disposed on the vibration surface and are vibrated. Therefore, the conductive powder is more vibrated and sufficiently mixed, and does not stay at one place on the vibration surface. Accordingly, not only the surface of the powder layer but also the inside of the conductive powder comes to the surface, and the catalyst substance can be uniformly attached to all the conductive powder.
[0107]
  In addition, since the catalyst substance is attached to the surface of the conductive powder by the physical vapor deposition method, a catalyst substance having good crystallinity can be attached only to the surface of the conductive powder at a low temperature. The obtained conductive catalyst particles can obtain good catalytic action in a smaller amount, and a sufficient contact area between the catalyst substance and the gas is ensured, so that the catalyst substance that contributes to the reaction can be obtained. The specific surface area is increased and the catalytic ability is improved.
  In addition, the ionic conductor is adhered to the surface of the conductive powder, and the catalytic material is further adhered to the surface of the ionic conductor by the physical vapor deposition method, so that the crystallinity of the catalytic material is good. It is not necessary to perform heat treatment to make the catalyst material, and the catalyst substance can be adhered without impairing the performance of the ion conductor.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an apparatus for producing conductive catalyst particles according to the present invention.
FIG. 2 is a partially enlarged schematic view of the container in the manufacturing apparatus.
FIG. 3 is a partially enlarged schematic cross-sectional view of the manufacturing apparatus.
FIG. 4 is a schematic sectional view of a vibration device used in the manufacturing apparatus.
FIG. 5 is a schematic cross-sectional view of another vibration device.
FIG. 6 is a schematic cross-sectional view of still another vibration device.
FIG. 7 is a schematic configuration diagram of a fuel cell using a gas diffusing catalyst electrode obtained by the method for producing conductive catalyst particles according to the present invention.
FIG. 8 is a schematic configuration diagram of a hydrogen production apparatus using a gas diffusible catalyst electrode obtained by the production method.
FIG. 9 is a structural diagram of polyhydroxylated fullerene that is an example of a fullerene derivative that can be used in an embodiment of the present invention.
FIG. 10 is a schematic view showing an example of a fullerene derivative.
FIG. 11 is a schematic cross-sectional view showing conductive catalyst particles obtained by supporting platinum on carbon powder by a conventional manufacturing method.
FIG. 12 is a schematic cross-sectional view of an apparatus for producing conductive catalyst particles according to the prior invention.
FIG. 13 is a schematic cross-sectional view showing conductive catalyst particles obtained by the production method according to the present invention.
[Explanation of symbols]
1 ... conductive powder, 2 ... target, 3 ... ball, 4 ... container,
5 ... vibrator (electromagnetic coil type, etc.), 6 ... spiral vibration amplification means,
7 ... Concentric vibration amplifying means, 8 ... Folded vibration amplifying means,
9, 9 '... catalyst layer, 10, 10' ... gas permeable current collector,
11, 11 '... ion conducting part, 12, 14 ... terminal, 13, 13' ... negative electrode,
15, 15 '... positive electrode, 16 ... H2Channel, 17 ... O2Flow path,
18 ... catalyst substance (platinum), 19 ... ion conductor, 20 ... vibrating surface, 21 ... vibrating device

Claims (50)

導電性粉体を振動させながら、この導電性粉体の表面に、物理蒸着法により触媒物質を付着させる際、前記導電性粉体と、振動増幅手段とを振動面上に配置し、これらを同時に振動させる、導電性触媒粒子の製造方法において、前記導電性粉体の表面にイオン伝導体を付着させ、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質を付着させることを特徴とする、導電性触媒粒子の製造方法While the conductive powder is vibrated, when the catalyst material is attached to the surface of the conductive powder by physical vapor deposition, the conductive powder and the vibration amplifying means are disposed on the vibration surface. In the method for producing conductive catalyst particles that are vibrated simultaneously , an ion conductor is attached to the surface of the conductive powder, and the catalyst substance is further attached to the surface of the ion conductor by the physical vapor deposition method. A method for producing conductive catalyst particles, which is characterized . 前記振動増幅手段としてボールを用い、前記導電性粉体と前記ボールとを混合させて同一容器内に配置し、前記振動をかける、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein a ball is used as the vibration amplifying means, the conductive powder and the ball are mixed and placed in the same container, and the vibration is applied. 前記ボールを直径1〜10mmのセラミックス又は金属製のボールとする、請求項2に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 2, wherein the balls are ceramic or metal balls having a diameter of 1 to 10 mm. 前記振動増幅手段として、ワイヤーが平面的にみて渦巻状、同心円状又は折返し状のパターンをなすように一体に形成された部品を用い、この部品を容器の底面上に少なくとも一部が非固定状態で設置し、この部品上に、前記導電性粉体を配置し、前記振動をかける、請求項1に記載した導電性触媒粒子の製造方法。  As the vibration amplifying means, a part in which the wire is formed integrally so as to form a spiral, concentric or folded pattern in plan view is used, and at least a part of the part is not fixed on the bottom surface of the container. The method for producing conductive catalyst particles according to claim 1, wherein the conductive powder is placed on the component and the vibration is applied to the component. 渦巻状、同心円状又は折返し状のパターンに形成された前記ワイヤーを直径1〜10mmの金属製ワイヤーとする、請求項4に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 4, wherein the wire formed in a spiral, concentric or folded pattern is a metal wire having a diameter of 1 to 10 mm. 渦巻状、同心円状又は折返し状のパターンに形成された前記部品の外径を前記容器の内径より5mm小さくし、パターンのピッチを5〜15mmとする、請求項4に記載した導電性触媒粒子の製造方法。  5. The conductive catalyst particle according to claim 4, wherein the outer diameter of the component formed in a spiral, concentric or folded pattern is 5 mm smaller than the inner diameter of the container, and the pattern pitch is 5 to 15 mm. Production method. 前記導電性粉体がなす層厚に対し、前記振動増幅手段の厚み又は径を10〜70%とする、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein a thickness or a diameter of the vibration amplifying unit is 10 to 70% with respect to a layer thickness formed by the conductive powder. 前記導電性粉体の分布領域に対する、前記振動増幅手段の面積比率を30〜80%とする、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein an area ratio of the vibration amplifying unit to a distribution region of the conductive powder is 30 to 80%. 振動子によって前記導電性粉体及び前記振動増幅手段に与える前記振動の周波数を5〜200Hzとする、請求項1に記載した導電性触媒粒子の製造方法。  2. The method for producing conductive catalyst particles according to claim 1, wherein a frequency of the vibration applied to the conductive powder and the vibration amplification means by a vibrator is 5 to 200 Hz. 振動子によって前記導電性粉体及び前記振動増幅手段に与える前記振動の振幅を±(0.5〜20)mmとする、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein an amplitude of the vibration applied to the conductive powder and the vibration amplifying unit by a vibrator is ± (0.5 to 20) mm. 前記物理蒸着法として、前記触媒物質をターゲットとするスパッタ法を用いる、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein a sputtering method using the catalyst substance as a target is used as the physical vapor deposition method. 前記物理蒸着法としてパルスレーザーデポジション法を用いる、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein a pulsed laser deposition method is used as the physical vapor deposition method. 前記導電性粉体に対して前記触媒物質を10〜1000重量%の割合で付着させる、請求項1に記載した導電性触媒粒子の製造方法。  The method for producing conductive catalyst particles according to claim 1, wherein the catalyst substance is attached to the conductive powder at a ratio of 10 to 1000% by weight. 前記触媒物質としてPt、Ir又はRhからなる貴金属材料を用いる、請求項1に記載した導電性触媒粒子の製造方法。The method for producing conductive catalyst particles according to claim 1, wherein a noble metal material made of Pt, Ir, or Rh is used as the catalyst substance. 前記導電性粉体の電気抵抗を10-3Ω・m以下とする、請求項1に記載した導電性触媒粒子の製造方法。The method for producing conductive catalyst particles according to claim 1, wherein the electric resistance of the conductive powder is 10 −3 Ω · m or less. 前記導電性粉体をカーボン、ITO(Indium tin oxide:インジウム酸化物にスズをドープした導電性酸化物)及びSnO2のうちの少なくとも1種とする、請求項1に記載した導電性触媒粒子の製造方法。 2. The conductive catalyst particle according to claim 1, wherein the conductive powder is at least one of carbon, ITO (indium tin oxide: conductive oxide in which indium oxide is doped with tin), and SnO 2 . Production method. 前記導電性粉体として前記カーボンを用いるとき、前記カーボンの比表面積を300m2/g以上とする、請求項16に記載した導電性触媒粒子の製造方法。The method for producing conductive catalyst particles according to claim 16 , wherein, when the carbon is used as the conductive powder, the specific surface area of the carbon is set to 300 m 2 / g or more. 前記導電性粉体として前記カーボンを用いるとき、前記カーボンの吸油量を200ml/100g以上とする、請求項16に記載した導電性触媒粒子の製造方法。The method for producing conductive catalyst particles according to claim 16 , wherein when carbon is used as the conductive powder, the oil absorption amount of the carbon is 200 ml / 100 g or more. 導電性粉体と、振動増幅手段とを振動面上に配置し、これらを振動させながら、前記導電性粉体の表面に、物理蒸着法により触媒物質を付着させて導電性触媒粒子を得る工程と、得られたこの導電性触媒粒子を含むガス拡散性触媒電極を作製する工程とを有する、ガス拡散性触媒電極の製造方法において、前記導電性粉体の表面にイオン伝導体を付着させ、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質を付着させることを特徴とする、ガス拡散性触媒電極の製造方法A process of obtaining conductive catalyst particles by arranging a conductive powder and vibration amplifying means on a vibration surface, and adhering a catalyst substance to the surface of the conductive powder by physical vapor deposition while vibrating them. And a method for producing a gas diffusible catalyst electrode containing the obtained conductive catalyst particles, in the method for producing a gas diffusible catalyst electrode , attaching an ionic conductor to the surface of the conductive powder, Furthermore, the catalyst substance is adhered to the surface of the ion conductor by the physical vapor deposition method . 前記振動増幅手段としてボールを用い、前記導電性粉体と前記ボールとを混合させて同一容器内に配置し、前記振動をかける、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein a ball is used as the vibration amplifying means, the conductive powder and the ball are mixed and placed in the same container, and the vibration is applied. 前記ボールを直径1〜10mmのセラミックス又は金属製のボールとする、請求項20に記載したガス拡散性触媒電極の製造方法。21. The method for producing a gas diffusing catalyst electrode according to claim 20 , wherein the ball is a ceramic or metal ball having a diameter of 1 to 10 mm. 前記振動増幅手段として、ワイヤーが平面的にみて渦巻状、同心円状又は折返し状のパターンをなすように一体に形成された部品を用い、この部品を容器の底面上に少なくとも一部が非固定状態で設置し、この部品上に、前記導電性粉体を配置し、前記振動をかける、請求項19に記載したガス拡散性触媒電極の製造方法。As the vibration amplifying means, a part in which the wire is formed integrally so as to form a spiral, concentric or folded pattern in plan view is used, and at least a part of the part is not fixed on the bottom surface of the container. The method for producing a gas diffusible catalyst electrode according to claim 19 , wherein the conductive powder is placed on the component and the vibration is applied. 渦巻状、同心円状又は折返し状のパターンに形成された前記ワイヤーを直径1〜10mmの金属製ワイヤーとする、請求項22に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalytic electrode according to claim 22 , wherein the wire formed in a spiral, concentric or folded pattern is a metal wire having a diameter of 1 to 10 mm. 渦巻状、同心円状又は折返し状のパターンに形成された前記部品の外径を前記容器の内径より5mm小さくし、パターンのピッチを5〜15mmとする、請求項22に記載したガス拡散性触媒電極の製造方法。23. The gas diffusive catalyst electrode according to claim 22 , wherein the outer diameter of the part formed in a spiral, concentric or folded pattern is 5 mm smaller than the inner diameter of the container, and the pattern pitch is 5 to 15 mm. Manufacturing method. 前記導電性粉体がなす層厚に対し、前記振動増幅手段の厚み又は径を10〜70%とする、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein the thickness or diameter of the vibration amplifying means is 10 to 70% with respect to the layer thickness formed by the conductive powder. 前記導電性粉体の分布領域に対する、前記振動増幅手段の面積比率を30〜80%とする、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein an area ratio of the vibration amplifying means to a distribution region of the conductive powder is 30 to 80%. 振動子によって前記導電性粉体及び前記振動増幅手段に与える前記振動の周波数を5〜200Hzとする、請求項19に記載したガス拡散性触媒電極の製造方法。20. The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein a frequency of the vibration applied to the conductive powder and the vibration amplification means by a vibrator is 5 to 200 Hz. 振動子によって前記導電性粉体及び前記振動増幅手段に与える前記振動の振幅を±(0.5〜20)mmとする、請求項19に記載したガス拡散性触媒電極の製造方法。20. The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein an amplitude of the vibration applied to the conductive powder and the vibration amplification means by a vibrator is set to ± (0.5 to 20) mm. 前記物理蒸着法として、前記触媒物質をターゲットとするスパッタ法を用いる、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein a sputtering method using the catalyst substance as a target is used as the physical vapor deposition method. 前記物理蒸着法としてパルスレーザーデポジション法を用いる、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein a pulsed laser deposition method is used as the physical vapor deposition method. 前記導電性粉体に対して前記触媒物質を10〜1000重量%の割合で付着させる、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein the catalyst substance is adhered to the conductive powder at a ratio of 10 to 1000% by weight. 前記触媒物質としてPt、Ir又はRhからなる貴金属材料を用いる、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein a noble metal material made of Pt, Ir or Rh is used as the catalyst substance. 前記導電性粉体の電気抵抗を10-3Ω・m以下とする、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein an electric resistance of the conductive powder is 10 -3 Ω · m or less. 前記導電性粉体をカーボン、ITO(Indium tin oxide:インジウム酸化物にスズをドープした導電性酸化物)及びSnO2のうちの少なくとも1種とする、請求項19に記載したガス拡散性触媒電極の製造方法。The gas diffusive catalyst electrode according to claim 19 , wherein the conductive powder is at least one of carbon, ITO (indium tin oxide: conductive oxide obtained by doping tin into indium oxide), and SnO 2. Manufacturing method. 前記導電性粉体として前記カーボンを用いるとき、前記カーボンの比表面積を300m2/g以上とする、請求項34に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 34 , wherein, when the carbon is used as the conductive powder, the specific surface area of the carbon is set to 300 m 2 / g or more. 前記導電性粉体として前記カーボンを用いるとき、前記カーボンの吸油量を200ml/100g以上とする、請求項34に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 34 , wherein when the carbon is used as the conductive powder, the oil absorption amount of the carbon is 200 ml / 100 g or more. 前記導電性触媒粒子を樹脂によって結着する、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusive catalyst electrode according to claim 19 , wherein the conductive catalyst particles are bound by a resin. 前記導電性触媒粒子を集電体上に付着させてガス拡散性触媒電極を形成する、請求項19に記載したガス拡散性触媒電極の製造方法。The method for producing a gas diffusible catalyst electrode according to claim 19 , wherein the conductive catalyst particles are attached on a current collector to form a gas diffusible catalyst electrode. 導電性粉体を振動させる振動手段と、この導電性粉体の表面に触媒物質を付着させる物理蒸着手段と、前記振動の増幅手段とを有する、導電性触媒粒子の製造装置において、前記導電性粉体の表面にイオン伝導体が付着され、更にこのイオン伝導体の表面に、前記物理蒸着法により前記触媒物質が付着されることを特徴とする、導電性触媒粒子の製造装置In the conductive catalyst particle manufacturing apparatus , comprising: vibration means for vibrating the conductive powder; physical vapor deposition means for attaching a catalyst substance to the surface of the conductive powder; and the vibration amplification means . An apparatus for producing conductive catalyst particles, wherein an ion conductor is attached to a surface of the powder, and further, the catalyst substance is attached to the surface of the ion conductor by the physical vapor deposition method . 前記振動増幅手段としてボールが用いられ、前記導電性粉体と前記ボールとが混合されて同一容器内に配置され、前記振動がかけられる、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein a ball is used as the vibration amplifying means, the conductive powder and the ball are mixed and placed in the same container, and the vibration is applied. 前記ボールが直径1〜10mmのセラミックス又は金属製のボールである、請求項40に記載した導電性触媒粒子の製造装置。41. The apparatus for producing conductive catalyst particles according to claim 40 , wherein the balls are ceramic or metal balls having a diameter of 1 to 10 mm. 前記振動増幅手段として、ワイヤーが平面的にみて渦巻状、同心円状又は折返し状のパターンをなすように一体に形成された部品が用いられ、この部品が容器の底面上に少なくとも一部が非固定状態で設置され、この部品上に、前記導電性粉体が配置され、前記振動がかけられる、請求項39に記載した導電性触媒粒子の製造装置。As the vibration amplifying means, a part integrally formed so as to form a spiral, concentric or folded pattern when used in a plane is used, and at least a part of the part is not fixed on the bottom surface of the container. 40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein the apparatus is installed in a state, the conductive powder is disposed on the component, and the vibration is applied. 渦巻状、同心円状又は折返し状のパターンに形成された前記ワイヤーが直径1〜10mmの金属製ワイヤーである、請求項42に記載した導電性触媒粒子の製造装置。43. The apparatus for producing conductive catalyst particles according to claim 42 , wherein the wire formed in a spiral, concentric or folded pattern is a metal wire having a diameter of 1 to 10 mm. 渦巻状、同心円状又は折返し状のパターンに形成された前記部品の外径が前記容器の内径より5mm小さく、また、パターンのピッチが5〜15mmである、請求項42に記載した導電性触媒粒子の製造装置。43. The conductive catalyst particle according to claim 42 , wherein the outer diameter of the part formed in a spiral, concentric or folded pattern is 5 mm smaller than the inner diameter of the container, and the pattern pitch is 5 to 15 mm. Manufacturing equipment. 前記導電性粉体がなす層厚に対し、前記振動増幅手段の厚み又は径が10〜70%である、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein a thickness or a diameter of the vibration amplifying means is 10 to 70% with respect to a layer thickness formed by the conductive powder. 前記導電性粉体の分布領域に対する、前記振動増幅手段の面積比率が30〜80%である、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein an area ratio of the vibration amplification means to a distribution region of the conductive powder is 30 to 80%. 振動子によって前記導電性粉体及び前記振動増幅手段に与える前記振動の周波数が5〜200Hzである、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein a frequency of the vibration applied to the conductive powder and the vibration amplification means by a vibrator is 5 to 200 Hz. 振動子によって前記導電性粉体及び前記振動増幅手段に与える前記振動の振幅が±(0.5〜20)mmである、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein an amplitude of the vibration applied to the conductive powder and the vibration amplification means by a vibrator is ± (0.5 to 20) mm. 前記物理蒸着法として、前記触媒物質をターゲットとするスパッタ法が用いられる、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein a sputtering method using the catalyst material as a target is used as the physical vapor deposition method. 前記物理蒸着法としてパルスレーザーデポジション法が用いられる、請求項39に記載した導電性触媒粒子の製造装置。40. The apparatus for producing conductive catalyst particles according to claim 39 , wherein a pulsed laser deposition method is used as the physical vapor deposition method.
JP2002120822A 2001-05-18 2002-04-23 Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method Expired - Fee Related JP4061573B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002120822A JP4061573B2 (en) 2001-05-18 2002-04-23 Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method
KR1020037013802A KR100875499B1 (en) 2001-05-18 2002-05-16 Apparatus and vibration apparatus used in the method for producing the conductive catalyst particles, the method for producing the gas diffusion catalyst electrode, and the method for producing the conductive catalyst particles
CNA028122062A CN1516620A (en) 2001-05-18 2002-05-16 Conductive catalyst particle manufacturing method, gas-diffusing catalyst electrode mfg. method and apparatus user for mfg. conductive catalyst particles
PCT/JP2002/004726 WO2002094438A1 (en) 2001-05-18 2002-05-16 Conductive catalysit particle manufacturing method, gas-diffusing catalyst electrode manufacturing method, apparatus used for manufacturing conductive catalyst particles, and vibrator
US10/477,840 US7294603B2 (en) 2001-05-18 2002-05-16 Process for production of conductive catalyst particles, process for production of catalyst electrode capable of gas diffusion, apparatus for production of conductive catalyst particles, and vibrating apparatus
US11/692,364 US7838457B2 (en) 2001-05-18 2007-03-28 Process for production of conductive catalyst particles, process for production of catalyst electrode capable of gas diffusion, apparatus for production of conductive catalyst particles, and vibrating apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001148613 2001-05-18
JP2001-148613 2001-05-18
JP2002120822A JP4061573B2 (en) 2001-05-18 2002-04-23 Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method

Publications (2)

Publication Number Publication Date
JP2003033668A JP2003033668A (en) 2003-02-04
JP4061573B2 true JP4061573B2 (en) 2008-03-19

Family

ID=26615306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120822A Expired - Fee Related JP4061573B2 (en) 2001-05-18 2002-04-23 Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method

Country Status (5)

Country Link
US (2) US7294603B2 (en)
JP (1) JP4061573B2 (en)
KR (1) KR100875499B1 (en)
CN (1) CN1516620A (en)
WO (1) WO2002094438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924336B2 (en) 2003-03-27 2011-04-12 Canon Kabushiki Kaisha Image pickup apparatus including a driving circuit to control a clamping switch so as to hold signals in holding capacitors

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061575B2 (en) * 2001-06-01 2008-03-19 ソニー株式会社 Conductive catalyst particles and method for producing the same, gas diffusive catalyst electrode, and electrochemical device
JP4403363B2 (en) * 2003-04-25 2010-01-27 ソニー株式会社 Conductive catalyst particle manufacturing apparatus and vibration apparatus
FR2857162B1 (en) * 2003-07-01 2014-04-11 Commissariat Energie Atomique FUEL CELL COMPRISING INTEGRATED CURRENT COLLECTORS IN THE ELECTRODE-MEMBRANE-ELECTRODE STACK.
JP4788113B2 (en) * 2004-06-21 2011-10-05 トヨタ自動車株式会社 Fuel cell
JP4734858B2 (en) * 2004-06-28 2011-07-27 ソニー株式会社 Method for producing catalyst and method for producing fuel cell having catalyst
JP4930669B2 (en) * 2005-03-15 2012-05-16 株式会社豊田中央研究所 Gas purification material and method for producing the same
JP2007179963A (en) * 2005-12-28 2007-07-12 Kasatani:Kk Manufacturing method of catalyst for fuel cell, and method for carrying catalyst
JP5378233B2 (en) * 2006-12-27 2013-12-25 エバレデイ バツテリ カンパニー インコーポレーテツド Electrochemical cell with catalytic electrode and method for forming the electrode and cell
KR100845341B1 (en) * 2007-01-15 2008-07-10 한국과학기술원 Light guide panel manufacturing device and method thereof
JP4987633B2 (en) 2007-08-31 2012-07-25 株式会社東芝 Fine particle carrying method and fine particle carrying device
US20090090615A1 (en) * 2007-10-05 2009-04-09 Atomic Energy Council - Institute Of Nuclear Energy Research Apparatus and method for controlling the oxidation state of catalyst
JP4888470B2 (en) * 2007-11-08 2012-02-29 日産自動車株式会社 Method for producing noble metal-supported powder and exhaust gas purifying catalyst
US20110178245A1 (en) 2010-01-15 2011-07-21 Tredegar Film Products Corporation Elastic Blends of High Density Polyethylene Polymers with Olefinic Block Copolymers
US8735858B2 (en) * 2010-04-30 2014-05-27 Hewlett-Packard Development Company, L.P. Ionic devices with interacting species
AU2012304270A1 (en) * 2011-08-30 2013-05-09 Easy Stairs Pty Ltd A set of stairs
US8728390B2 (en) * 2012-04-04 2014-05-20 GM Global Technology Operations LLC Vibration machines for powder coating
JP6199145B2 (en) * 2013-09-30 2017-09-20 デクセリアルズ株式会社 Method for producing composite conductive particles
KR101595182B1 (en) * 2014-06-11 2016-02-17 안우영 Method for manufacturing the conductive polymer ball
JP2016186128A (en) * 2015-03-23 2016-10-27 デクセリアルズ株式会社 Electrically conductive particle manufacturing method
CN114267846A (en) * 2021-12-16 2022-04-01 浙江锋源氢能科技有限公司 Fuel cell catalyst, preparation method thereof and fuel cell
CN114843542B (en) * 2022-05-16 2024-01-02 上海交通大学内蒙古研究院 Preparation method of ceramic phase low-temperature nucleation nano-coating of metal polar plate of fuel cell

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382105A (en) * 1964-12-29 1968-05-07 Nasa Usa Ion-exchange membrane with platinum electrode assembly
DE2625880A1 (en) * 1975-06-10 1976-12-23 Atomic Energy Authority Uk CATALYSTS, METHOD OF MANUFACTURING AND USE
GB2008429B (en) 1977-11-23 1982-04-28 United Technologies Corp Platinum catalyst and method for making
EP0172280B1 (en) * 1983-03-14 1988-03-09 E.I. Du Pont De Nemours And Company Catalyst composition
JPH01184457A (en) * 1988-01-18 1989-07-24 Ngk Insulators Ltd Oxygen sensor element
US5061778A (en) * 1989-02-22 1991-10-29 Kawasaki Steel Corporation Resin composition for composite-type vibration-damping material, composite-type vibration-damping material using the resin composition and process for production of the vibration-damping material
JPH0536418A (en) 1991-03-13 1993-02-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell and manufacture of the same
DE4221011A1 (en) * 1992-06-26 1994-01-05 Basf Ag Shell catalysts
JP3113499B2 (en) 1994-05-31 2000-11-27 三洋電機株式会社 Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
JP3755020B2 (en) 1998-10-01 2006-03-15 独立行政法人物質・材料研究機構 Particle coating method and apparatus
JP3705065B2 (en) 1999-02-05 2005-10-12 日本電気株式会社 Formula processing system, formula processing method, and recording medium recording formula processing program
US6521381B1 (en) 1999-03-16 2003-02-18 General Motors Corporation Electrode and membrane-electrode assemblies for electrochemical cells
JP3455814B2 (en) 1999-09-22 2003-10-14 株式会社奈良機械製作所 Vibration fluidizer for powder
JP4810725B2 (en) 2000-09-27 2011-11-09 ソニー株式会社 GAS-DIFFUSIVE CATALYST ELECTRODE, ITS MANUFACTURING METHOD, AND ELECTROCHEMICAL DEVICE
CN1406399A (en) * 2000-12-28 2003-03-26 索尼公司 Gas diffusive-electrode, electroconductive ion conductive, their manufacturing method, and electrochemical device
JP4061575B2 (en) * 2001-06-01 2008-03-19 ソニー株式会社 Conductive catalyst particles and method for producing the same, gas diffusive catalyst electrode, and electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924336B2 (en) 2003-03-27 2011-04-12 Canon Kabushiki Kaisha Image pickup apparatus including a driving circuit to control a clamping switch so as to hold signals in holding capacitors

Also Published As

Publication number Publication date
KR100875499B1 (en) 2008-12-24
KR20040045398A (en) 2004-06-01
US20040259730A1 (en) 2004-12-23
CN1516620A (en) 2004-07-28
JP2003033668A (en) 2003-02-04
US7838457B2 (en) 2010-11-23
WO2002094438A1 (en) 2002-11-28
US20070167314A1 (en) 2007-07-19
US7294603B2 (en) 2007-11-13

Similar Documents

Publication Publication Date Title
JP4061573B2 (en) Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method
JP4061575B2 (en) Conductive catalyst particles and method for producing the same, gas diffusive catalyst electrode, and electrochemical device
JP4697378B2 (en) Gas diffusing electrode, method for producing the same, conductive ionic conductor, and electrochemical device
TWI276242B (en) Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
Bandapati et al. Platinum utilization in proton exchange membrane fuel cell and direct methanol fuel cell
KR100875946B1 (en) Gas-diffusing electrode bodies and manufacturing methods thereof, and electrochemical devices
JPWO2002027831A1 (en) Fuel cell and method of manufacturing the same
US20030013003A1 (en) Proton-conductive electrode, process for producing the same, and electrochemical device
JP4691794B2 (en) Method for manufacturing electrochemical device
JP2016091878A (en) Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
JP4810725B2 (en) GAS-DIFFUSIVE CATALYST ELECTRODE, ITS MANUFACTURING METHOD, AND ELECTROCHEMICAL DEVICE
JP2011175772A (en) Catalyst for polymer electrolyte fuel cell and method of manufacturing the same
US11349139B2 (en) Method for preparing catalyst layer, catalyst layer, and membrane-electrode assembly comprising same and fuel cell
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2010218721A (en) Evaluation method of catalyst layer of solid polymer fuel cell
JP2009009768A (en) Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells
JP2008100227A (en) Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
JP2006059618A (en) Polymer electrolyte fuel cell
JP2004321973A (en) Manufacture apparatus and vibration apparatus of conductive catalyst particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees