JP2009009768A - Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells - Google Patents

Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells Download PDF

Info

Publication number
JP2009009768A
JP2009009768A JP2007168465A JP2007168465A JP2009009768A JP 2009009768 A JP2009009768 A JP 2009009768A JP 2007168465 A JP2007168465 A JP 2007168465A JP 2007168465 A JP2007168465 A JP 2007168465A JP 2009009768 A JP2009009768 A JP 2009009768A
Authority
JP
Japan
Prior art keywords
layer
electrolyte membrane
catalyst layer
catalyst
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168465A
Other languages
Japanese (ja)
Inventor
Toru Ikeda
徹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007168465A priority Critical patent/JP2009009768A/en
Publication of JP2009009768A publication Critical patent/JP2009009768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an interface bonding capability between a catalyst layer and a water repellent layer with respect to an electrolyte membrane/membrane electrode assembly (MEA). <P>SOLUTION: A polymer electrolyte membrane 10 is sandwiched by catalyst layers 12, 16. Water-repellent layers 14 are formed on the surface of the catalyst layer 12, the surface coming in contact with the polymer electrolyte membrane 10, and on the surface of the opposite side thereof. Further, diffusion layers 18 are formed on the surface of the catalyst layer 16, the surface coming in contact with the electrolyte membrane 10 and on the surface on the opposite side thereof. The conductive powder that constitutes the water-repellent layers 14 is produced by means of a spray-dry method, while it is applied on the catalyst layer 12, which is subjected to thermo-compression bonding thereafter so as to form a water-repellent layer 14. The mean particle diameters of both the catalyst layer 12 and water-repellent layer 14 are set to 1 to 20 μm and 1 to 10 μm, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電解質膜/電極接合体の製造方法及び燃料電池に関し、特に触媒層と撥水層との界面の改良に関する。   The present invention relates to a method for producing an electrolyte membrane / electrode assembly and a fuel cell, and more particularly to improvement of the interface between a catalyst layer and a water repellent layer.

高分子電解質型燃料電池の電極において、化学反応を促進させるための触媒として白金等が用いられており、発電性能を維持しつつ白金等の使用量を減らして製造コストを下げるために、アセチレンブラック等の導電性炭素粒子の表示に担持する方法が提案されている。   In the electrode of the polymer electrolyte fuel cell, platinum or the like is used as a catalyst for promoting the chemical reaction, and acetylene black is used to reduce the production cost by reducing the amount of platinum etc. while maintaining the power generation performance. There has been proposed a method for supporting conductive carbon particles such as a display.

下記に示す特許文献1には、ケッチェンブラックECに塩化白金酸水溶液の溶液を噴霧しながら乾燥し、水素ガスを4%含む還元ガス雰囲気で還元させ、続いて塩化ルテニウム水溶液の溶液を噴霧しながら乾燥し、水素ガスを4%含む還元ガス雰囲気中で還元させることにより導電性炭素粒子の表面に白金粒子とルテニウム粒子をそれぞれ25重量%担持して燃料極側の触媒担持導電性炭素粒子とし、この表面に水素イオン伝導性高分子電解質を接合することが開示されている。この触媒体を窒素雰囲気中でエチレングリコールと混合してペースト状のインクを調製し、高分子電解質膜の片面にスクリーン印刷法により塗布する。触媒体の複次粒子の平均粒径は5μmとしている。そして、導電性カーボン粒子のカーボン不織布をフッ素樹脂含有の水性ディスパーションに含浸した後乾燥させ、カーボン不織布の一方の面に導電性カーボン粉末とPTFE微粉末を分散させた水溶液とを混合したインクを、スクリーン印刷法を用いて塗布することで撥水層を形成し、撥水層が触媒層に接するように熱圧着で接合することで電解質膜/電極接合体(MEA)を製造することが開示されている。   In Patent Document 1 shown below, Ketjen Black EC is dried while spraying a solution of an aqueous solution of chloroplatinic acid, reduced in a reducing gas atmosphere containing 4% of hydrogen gas, and subsequently sprayed with an aqueous solution of ruthenium chloride. And dried in a reducing gas atmosphere containing 4% hydrogen gas to carry 25% by weight of platinum particles and ruthenium particles on the surface of the conductive carbon particles to form catalyst-supported conductive carbon particles on the fuel electrode side. It is disclosed that a hydrogen ion conductive polymer electrolyte is bonded to this surface. The catalyst body is mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste-like ink, which is applied to one side of the polymer electrolyte membrane by a screen printing method. The average particle diameter of the secondary particles of the catalyst body is 5 μm. Then, a carbon nonwoven fabric of conductive carbon particles is impregnated with an aqueous dispersion containing a fluororesin and then dried, and an ink in which conductive carbon powder and an aqueous solution in which PTFE fine powder is dispersed is mixed on one surface of the carbon nonwoven fabric. It is disclosed that a water-repellent layer is formed by coating using a screen printing method, and an electrolyte membrane / electrode assembly (MEA) is manufactured by thermocompression bonding so that the water-repellent layer is in contact with the catalyst layer. Has been.

特開2003−242987号公報JP 2003-242987 A

上記のように、従来においては、電極の拡散層となるカーボン不織布の一面を撥水層とし、この撥水層を触媒層に当接させて熱圧着で接合しており、カーボン不織布と粉体である触媒粒子との接合になるので、その界面において隙間が生じてしまう問題があり、触媒層と撥水層との間に水が溜まってしまう、あるいは界面の接触抵抗が高くなってしまう問題があった。   As described above, conventionally, one surface of the carbon nonwoven fabric serving as the electrode diffusion layer is a water repellent layer, and the water repellent layer is brought into contact with the catalyst layer and bonded by thermocompression bonding. As a result, the gap between the catalyst particles and the water repellent layer is increased, or the contact resistance of the interface is increased. was there.

本発明の目的は、電解質膜/電極接合体において触媒層と撥水層との界面の接着性を向上させ、隙間を抑制し、これにより発電特性を向上させることにある。   An object of the present invention is to improve the adhesiveness at the interface between the catalyst layer and the water-repellent layer in the electrolyte membrane / electrode assembly, to suppress the gap, thereby improving the power generation characteristics.

本発明の電解質膜/電極接合体の製造方法では、電解質膜上に触媒層粉体を塗布する工程と、前記触媒層粉体上にカーボン樹脂混合粉体からなる導電性層粉体を塗布する工程と、塗布後に熱圧着する工程とを有することを特徴とする。   In the method for producing an electrolyte membrane / electrode assembly according to the present invention, a step of applying a catalyst layer powder on the electrolyte membrane, and applying a conductive layer powder made of a carbon resin mixed powder on the catalyst layer powder. It has the process and the process of thermocompression-bonding after application | coating.

また、本発明は、電解質膜と、触媒層とを有し、一対の前記触媒層で前記電解質膜を挟持する燃料電池であって、前記触媒層の前記電解質膜が接する側と反対側に導電性粒子層が塗布形成されることを特徴とする。本発明の1つの実施形態では、前記触媒層あるいは前記導電性粒子層のいずれか一方の平均粒径は1〜20μmであり、他方の平均粒径は1〜10μmである。   The present invention also provides a fuel cell having an electrolyte membrane and a catalyst layer, and sandwiching the electrolyte membrane between a pair of the catalyst layers, wherein the catalyst layer is electrically conductive on a side opposite to the side where the electrolyte membrane contacts. The conductive particle layer is formed by coating. In one embodiment of the present invention, the average particle diameter of either the catalyst layer or the conductive particle layer is 1 to 20 μm, and the other average particle diameter is 1 to 10 μm.

本発明によれば、触媒層に接して撥水層等の導電層粉体が塗布形成されるので、界面における両層の粒子径を制御し、界面における接着性を向上させ隙間を抑制することができる。また、界面における接着性を向上させることで、燃料電池としての発電性能を向上させることができる。   According to the present invention, conductive layer powder such as a water repellent layer is applied and formed in contact with the catalyst layer, so that the particle diameter of both layers at the interface is controlled, the adhesion at the interface is improved, and the gap is suppressed. Can do. Moreover, the power generation performance as a fuel cell can be improved by improving the adhesiveness in an interface.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本実施形態の電解質膜/電極接合体(MEA)の構成を示す。水素イオンを選択的に輸送する高分子電解質膜10のカソード面側(空気極側)及びアノード面側(燃料極側)に触媒層12、16がそれぞれ形成され、一対の触媒層12、16で高分子電解質膜10を挟持する。カソード側の触媒層12の上、すなわち触媒層12の2つの面のうち高分子電解質膜10に当接していない面に導電性層、より詳しくは撥水層14が形成される。また、アノード面側の触媒層16の上、すなわち触媒層16の2つの面のうち高分子電解質膜10に当接していない面に拡散層18が形成される。高分子電解質膜10、触媒層12、16、撥水層14、及び拡散層18で電解質膜/電極接合体(MEA)が構成される。   In FIG. 1, the structure of the electrolyte membrane / electrode assembly (MEA) of this embodiment is shown. Catalyst layers 12 and 16 are formed on the cathode surface side (air electrode side) and anode surface side (fuel electrode side) of the polymer electrolyte membrane 10 that selectively transports hydrogen ions, respectively. The polymer electrolyte membrane 10 is sandwiched. A conductive layer, more specifically, a water repellent layer 14 is formed on the cathode-side catalyst layer 12, that is, on the surface of the two surfaces of the catalyst layer 12 that is not in contact with the polymer electrolyte membrane 10. Further, a diffusion layer 18 is formed on the catalyst layer 16 on the anode surface side, that is, on the surface of the two surfaces of the catalyst layer 16 that is not in contact with the polymer electrolyte membrane 10. The polymer electrolyte membrane 10, the catalyst layers 12 and 16, the water repellent layer 14, and the diffusion layer 18 constitute an electrolyte membrane / electrode assembly (MEA).

本実施形態では、従来のようにカーボン不織布の一部を撥水処理して撥水層とし、この撥水層を触媒層12に当接させて熱圧着で接合するのではなく、撥水層14を構成する撥水層粉体を触媒層12の上に塗布形成し、その後に熱圧着して触媒層12上に撥水層14を定着させて製造する。これにより、触媒層12と撥水層14との界面における隙間を無くし、触媒層12と撥水層14との界面における水溜まりを抑制し、触媒層12と撥水層14との界面における接触抵抗を低減して発電特性を向上させる。   In the present embodiment, the water repellent layer is not formed by water repellent treatment of a part of the carbon non-woven fabric to form a water repellent layer, and the water repellent layer is brought into contact with the catalyst layer 12 and bonded by thermocompression bonding. The water-repellent layer powder constituting 14 is applied and formed on the catalyst layer 12 and then thermocompression bonded to fix the water-repellent layer 14 on the catalyst layer 12. This eliminates a gap at the interface between the catalyst layer 12 and the water repellent layer 14, suppresses water accumulation at the interface between the catalyst layer 12 and the water repellent layer 14, and contact resistance at the interface between the catalyst layer 12 and the water repellent layer 14. To improve power generation characteristics.

本実施形態では、撥水層粉体を触媒層12の上に塗布形成するので、触媒層12と撥水層14との界面が粒子界面(粒子同士の界面)となり、隙間を無くすとともに接着性を向上させることができる。本実施形態における触媒層粉体は、例えば白金ブラックや触媒担持カーボンであり、その平均粒径は1〜20μm程度、撥水層粉体の平均粒径は1〜10μm程度とすることができる。触媒層粉体の平均粒径を1〜10μmとし、撥水層粉体の平均粒径を1〜20μm程度としてもよい。触媒層粉体と撥水層粉体の平均粒径の比は一定の範囲内、例えば(撥水層粉体の平均粒径)/(触媒層粉体の平均粒径)が1/20〜20の範囲内にあるように設定してもよく、これにより界面の隙間を減少させ得る。   In this embodiment, since the water-repellent layer powder is applied and formed on the catalyst layer 12, the interface between the catalyst layer 12 and the water-repellent layer 14 becomes a particle interface (an interface between particles), eliminating gaps and adhesiveness. Can be improved. The catalyst layer powder in the present embodiment is, for example, platinum black or catalyst-supporting carbon, and the average particle diameter thereof can be about 1 to 20 μm, and the average particle diameter of the water repellent layer powder can be about 1 to 10 μm. The average particle size of the catalyst layer powder may be 1 to 10 μm, and the average particle size of the water repellent layer powder may be about 1 to 20 μm. The ratio of the average particle diameter of the catalyst layer powder to the water repellent layer powder is within a certain range, for example, (average particle diameter of water repellent layer powder) / (average particle diameter of catalyst layer powder) is 1/20. It may be set to be within the range of 20, which can reduce the interfacial gap.

本実施形態における触媒層粉体及び撥水層粉体は任意の方法で作製され得るが、例えばスプレードライ法により作製してもよい。スプレードライ法により、触媒層粉体及び撥水層粉体の平均粒径を比較的容易に制御することができる。   The catalyst layer powder and the water repellent layer powder in the present embodiment can be produced by any method, but may be produced by, for example, a spray drying method. The average particle size of the catalyst layer powder and the water repellent layer powder can be controlled relatively easily by spray drying.

また、本実施形態では、空気極であるカソード側の触媒層12上に撥水層14を形成し、燃料極であるアノード側の触媒層16上には従来と同様の拡散層18を形成しているが、アノード側の触媒層16上にも撥水層14と同様の方法により撥水層を形成してもよい。   In this embodiment, the water-repellent layer 14 is formed on the cathode-side catalyst layer 12 that is the air electrode, and the diffusion layer 18 similar to the conventional one is formed on the anode-side catalyst layer 16 that is the fuel electrode. However, a water repellent layer may be formed on the anode-side catalyst layer 16 by the same method as the water repellent layer 14.

<実施例1>
(1)触媒層粉体の作製
下記の組成に従い溶質・溶媒を混合し、各種ミルや超音波等により分散させた。作製されたスラリーをスプレードライ装置を用いて噴霧乾燥させ、触媒層粉体を作製した。
50wt%Pt/C 2.0(重量比)
電解質 1.0(重量比)
水 48.5(重量比)
エタノール 48.5(重量比)
<Example 1>
(1) Preparation of catalyst layer powder Solute and solvent were mixed according to the following composition and dispersed by various mills, ultrasonic waves, or the like. The produced slurry was spray-dried using a spray drying apparatus to produce catalyst layer powder.
50 wt% Pt / C 2.0 (weight ratio)
Electrolyte 1.0 (weight ratio)
Water 48.5 (weight ratio)
Ethanol 48.5 (weight ratio)

(2)撥水層粉体の作製
下記の組成に従い溶質・溶媒を混合し、各種ミルや超音波等により分散させた。作製されたスラリーをスプレードライ装置を用いて噴霧乾燥させ、撥水層14に用いるカーボン樹脂混合粉体を作製した。
アセチレンブラック 0.5(重量比)
PVDF 0.5(重量比)
NMP 99(重量比)
(2) Preparation of water repellent layer powder Solute and solvent were mixed according to the following composition and dispersed by various mills, ultrasonic waves, or the like. The produced slurry was spray-dried using a spray drying apparatus to produce a carbon resin mixed powder used for the water repellent layer 14.
Acetylene black 0.5 (weight ratio)
PVDF 0.5 (weight ratio)
NMP 99 (weight ratio)

(3)塗布
作製した触媒層粉体を高分子電解質膜10上に白金含有量が0.5mg/cmとなるようにカソード面側に塗布した。次に、作製した撥水層粉体を触媒層粉体上に3mg/cmとなるように塗布した。
(3) Application The produced catalyst layer powder was applied on the cathode surface side so that the platinum content was 0.5 mg / cm 2 on the polymer electrolyte membrane 10. Next, the produced water-repellent layer powder was applied onto the catalyst layer powder so as to be 3 mg / cm 2 .

(4)定着
触媒粉体上に撥水層粉体を塗布形成した後、140度、3Mpaの熱圧を4分間印加することで触媒層粉体及び撥水層粉体を定着させて高分子電解質膜10上に触媒層12、撥水層14を形成した。また、電解質膜のアノード面側に転写法にて白金含有量が0.2mg/cmとなるように触媒層16を形成した。
(4) Fixing After the water-repellent layer powder is applied and formed on the catalyst powder, the catalyst layer powder and the water-repellent layer powder are fixed by applying a heat pressure of 140 ° C. and 3 MPa for 4 minutes. A catalyst layer 12 and a water repellent layer 14 were formed on the electrolyte membrane 10. Further, the catalyst layer 16 was formed on the anode surface side of the electrolyte membrane by a transfer method so that the platinum content was 0.2 mg / cm 2 .

(5)拡散層の形成
アノード面側の触媒層の上に拡散層18を形成し、両極を多孔体、セパレータで挟持することで燃料電池セルを作製した。
(5) Formation of diffusion layer A diffusion layer 18 was formed on the catalyst layer on the anode surface side, and both electrodes were sandwiched between a porous body and a separator to produce a fuel cell.

<比較例1>
上記の実施例1において、カソード側の触媒層12に、実施例1で用いた触媒層粉体と同様の組成の触媒層転写ロールを用いて触媒層を形成し、燃料電池セルを作製した。
<Comparative Example 1>
In the above Example 1, a catalyst layer was formed on the catalyst layer 12 on the cathode side using a catalyst layer transfer roll having the same composition as the catalyst layer powder used in Example 1, and a fuel cell was produced.

図2Aに実施例1の断面電子顕微鏡写真を示し、図2Bに比較例1の断面電子顕微鏡写真を示す。両図において、電解質膜10、触媒層12、撥水層14の存在位置を示す。実施例1では、触媒層12及び撥水層14をともに塗布形成しており、両層界面における接着性が向上している。   FIG. 2A shows a cross-sectional electron micrograph of Example 1, and FIG. 2B shows a cross-sectional electron micrograph of Comparative Example 1. In both figures, the positions of the electrolyte membrane 10, the catalyst layer 12, and the water repellent layer 14 are shown. In Example 1, both the catalyst layer 12 and the water repellent layer 14 are formed by coating, and the adhesion at the interface between the two layers is improved.

図3に、実施例1及び比較例1で作製した燃料電池セルに対して、セル冷却水入口温度70度、加湿温度60度で発電を行った場合のセル電圧及び抵抗を示す。実施例1のセルは比較例1のセルに比べてセル電圧が高く、かつ、抵抗も小さくなっている。また、高電流密度においてもフラッディング(水分過多によるガス拡散阻害)を生じることなく発電していた。   FIG. 3 shows the cell voltage and resistance when power is generated at the cell cooling water inlet temperature of 70 degrees and the humidification temperature of 60 degrees for the fuel cells produced in Example 1 and Comparative Example 1. The cell of Example 1 has a higher cell voltage and lower resistance than the cell of Comparative Example 1. Moreover, even at high current density, power was generated without causing flooding (inhibition of gas diffusion due to excessive moisture).

以上により、実施例1のセルでは、触媒層12と撥水層14との界面の接着性が向上し、発電特性が向上することを確認できた。   As described above, in the cell of Example 1, it was confirmed that the adhesiveness at the interface between the catalyst layer 12 and the water repellent layer 14 was improved and the power generation characteristics were improved.

電解質膜/電極接合体(MEA)の構成図である。It is a block diagram of an electrolyte membrane / electrode assembly (MEA). 実施例の模式的断面図である。It is typical sectional drawing of an Example. 比較例の模式的断面図である。It is typical sectional drawing of a comparative example. 実施例及び比較例のセル電圧、抵抗を示すグラフ図である。It is a graph which shows the cell voltage and resistance of an Example and a comparative example.

符号の説明Explanation of symbols

10 高分子電解質膜、12 触媒層(カソード側)、14 撥水層、16 触媒層(アノード側)、18 拡散層、20 電解質膜/電極接合体。   10 polymer electrolyte membrane, 12 catalyst layer (cathode side), 14 water repellent layer, 16 catalyst layer (anode side), 18 diffusion layer, 20 electrolyte membrane / electrode assembly.

Claims (8)

電解質膜上に触媒層粉体を塗布する工程と、
前記触媒層粉体上に導電性層粉体を塗布する工程と、
塗布後に熱圧着する工程と、
を有することを特徴とする電解質膜/電極接合体の製造方法。
Applying a catalyst layer powder on the electrolyte membrane;
Applying a conductive layer powder on the catalyst layer powder;
A process of thermocompression bonding after application;
A method for producing an electrolyte membrane / electrode assembly, comprising:
請求項1記載の方法において、
前記触媒層粉体の平均粒径は1〜20μmであり、前記導電性層粉体の平均粒径は1〜10μmであることを特徴とする電解質膜/電極接合体の製造方法。
The method of claim 1, wherein
The method for producing an electrolyte membrane / electrode assembly, wherein the catalyst layer powder has an average particle size of 1 to 20 μm, and the conductive layer powder has an average particle size of 1 to 10 μm.
請求項1、2のいずれかに記載の方法において、
前記導電性層は撥水層であることを特徴とする電解質膜/電極接合体の製造方法。
The method according to claim 1,
The method for producing an electrolyte membrane / electrode assembly, wherein the conductive layer is a water repellent layer.
電解質膜と、
触媒層と、
を有し、一対の前記触媒層で前記電解質膜を挟持する燃料電池であって、
前記触媒層の前記電解質膜が接する側と反対側の層が導電性粒子層であることを特徴とする燃料電池。
An electrolyte membrane;
A catalyst layer;
A fuel cell in which the electrolyte membrane is sandwiched between a pair of the catalyst layers,
The fuel cell, wherein the layer on the opposite side of the catalyst layer to the side in contact with the electrolyte membrane is a conductive particle layer.
電解質膜と、
触媒層と、
を有し、一対の前記触媒層で前記電解質膜を挟持する燃料電池であって、
前記触媒層の前記電解質膜が接する側と反対側に導電性粒子層が配置され、
前記触媒層あるいは前記導電性粒子層のいずれか一方の平均粒径は1〜20μmであり、他方の平均粒径は1〜10μmであることを特徴とする燃料電池。
An electrolyte membrane;
A catalyst layer;
A fuel cell in which the electrolyte membrane is sandwiched between a pair of the catalyst layers,
A conductive particle layer is disposed on the side of the catalyst layer opposite to the side where the electrolyte membrane contacts,
One of the catalyst layer and the conductive particle layer has an average particle diameter of 1 to 20 μm, and the other has an average particle diameter of 1 to 10 μm.
請求項5記載の燃料電池において、
前記触媒層の平均粒径は1〜20μmであり、前記導電性粒子層の平均粒径は1〜10μmであることを特徴とする燃料電池。
The fuel cell according to claim 5, wherein
An average particle size of the catalyst layer is 1 to 20 μm, and an average particle size of the conductive particle layer is 1 to 10 μm.
請求項4〜6のいずれかに記載の燃料電池において、
前記導電性粒子層は撥水層であることを特徴とする燃料電池。
The fuel cell according to any one of claims 4 to 6,
The fuel cell, wherein the conductive particle layer is a water repellent layer.
請求項4〜7のいずれかに記載の燃料電池において、
前記触媒層を構成する粒子及び前記導電性粒子層を構成する粒子はスプレードライ法により作製されることを特徴とする燃料電池。
The fuel cell according to any one of claims 4 to 7,
The fuel cell, wherein the particles constituting the catalyst layer and the particles constituting the conductive particle layer are produced by a spray drying method.
JP2007168465A 2007-06-27 2007-06-27 Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells Pending JP2009009768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168465A JP2009009768A (en) 2007-06-27 2007-06-27 Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168465A JP2009009768A (en) 2007-06-27 2007-06-27 Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells

Publications (1)

Publication Number Publication Date
JP2009009768A true JP2009009768A (en) 2009-01-15

Family

ID=40324665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168465A Pending JP2009009768A (en) 2007-06-27 2007-06-27 Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells

Country Status (1)

Country Link
JP (1) JP2009009768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165525A (en) * 2010-02-10 2011-08-25 Noritake Co Ltd Method of manufacturing base material for gas diffusion electrode and powder-shaped material for forming base material for gas diffusion electrode used therefor
EP2922125A4 (en) * 2012-11-19 2015-12-30 Toyota Motor Co Ltd Method for manufacturing porous layer member, and method for manufacturing membrane-electrode-gas diffusion layer assembly containing porous layer member
JP2016195060A (en) * 2015-04-01 2016-11-17 三菱レイヨン株式会社 Gas diffusion layer and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165525A (en) * 2010-02-10 2011-08-25 Noritake Co Ltd Method of manufacturing base material for gas diffusion electrode and powder-shaped material for forming base material for gas diffusion electrode used therefor
EP2922125A4 (en) * 2012-11-19 2015-12-30 Toyota Motor Co Ltd Method for manufacturing porous layer member, and method for manufacturing membrane-electrode-gas diffusion layer assembly containing porous layer member
JP2016195060A (en) * 2015-04-01 2016-11-17 三菱レイヨン株式会社 Gas diffusion layer and production method thereof

Similar Documents

Publication Publication Date Title
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2007095582A (en) Manufacturing method of membrane electrode assembly
JP2005228755A (en) Polymer electrolyte fuel cell
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
KR20200129795A (en) Method for fabricating catalyst layer for high durability carbon-based fuel cell, catalyst layer for high durability carbon-based fuel cell fabricated by the method and membrane electrode assembly comprising the same
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP2010113949A (en) Membrane electrode assembly, and solid polymer fuel cell
JP2002063912A (en) Manufacturing method of polymer electrolyte fuel cell
KR20140082971A (en) Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink
JP2009009768A (en) Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells
JP2005174835A (en) Electrode
JP2014135229A (en) Catalyst ink for fuel cell
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
WO2014155929A1 (en) Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
JP2006079904A (en) Polymer electrolyte fuel cell and its manufacturing method
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
KR102390018B1 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising the same
JP5045021B2 (en) FUEL CELL ELECTRODE, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE FUEL CELL ELECTRODE
JP2002329501A (en) Gas diffusion electrode and polyelectrolyte fuel cell using this