JP4061487B2 - Transplant material for angiogenesis and method for producing the same - Google Patents

Transplant material for angiogenesis and method for producing the same Download PDF

Info

Publication number
JP4061487B2
JP4061487B2 JP2002382098A JP2002382098A JP4061487B2 JP 4061487 B2 JP4061487 B2 JP 4061487B2 JP 2002382098 A JP2002382098 A JP 2002382098A JP 2002382098 A JP2002382098 A JP 2002382098A JP 4061487 B2 JP4061487 B2 JP 4061487B2
Authority
JP
Japan
Prior art keywords
cells
cultured
bone marrow
various
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002382098A
Other languages
Japanese (ja)
Other versions
JP2004167202A (en
Inventor
学 赤羽
始 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002382098A priority Critical patent/JP4061487B2/en
Publication of JP2004167202A publication Critical patent/JP2004167202A/en
Application granted granted Critical
Publication of JP4061487B2 publication Critical patent/JP4061487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えばヒト、ペット、家畜等において、血管障害あるいは虚血性疾患等による血流不足部位の組織障害を改善する目的での移植材料及びその製造法に関するものである。これら移植材料は細胞あるいは細胞と種々生体材料との複合体である。
【0002】
【従来の技術】
従来、血管障害あるいは虚血性疾患等による血流不足部位の組織障害を改善する目的で、他の部位より採取された正常の血管移植が行われてきた。この為には、正常の血管を犠牲にするという欠点がある。あるいは、人工の血管を移植するという方法も取られてきている。しかし、この人工の血管には血栓を誘導し、せっかく移植した血管内の血液の流れが障害されうる欠点がある。また、人工血管そのものが破損する可能性があり、その場合重大な損傷を引き起こす。
【0003】
また、最近では血管障害あるいは虚血性疾患等による血流不足部位での組織障害を修復する目的で、血管新生を促進する遺伝子を移植する方法がとられることもある。例えば、森下竜一等による報告(Circulation 2002 26;105(12):1491−6)がある。しかし、この為には、遺伝子が活性を有する保証が必要である。また、その遺伝子が活性を有したとしても、その効率には個人差が認められることもあり、その効果は不確かである。
【0004】
さらに、血管障害あるいは虚血性疾患等による血流不足部位の組織障害を修復する目的で、この組織障害を有する個体(自己)の骨髄の有核細胞を採取して、その細胞を移植する方法もとられている。例えば、松原宏明等による報告(Lancet.2002,10;360:427−35)がある。しかし、採取された有核細胞中のどの細胞が血管新生に関与するかは不明である。すなわち、その効果は一定ではない。さらに、この目的の為には、多量の骨髄を採取する欠点があり、採取されるヒト、ペット、家畜に多大な障害を与えることとなる。
【0005】
また、血管障害あるいは虚血性疾患等による血流不足部位の組織障害を修復する目的で、血管拡張剤等の薬剤を全身投与することもあるが、当然この投与は目的とする組織以外にも影響を与えることとなり、時に無視できない薬剤の副作用を引き起こすことがある。
【0006】
【発明が解決しようとする課題】
このように、血管障害あるいは虚血性疾患等による血流不足部位の組織障害に対して、種々方法がとられてきたが、それぞれ移植血管の採取、効果が不確かな遺伝子の添加や多量の細胞の採取、あるいは全身に影響する薬剤が必要とされてきた。本発明は、このような従来技術の欠点を補うべく、細胞培養技術により新生血管を形成出来うる細胞を増殖させ、そして移植するという移植材料及びその製造方法を提供することにある。さらに、この培養細胞と種々の生体材料との複合体を作製して、容易に生体内へ移植可能とする移植材料及びその製造方法も提供することにある。
【0007】
【課題を解決するための手段】
上記の目的の為に、請求項1に記載の発明材料は、新鮮骨髄細胞を培養皿に添加して、培養皿に付着して増殖することを特徴とする細胞集団である。
【0008】
請求項2に記載の移植材料は、請求項1に記載の細胞を種々の生体材料と複合化したものである。その生体材料は高分子材料が含まれ、ポリエステル、ポリエチレン、ポリスチレン、ポリテトラフルオロエチレン、ポリウレタン、PTFE(フッ化エチレン)ポリウレタン、ポリビニルアルコール、ポリプロピレン、ポリカーボネート、MPC(2−メタクリロイルオキシエチルホスホリルコリン)ポリマー、ポリメタクリル酸メチル、メタクリル酸メチル、メタクリル酸エステル系ポリマー、シリコーン樹脂及び生体吸収性高分子から選ばれる少なくとも一種の材料から構成したものである。生体吸収性高分子としては、種々コラーゲン、ポリ乳酸やポリグリコール酸あるいはこれらの種々比率のポリ乳酸:ポリグリコール酸複合材料、キチン、キトサン等が含まれる。また、その他の生体材料としてハイドロキシアパタイトを含むリン酸カルシウム系セラミックス、チタン、チタン合金等の生体活性ならびに生体非活性材料から選ばれる少なくとも一種の材料から構成した材料も含まれうる。 さらに、これら高分子材料と金属ならびにセラミック材料のコンポジットでもよい。すなわち、請求項2に記載の移植材料は、以上の無機あるいは有機性材料もしくはこれらのコンポジット材料に請求項1に記載の細胞と複合化した移植材料である。
【0009】
請求項3に記載の培養細胞の製造方法は、まず生体から採取した新鮮骨髄細胞を培養皿に播種して接着性の細胞を増殖する。この培養細胞は赤血球、白血球等の血球系細胞およびその前駆細胞が除去された細胞集団である。また、その細胞集団を培養皿を覆うように増殖させた後、さらにトリプシンやディスパーゼ等により培養皿よりはがし、その一部の細胞を再度培養皿上で増殖させても良い。これらの細胞は生体内へ移植することにより、血管内皮細胞を含む血管組織構成細胞へ分化可能な未分化細胞集団である。さらに、この増殖された細胞を上記【0008】に記載の種々生体材料に混和することにより培養細胞と生体材料複合体を作製するものである。あるいは、この増殖された細胞を上記【0008】に記載の生体材料上でさらなる培養をおこない、培養細胞と生体材料複合体を作製するものである。
【0010】
【発明の実施の形態】
以下、発明の実施形態を詳細に説明する。
骨髄細胞にはさまざまの組織・臓器を構成する細胞、すなわち組織・臓器特異細胞へ分化しうる未分化な細胞が含まれている。例えば、新鮮骨髄の生体内への移植により骨あるいは軟骨組織が形成される。さらに、この新鮮骨髄から培養により細胞を増殖し、さらにその培養細胞の生体内への移植によっても骨あるいは軟骨組織が形成されうる。
【0011】
この骨・軟骨へ分化する細胞は間葉系幹細胞と呼ばれる、最近ではこの間葉系幹細胞の生体への移植により、骨・軟骨のみならず、肝臓、心筋、神経細胞への分化が見られることが報告されている。この間葉系幹細胞を得るために、新鮮骨髄の培養がおこなわれる。この培養の前処理として、新鮮骨髄細胞に含まれる血球系細胞等を除去するために、フィコール等を用いた比重遠心や、種々抗体の付着したビーズを用いての分離等がおこなわれることがある。あるいは、新鮮細胞を種々のフィルター等の濾過器を用いて血球系細胞を除去する事もある。
【0012】
請求項1に記載の移植材料としての培養細胞は、上記【0011】に書かれているような前処理をおこなう必要がなく、新鮮細胞を培養皿にそのまま添加して培養することにより得られる。あるいは、生理的食塩水や血清に含まれる種々イオンが生理的濃度に含まれた緩衝液に新鮮骨髄を混和して、遠心後赤血球が多く含まれる沈殿層をのぞいた上層の有核細胞画分を培養皿に添加してもよい。これらの場合、新鮮細胞と混和される液体成分には少量のヘパリン等の抗凝固剤が入っているのが望ましい。
【0013】
請求項1に記載の移植材料としての培養細胞は、上記【0011】に書かれているような前処理をおこなう必要はないが、もちろんこれに書かれている抗体の付着したビーズや比重遠心法あるいは種々のフィルター等を用いた後、培養をおこなっても良い。
【0014】
上記【0012】に記載の新鮮骨髄は、骨髄針を用いて腸骨等の骨内に刺入し、陰圧吸引をかけることにより得られる。通常、数ml〜20mlを採取する。場合によっては、骨を削る必要のある手術操作時に直接骨内の骨髄細胞を採取する場合もある。通常、血管障害あるいは虚血性疾患等による組織障害を有するヒト、ペット、家畜等より新鮮骨髄を採取して、培養操作後同一個体に移植される。しかしながら、免疫抑制剤の投与をおこない、他の個体(同種)の骨髄細胞を用いる場合もある。
【0015】
これら新鮮骨髄を上記【0012】に書かれているように、培養皿に添加する。培養皿に種々の培地を入れ、約10日から20日ほど5〜7%の炭酸ガスを含む35〜38度の保温器の中で培養をおこなう。培地の交換は2〜3日の間隔でおこなう。この期間中に、培地を交換することにより、培地に浮遊している血球系細胞は除去され、培養皿に付着している細胞が増殖する事になる。
【0016】
上記で用いられる培地は、動物細胞培養によく使用される種々液体培地が使用可能である。この培地には自己血清あるいは牛、馬胎児由来血清が約15%〜20%添加される。あるいは、完全合成培地を用いることも可能であり、その合成培地に牛あるいは馬胎児血清を添加しても良い。このように、種々の培地に動物由来の血清を通常添加するが、ヒト血清を用いることも可能である。この場合、血清濃度は数パーセントから20%の濃度を用いる。
【0017】
上記のように、この培養には培地と血清を用いるが、さらに培養に於ける細胞増殖効率を高めるために、塩基性線維芽細胞増殖因子(b−FGF)、血小板由来増殖因子(PDGF)、肝細胞増殖因子(HGF)、上皮細胞増殖因子(EGF)、インシュリン様成長因子(IGF)等種々のサイトカインや増殖因子を添加してもよい。さらに、培養における細菌や真菌のコンタミネーションを防ぐために、種々の抗生物質や抗真菌剤を混和してもよい。
【0018】
増殖された細胞をトリプシンやディスパーゼ等の酵素を用いて培養皿より回収する。この細胞の一部をさらに他の培養皿に添加して、付着細胞をさらに増殖させる。この操作を数回繰り返して、目的とする細胞数が得られるまで培養を継続して、付着細胞を増殖させる。
【0019】
上記により得られた付着細胞を、生理的食塩水や血清に含まれる種々イオンが生理的濃度に含まれた緩衝液に混和して、血管障害あるいは虚血性疾患等による組織障害部位へ注射器等を用いて注入する。注入される部位により、1個所への注入総量が決定されるが、通常数十マイクロから数百マイクロリットルを用いる。また、組織障害程度により決定されるが、注入個所数は数個所から数百個所に及び、細胞濃度は1x10細胞/ミリリッター(cells/ml)〜1x10細胞/ミリリッター(cells/ml)の範囲を用いる。
【0020】
上記に書かれているように、培養付着細胞をそのまま注入してもよいが、効率良く生体内への導入効率を高めるために、種々の生体材料上あるいは生体材料内でこの培養細胞をさらに培養してもよい。これにより、生体材料にこの細胞をあらかじめ生着させうる。そして、この培養細胞を含む生体材料を体内へ移植する。
【0021】
上記【0020】に書かれている製造方法は培養付着細胞を用いて、さらに生体材料上あるいは生体材料内での培養をおこなう方法であるが、【0018】によって得られた付着細胞をトリプシンやディスパーゼ等の酵素を用いて培養皿より回収して、そのまま種々の生体材料に混和した状態で生体内に移植してもよい。
【0022】
上記【0020】〜【0021】に用いられるその生体材料には高分子材料が含まれ、ポリエステル、ポリエチレン、ポリスチレン、ポリテトラフルオロエチレン、ポリウレタン、PTFE(フッ化エチレン)ポリウレタン、ポリビニルアルコール、ポリプロピレン、ポリカーボネート、MPC(2−メタクリロイルオキシエチルホスホリルコリン)ポリマー、ポリメタクリル酸メチル、メタクリル酸メチル、メタクリル酸エステル系ポリマー、シリコーン樹脂及び生体吸収性高分子から選ばれる少なくとも一種の材料から構成したものである。生体吸収性高分子としては、種々コラーゲン、ポリ乳酸やポリグリコール酸あるいはこれらの種々比率のポリ乳酸:ポリグリコール酸複合材料、キチン、キトサン等が含まれる。また、その他の生体材料としてハイドロキシアパタイトを含むリン酸カルシウム系セラミックス、チタン、チタン合金等の生体活性ならびに生体非活性材料から選ばれる少なくとも一種の材料から構成した材料も含まれうる。 さらに、これら高分子材料と金属ならびにセラミック材料のコンポジットでもよい。すなわち、これら生体材料は以上の無機あるいは有機性材料もしくはこれらのコンポジット材料である
【0023】
請求項1および請求項2に記載の移植材料はヒト、ペット、家畜等における血管障害あるいは虚血性疾患等による血流不足部位に用いられるが、その部位は心筋梗塞やその他の原因による心筋損傷部位、四肢血行障害部位、たとえばバージャー病や動脈硬化病変による末梢循環不全部位である。さらに、これらの病変にかぎることなく、種々の原因による血管障害あるいは虚血性疾患部位にもこれら移植材料は用いられうる。
【0024】
請求項1に記載の移植材料の生体内への移植においては、培養細胞が液体中あるいは高分子のゲル状態中に存在するとき、あるいは請求項2に記載の移植材料の体積が小さく、液状あるいはゲル内に分散しえて、針を通過出来るときには、注射器等をもちいての注入方法が用いられる。この場合、これら移植材料は直視下に血管障害あるいは虚血性疾患等による組織障害部位へ注入するが、カテーテル等を用いて遠隔操作により目的の部位に注入しても良い。
【0025】
上記の目的に用いられる高分子としては、ポリ乳酸、ポリグリコール酸あるいはこれらの種々比率のポリ乳酸:ポリグリコール酸複合材料、キチンキトサン重合体、種々コラーゲン、高分子ポリビニルアルコール(PVA)ポリエチレングリコール、デキストラン、ポリデプシペプチド、ポリアミノ酸、ヒアルロン酸あるいはこれらから選ばれる少なくとも一種の材料から構成した材料も含まれうる。これらの高分子に培養付着細胞をそのまま混和あるいは、その高分子内でさらに培養をおこなっても良い。また、これらの高分子をスポンジもしくは織物や不織布にして、培養付着細胞との複合化をおこなう、あるいはこれらスポンジもしくは織物や不織布内でのさらなる培養をおこなってもよい。
【0026】
請求項2に記載の移植材料が注射針等の細孔を通過できうる状態においては、注射器等の注入器を用いて血管障害あるいは虚血性疾患等による組織障害部位に注入される。しかし、この方法が不可な場合には、これら移植材料を障害部位に張り付ける、あるいは直接縫合する。
【0027】
請求項2に記載の移植材料の生体への移植の一形態として、人工血管に用いられる生体材料と請求項1に記載の培養付着細胞との複合体を製造し、その複合体を血管代替移植材料としても用いられる。この血管の代替移植材料は材料自身に含まれている細胞が内皮細胞へ分化可能であり、物理的な意味での人工血管としての役割のみならず、血管内面が早期に内皮細胞で被われることとなり、抗血栓性を有し、血流再開後長期にわたり血管としての役割を果たす。
【0028】
上記の目的の血管代替移植材料製造には、請求項1に記載の培養付着細胞を採取して人工血管に用いられる生体材料と混和して、人工血管を作製する。あるいは、培養付着細胞をすでに生体材料で作製された人工血管の上でさらなる培養をおこなっても良い。このような、人工血管と培養細胞の複合体の製造は【0020】、【0021】に記入している方法に準拠するものである。
【0029】
上記の目的の血管代替移植材料としては、ポリエステル繊維やPTFE(フッ化エチレン)ポリウレタン、ポリラクチド、ポリプロピレン、MPC(2−メタクリロイルオキシエチルホスホリルコリン)ポリマー、さらに生体高分子であるコラーゲンや生体吸収性のポリ乳酸やポリグリコール酸あるいはこれらの種々比率のポリ乳酸:ポリグリコール酸複合材料が用いられる。
【0030】
請求項1、請求項2に記載の培養細胞は、骨髄細胞を用いて培養皿に付着する細胞を【0014】〜【0018】に書かれている方法により増殖させたものであり、間葉系幹細胞を含む種々細胞よりなる細胞集団である。この細胞集団には、この間葉系細胞をはじめとする種々の未分化な細胞がふくまれ、これらが生体内において内皮細胞を含む血管構成細胞へ分化する。このように、用いられる細胞は未分化な細胞集団であるが、培養における一定期間において、血管内皮増殖因子(VEGF)、塩基性線維芽細胞増殖因子(b−FGF)、血小板由来増殖因子(PDGF)、肝細胞増殖因子(HGF)、上皮細胞増殖因子(EGF)、アドレノメデュリン(Adrenomedullin)等の血管誘導因子を加えて、未分化細胞から血管構成細胞への誘導をおこない、培養条件下に血管構成細胞への分化誘導がかかった細胞集団を得て、移植材料とすることも可能である。この場合、分化誘導をおこなった培養細胞集団をそのまま移植してもよいが、上記に書かれているように種々の生体材料との複合化をおこない、この複合体を移植材料として用いることも可能である。
【0031】
【発明の効果】
上記実施形態によって発揮される効果について、以下に記載する。
血管障害あるいは虚血性疾患等による組織障害部位に移植された培養付着細胞は、生体内において血管内皮細胞等の血管構成細胞に分化可能であり、その組織障害部位において新生血管を形成しうる。この新生血管により血流が増加し組織障害部位に酸素ならびに種々の栄養素が供給されることとなり治癒機転がおこる。
【0032】
上記に書かれている効果は移植された培養細胞そのものが血管構成細胞になりうるのであり、薬物や肝細胞増殖因子(HGF)等の遺伝子を用いての方法のように、これら薬物や遺伝子が細胞に働きかけて間接的に作用する場合と異なり、直接の作用の為その効果は強力である。さらに、この移植された培養細胞は種々のサイトカインや増殖因子を産生する事が可能であり、これらの因子によっても血管再生が促進される。
【0033】
培養されていない骨髄細胞そのものを移植することにより血管再生をおこなう方法も報告されているが、この場合数百mlの新鮮骨髄を採取する必要があり、採取される側の負担は非常に大きく、疾患を有する個人においてはこの採取に耐えられない場合が多い。また、この方法は効果が不確かである。この点において、今回の発明による方法では、培養操作により細胞が増殖出来、採取される新鮮骨髄は数mlでも可能である。このように、採取される側の負担は最小限度である。さらに、培養操作により血球系細胞が除去され、その培養により得られる細胞集団は血管構成細胞へ分化可能な間葉系幹細胞を含む未分化細胞集団であり、この細胞集団が生体内で血管新生をおこなう事が可能である。
【0034】
本発明により用いる細胞は骨髄由来付着性細胞であり、この細胞の中には間葉系幹細胞が含まれる。この幹細胞には心筋細胞や筋細胞へ分化しうる細胞が存在することが報告されている。すなわち、この付着性細胞を用いることにより、血管のみならず心筋や筋肉も再生されうる。 すなわち、心臓へのこの付着性細胞の移植により血管新生のみならず心筋も再生される可能性がある。さらに、四肢における付着性細胞の移植においては、骨格筋も再生されうる。すなわち、請求項1および請求項2に記載の移植材料の利点は単に血管新生の効果のみならず、細胞を移植された周囲組織の再生も可能にする事にある。
【0035】
以上に述べたように、本発明は移植された細胞が、生体において血管構成細胞へ分化する事を利用している。この場合、生体内において移植細胞が分化する一定の期間を必要とするが。その期間を短縮する必要が生じることがある。また、移植される細胞全体のなかの血管構成細胞へ分化する細胞の割合を高める必要が生じる場合もある。これらの場合には、上記【0030】にかかれた方法を用い種々の因子を添加して、血管内皮細胞およびその前駆細胞をあらかじめ増殖する事も可能で、さらにこれらの細胞も移植可能である。この方法により、生体内において早期の血管再生が期待でき血管再生の効率が非常に高まる。
【0036】
【実施例】
以下、上記実施形態を具体化した実施例及び比較例について説明する。
(実施例1:ラット骨髄細胞の培養ならびに移植実験)
7週齢フィッシャー系ラットの一つの大腿骨より骨髄細胞を採取して、その新鮮細胞を15%牛胎児血清(FBS)を含むα−MEM(最小必須培養液)に添加して、インキュベータ(37度,5%炭酸ガス)内で約10日間培養をおこなった。培地は一週間に三度交換した。この交換時において、血球系細胞を含む浮遊系の細胞は除去され、培養皿に付着する付着性細胞が増殖する。約10日間で培養皿を覆い尽くすように細胞は増殖する(初期培養による培養付着細胞の増殖)。
【0037】
初期培養後、0.01%トリプシン溶液で処理することにより、75cm2の培養皿から5〜10x10個の培養付着細胞が採取できる。この内の5x10個をさらに2次培養をおこなうことにより約1週間で5〜10x10個に増殖する。同様により、3次培養をおこなうことにより、さらに増殖可能であった。この2次培養時にB−ガラクトシダーゼ(lacZ)遺伝子を挿入したレトロウイルスを添加して、培養細胞に外来性のlacZ遺伝子を導入した。24時間間隔で7回のレトロウイルスを添加すると約80%の細胞にこの遺伝子が導入可能であった。上記の2次および3次培養における増殖は通常の培養皿上のみならず、種々の高分子やセラミック上でも可能であった。高分子の例として、たとえばポリ乳酸やコラーゲンを使用し、セラミックとしてハイドロキシアパタイト、燐酸三カルシウム、アルミナセラミック等を使用した。
【0038】
ガラクトシダーゼ(lacZ)遺伝子が導入された培養付着細胞を1x10細胞/ミリリッター(cells/ml)の細胞濃度に調整して多孔体のハイドロキシアパタイトセラミックと混和した。このセラミックと細胞の複合体を同系の7週齢フィッシャー系ラットの背部皮下に移植した。移植後4週でセラミックを摘出した。摘出したセラミックの組織切片を作製すると共に、lacZ遺伝子発現産物を検定するために、X−gal(5−bromo−4−chloro −3−indolyl−B−galactosidase)染色をおこなった。
【0039】
組織切片の結果は、多くのセラミック気孔内に新生の骨形成を示し、培養付着細胞には間葉系細胞が存在することが示された。また、セラミック気孔内に多くの新生血管を認めた。さらに、X−gal染色をおこなったところ、新生骨内の細胞(骨細胞)や周囲の細胞(骨芽細胞)のみならず、新生血管自体に染色(黒色)がみられた。特に、この新生血管の内皮細胞に強く染色がみられ、新生血管が移植された培養付着細胞由来であることを確認できた(図1参照)。
【0040】
上記の実験では1x10細胞/ミリリッター(cells/ml)という高濃度の細胞とセラミックとの複合体の移植であったが、これ以下の濃度、例えば1x10細胞/ミリリッター(cells/ml)とセラミックの複合体の移植では、骨形成は見られなかった。しかし、セラミック気孔内には多数の新生血管の形成がみられた。
【0041】
(比較例1)
比較例として、細胞を含まないセラミックのみを7週齢フィッシャー系ラットの背部皮下に移植した。移植後4週でセラミックを摘出した。摘出したセラミックの組織切片を観察すると、骨形成は全くみられなかった。さらに、付着細胞と複合化したセラミックに比しセラミック気孔内の新生血管の数は少なかった。
【0042】
(実施例2:種々動物骨髄細胞の培養、移植実験)
以上のように、付着細胞は新鮮ラット骨髄の培養により得られる。他の動物として、ウサギ、マウス、犬でも同様の培養付着細胞が骨髄より得られた。また、これらの培養付着細胞と多孔体ハイドロキシアパタイト等のセラミックとの複合体を移植して、移植後4週で摘出して組織観察をおこなうと、新生骨形成がセラミック気孔内にみられた。また、多数の新生血管がセラミック気孔内にみられた。
【0043】
(比較例2:セラミックの種々動物への移植実験)
細胞を含まない、セラミック単独の移植をウサギ、マウス、犬へおこない、移植後4週で摘出した。摘出されたセラミックには骨形成は全くみられなかった。また、上記の付着細胞とセラミックの複合体に比し、新生血管の数は少なかった。
【0044】
(実施例3:ヒト骨髄細胞の培養実験)
以上のように、種々の動物を用いて培養付着細胞が得られるが、数例のヒト新鮮骨髄細胞を用いて付着性細胞の増殖実験をおこなった。骨髄を腸骨より3ml採取してヘパリンを添加した3mlの生理的食塩水に混和した。その骨髄を培養皿に移して上記【0012】、【0015】【0016】に書かれたのと同様の培養をおこなった。図2に見られるように、数日で血球系細胞は除去され、付着性の細胞が増殖し、約10日で培養皿をおおいつくすように増殖した。このように、ヒト細胞でも付着性の細胞が骨髄より増殖可能であった。また、この増殖は70を超えるヒト骨髄でも可能であり、高齢者でも付着細胞は増殖可能であった。以上の方法においては、新鮮骨髄を生理的食塩水で混和して、そのまま培養に用いて付着性細胞は得られるが、新鮮骨髄を生理的食塩水で混和後、軽く遠心して沈殿する赤血球層をのぞいた、上層を培養しても付着細胞は増殖可能であった。
【0045】
(比較例3:ヒト末梢血の培養実験)
上記実施例3と同様の方法を用いて、新鮮骨髄3mlのかわりに、3mlのヒト末梢血を用いて培養をおこなったが、付着性の細胞の増殖はみられなかった。
【図面の簡単な説明】
【図1】LacZ遺伝子導入ラット付着性細胞とセラミック複合体の皮下移植4週の顕微鏡写真。新生骨内の骨細胞(1)、新生骨上の骨芽細胞(2)に遺伝子が導入されている。また、新生血管の内皮細胞(3)にも遺伝子導入がされているのが判る。遺伝子導入された細胞は黒色を示す。すなわち、新生血管が移植された培養付着細胞由来であることがわかる。
【図2】ヒト新鮮骨髄細胞の培養皿への移植の顕微鏡写真。約10日で付着細胞が培養皿を被うように増殖する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transplant material and a method for producing the same for the purpose of improving tissue damage at a site of insufficient blood flow due to vascular injury or ischemic disease in humans, pets, livestock and the like. These transplant materials are cells or a complex of cells and various biomaterials.
[0002]
[Prior art]
Conventionally, normal vascular transplants collected from other sites have been performed for the purpose of improving tissue damage at sites of insufficient blood flow due to vascular disorders or ischemic diseases. This has the disadvantage of sacrificing normal blood vessels. Alternatively, a method of transplanting an artificial blood vessel has been taken. However, this artificial blood vessel has a drawback that it induces a thrombus and the blood flow in the transplanted blood vessel can be disturbed. In addition, the artificial blood vessel itself may be broken, which causes serious damage.
[0003]
Recently, a method of transplanting a gene that promotes angiogenesis is sometimes used for the purpose of repairing a tissue disorder at a site of insufficient blood flow due to a vascular disorder or an ischemic disease. For example, there is a report by Ryuichi Morishita et al. (Circulation 2002 26; 105 (12): 1491-6). However, this requires a guarantee that the gene is active. Even if the gene has activity, the efficiency may vary from individual to individual, and the effect is uncertain.
[0004]
Furthermore, for the purpose of repairing the tissue damage at the site of insufficient blood flow due to vascular damage or ischemic disease, a method of collecting nucleated cells of bone marrow of an individual (self) having this tissue damage and transplanting the cells is also available. It has been taken. For example, there is a report (Lancet. 2002, 10; 360: 427-35) by Hiroaki Matsubara et al. However, it is unclear which cells in the collected nucleated cells are involved in angiogenesis. That is, the effect is not constant. Further, for this purpose, there is a drawback of collecting a large amount of bone marrow, which causes a great obstacle to collected humans, pets and livestock.
[0005]
In addition, a drug such as a vasodilator may be administered systemically for the purpose of repairing a tissue disorder at a site of insufficient blood flow due to a vascular disorder or ischemic disease. Of course, this administration may affect other tissues than the target tissue. And sometimes cause side effects of drugs that cannot be ignored.
[0006]
[Problems to be solved by the invention]
As described above, various methods have been taken for tissue damage at a site of insufficient blood flow due to vascular disorders or ischemic diseases. Drugs that affect collection or affect the whole body have been required. The present invention is to provide a transplant material and a method for producing the same, in which cells capable of forming new blood vessels are proliferated and transplanted by a cell culture technique in order to compensate for the drawbacks of the conventional technology. Furthermore, another object of the present invention is to provide a transplant material that can be easily transplanted into a living body by producing a complex of the cultured cells and various biomaterials, and a method for producing the same.
[0007]
[Means for Solving the Problems]
For the above purpose, the inventive material according to claim 1 is a cell population characterized in that fresh bone marrow cells are added to a culture dish and adhere to the culture dish to proliferate.
[0008]
The transplant material according to claim 2 is a composite of the cell according to claim 1 with various biomaterials. The biomaterial includes polymer materials such as polyester, polyethylene, polystyrene, polytetrafluoroethylene, polyurethane, PTFE (fluorinated ethylene) polyurethane, polyvinyl alcohol, polypropylene, polycarbonate, MPC (2-methacryloyloxyethyl phosphorylcholine) polymer, It is composed of at least one material selected from polymethyl methacrylate, methyl methacrylate, methacrylic ester polymer, silicone resin and bioabsorbable polymer. Examples of the bioabsorbable polymer include various collagens, polylactic acid, polyglycolic acid, or polylactic acid: polyglycolic acid composite materials in various ratios thereof, chitin, chitosan, and the like. In addition, as other biomaterials, materials composed of at least one material selected from bioactive and bioinactive materials such as calcium phosphate-based ceramics containing hydroxyapatite, titanium, and titanium alloys can also be included. Furthermore, a composite of these polymer material, metal and ceramic material may be used. That is, the transplant material according to claim 2 is a transplant material in which the cells according to claim 1 are combined with the above inorganic or organic material or a composite material thereof.
[0009]
In the method for producing cultured cells according to claim 3, first, fresh bone marrow cells collected from a living body are seeded in a culture dish to proliferate adherent cells. This cultured cell is a cell population from which blood cells such as erythrocytes and leukocytes and precursor cells thereof have been removed. Further, after the cell population is grown so as to cover the culture dish, it may be further peeled off from the culture dish with trypsin, dispase or the like, and some of the cells may be grown again on the culture dish. These cells are an undifferentiated cell population that can be differentiated into vascular tissue-constituting cells including vascular endothelial cells by being transplanted in vivo. Furthermore, the cultured cells and the biomaterial complex are prepared by mixing the proliferated cells with the various biomaterials described above. Alternatively, the grown cells are further cultured on the biomaterial described in the above [0008] to produce a complex of the cultured cells and the biomaterial.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the invention will be described in detail.
Bone marrow cells include cells constituting various tissues / organs, that is, undifferentiated cells that can differentiate into tissue / organ-specific cells. For example, bone or cartilage tissue is formed by transplanting fresh bone marrow into a living body. Furthermore, cells can be proliferated by culturing from the fresh bone marrow, and bone or cartilage tissue can also be formed by transplanting the cultured cells into the living body.
[0011]
These cells that differentiate into bone and cartilage are called mesenchymal stem cells. Recently, transplantation of mesenchymal stem cells into the living body can cause differentiation into not only bone and cartilage but also liver, myocardium, and nerve cells. It has been reported. To obtain these mesenchymal stem cells, fresh bone marrow is cultured. As a pretreatment for this culture, specific gravity centrifugation using Ficoll or the like, separation using beads to which various antibodies are attached, etc. may be carried out in order to remove blood cells contained in fresh bone marrow cells. . Alternatively, fresh cells may be removed from blood cells using a filter such as various filters.
[0012]
The cultured cells as the transplant material according to claim 1 do not need to be pretreated as described in the above [0011], and can be obtained by adding fresh cells as they are to the culture dish and culturing. Alternatively, the nucleated cell fraction in the upper layer excluding the sediment layer containing a large amount of red blood cells after centrifugation by mixing fresh bone marrow with a buffer solution containing physiological ions and various ions contained in physiological saline. May be added to the culture dish. In these cases, it is desirable that the liquid component mixed with the fresh cells contains a small amount of an anticoagulant such as heparin.
[0013]
The cultured cells as the transplant material according to claim 1 do not need to be pretreated as described in the above [0011]. Of course, the antibody-adhered beads described in this and the specific gravity centrifugation method are used. Or after using various filters etc., you may culture | cultivate.
[0014]
The fresh bone marrow described in the above [ii] is obtained by inserting into a bone such as the iliac using a bone marrow needle and applying negative pressure suction. Usually, several to 20 ml is collected. In some cases, bone marrow cells in the bone are collected directly during a surgical operation that requires the bone to be shaved. Usually, fresh bone marrow is collected from humans, pets, livestock or the like who have tissue damage due to vascular injury or ischemic disease and transplanted to the same individual after culturing operation. However, administration of an immunosuppressive agent may be used to use bone marrow cells of other individuals (same species).
[0015]
Add these fresh bone marrow to the culture dish as described above. Various culture media are put in a culture dish and cultured in a 35 to 38 degree incubator containing 5 to 7% carbon dioxide for about 10 to 20 days. The medium is changed every 2 to 3 days. During this period, by changing the medium, blood cells floating in the medium are removed, and the cells attached to the culture dish grow.
[0016]
As the medium used above, various liquid media often used for animal cell culture can be used. This medium is supplemented with about 15% to 20% autologous serum or bovine or equine fetal serum. Alternatively, a complete synthetic medium can be used, and bovine or fetal bovine serum may be added to the synthetic medium. Thus, animal-derived serum is usually added to various media, but human serum can also be used. In this case, the serum concentration is several percent to 20%.
[0017]
As described above, medium and serum are used for this culture. In order to further increase the cell growth efficiency in the culture, basic fibroblast growth factor (b-FGF), platelet-derived growth factor (PDGF), Various cytokines and growth factors such as hepatocyte growth factor (HGF), epidermal growth factor (EGF), and insulin-like growth factor (IGF) may be added. Furthermore, various antibiotics and antifungal agents may be mixed in order to prevent bacterial and fungal contamination in the culture.
[0018]
Proliferated cells are recovered from the culture dish using enzymes such as trypsin and dispase. A portion of this cell is further added to another culture dish to further grow the adherent cells. This operation is repeated several times, and the culture is continued until the desired number of cells is obtained to grow the adherent cells.
[0019]
Adherent cells obtained as described above are mixed with a physiological saline solution or a buffer containing various ions contained in serum at a physiological concentration, and a syringe or the like is inserted into a tissue damage site due to vascular injury or ischemic disease. Use to inject. The total amount to be injected into one place is determined depending on the site to be injected, and usually several tens to several hundreds of microliters are used. In addition, although determined by the degree of tissue damage, the number of injection sites ranges from several to several hundreds, and the cell concentration is 1 × 10 6. 5 Cells / milliliter (cells / ml) to 1 × 10 7 A range of cells / milliliter (cells / ml) is used.
[0020]
As described above, cultured adherent cells may be injected as they are, but in order to efficiently increase the introduction efficiency into the living body, the cultured cells are further cultured on or in various biological materials. May be. Thereby, the cells can be engrafted in advance on the biomaterial. Then, the biomaterial containing the cultured cells is transplanted into the body.
[0021]
The production method described in the above-mentioned [9] is a method in which cultured adherent cells are used and further cultured on or in a biomaterial. The adherent cells obtained by [0018] are treated with trypsin or dispase. It may be recovered from a culture dish using an enzyme such as the above and transplanted into a living body in a state of being mixed with various biological materials as it is.
[0022]
The biomaterials used in the above-mentioned [0020] to [0021] include polymer materials such as polyester, polyethylene, polystyrene, polytetrafluoroethylene, polyurethane, PTFE (fluorinated ethylene) polyurethane, polyvinyl alcohol, polypropylene and polycarbonate. , MPC (2-methacryloyloxyethyl phosphorylcholine) polymer, polymethyl methacrylate, methyl methacrylate, methacrylic ester polymer, silicone resin and bioabsorbable polymer. Examples of the bioabsorbable polymer include various collagens, polylactic acid, polyglycolic acid, or polylactic acid: polyglycolic acid composite materials in various ratios thereof, chitin, chitosan, and the like. In addition, as other biomaterials, materials composed of at least one material selected from bioactive and bioinactive materials such as calcium phosphate-based ceramics containing hydroxyapatite, titanium, and titanium alloys can also be included. Furthermore, a composite of these polymer material, metal and ceramic material may be used. That is, these biomaterials are the above inorganic or organic materials or composite materials thereof.
[0023]
The transplant material according to claim 1 and claim 2 is used in a region where blood flow is insufficient due to vascular disorder or ischemic disease in humans, pets, livestock, etc., but the site is a myocardial infarction or other cause These are limb circulation disorder sites, for example, peripheral circulatory failure sites due to Buerger's disease and arteriosclerotic lesions. Furthermore, these transplant materials can be used not only for these lesions but also for vascular disorders or ischemic disease sites due to various causes.
[0024]
In transplanting the transplant material according to claim 1 into a living body, when the cultured cells are present in a liquid or a polymer gel state, or the volume of the transplant material according to claim 2 is small, When it can be dispersed in the gel and pass through the needle, an injection method using a syringe or the like is used. In this case, these transplanted materials are injected directly into a tissue damage site due to vascular injury or ischemic disease, but may be injected into a target site by remote operation using a catheter or the like.
[0025]
Examples of the polymer used for the above purpose include polylactic acid, polyglycolic acid or polylactic acid: polyglycolic acid composite material of various ratios, chitin chitosan polymer, various collagens, high molecular weight polyvinyl alcohol (PVA) polyethylene glycol, A material composed of dextran, polydepsipeptide, polyamino acid, hyaluronic acid or at least one material selected from these may also be included. The cultured adherent cells may be mixed with these polymers as they are, or further cultured in the polymer. Alternatively, these polymers may be made into a sponge, a woven fabric or a non-woven fabric and combined with cultured adherent cells, or further culturing may be performed in these sponge, woven fabric or non-woven fabric.
[0026]
In a state where the transplant material according to claim 2 can pass through a pore such as an injection needle, it is injected into a tissue damage site due to vascular injury or ischemic disease using an injector such as a syringe. However, if this method is not possible, the graft material is attached to the lesion site or directly sutured.
[0027]
As a form of transplantation of the transplant material according to claim 2 into a living body, a complex of the biomaterial used for an artificial blood vessel and the cultured adherent cell according to claim 1 is produced, and the complex is transplanted into a blood vessel. Also used as a material. This blood vessel substitute graft material allows the cells contained in the material itself to differentiate into endothelial cells, and not only plays a role as an artificial blood vessel in the physical sense, but also the inner surface of the blood vessel is covered early with endothelial cells. It has antithrombogenicity and plays a role as a blood vessel for a long time after resumption of blood flow.
[0028]
For producing the above-mentioned blood vessel substitute transplant material, the cultured adherent cells according to claim 1 are collected and mixed with a biomaterial used for the artificial blood vessel to produce an artificial blood vessel. Alternatively, the cultured adherent cells may be further cultured on an artificial blood vessel already made of a biomaterial. Production of such a composite of an artificial blood vessel and cultured cells is based on the method described in [0020] and [0021].
[0029]
Examples of the vascular substitute graft material for the above purpose include polyester fiber, PTFE (fluorinated ethylene) polyurethane, polylactide, polypropylene, MPC (2-methacryloyloxyethyl phosphorylcholine) polymer, and biopolymer such as collagen and bioabsorbable polymer. Lactic acid, polyglycolic acid, or polylactic acid: polyglycolic acid composite materials in various ratios thereof are used.
[0030]
The cultured cells according to claims 1 and 2 are cells obtained by proliferating cells adhering to a culture dish using bone marrow cells by the method described in [0014] to [0018]. It is a cell population composed of various cells including stem cells. This cell population includes various undifferentiated cells including the mesenchymal cells, and these differentiate into vascular constituent cells including endothelial cells in vivo. Thus, although the cells used are an undifferentiated cell population, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), platelet-derived growth factor (PDGF) are used for a certain period of time in culture. ), Hepatocyte growth factor (HGF), epithelial cell growth factor (EGF), adrenomedullin and other vascular inducing factors are added to induce differentiation from undifferentiated cells to vascular constituent cells, and vascular composition under culture conditions It is also possible to obtain a cell population subjected to differentiation induction into cells and use it as a transplant material. In this case, the cultured cell population that has undergone differentiation induction may be transplanted as it is, but as described above, it can be combined with various biomaterials, and this complex can be used as a transplant material. It is.
[0031]
【The invention's effect】
The effects exhibited by the above embodiment will be described below.
Cultured adherent cells transplanted to a tissue injury site due to vascular injury or ischemic disease can be differentiated into vascular constituent cells such as vascular endothelial cells in vivo, and can form new blood vessels at the tissue injury site. This new blood vessel increases blood flow, and oxygen and various nutrients are supplied to the site of tissue damage.
[0032]
The effect described above is that the transplanted cultured cells themselves can become blood vessel constituent cells, and these drugs and genes can be used as in the method using drugs and genes such as hepatocyte growth factor (HGF). Unlike direct action by acting on cells, the effect is strong because of direct action. Furthermore, the transplanted cultured cells can produce various cytokines and growth factors, and blood vessel regeneration is also promoted by these factors.
[0033]
Although a method of revascularizing by transplanting bone marrow cells themselves that have not been cultured has been reported, in this case, it is necessary to collect several hundred ml of fresh bone marrow, and the burden on the side to be collected is very large, Individuals with disease often cannot tolerate this collection. In addition, this method has uncertain effects. In this respect, in the method according to the present invention, cells can be proliferated by culturing operation, and a few ml of fresh bone marrow can be collected. In this way, the burden on the side to be collected is minimal. Furthermore, blood cells are removed by the culturing operation, and the cell population obtained by the culturing is an undifferentiated cell population including mesenchymal stem cells that can differentiate into vascular constituent cells, and this cell population undergoes angiogenesis in vivo. It is possible to do.
[0034]
The cells used according to the present invention are bone marrow-derived adherent cells, which include mesenchymal stem cells. It has been reported that the stem cells include cardiomyocytes and cells that can differentiate into myocytes. That is, by using these adherent cells, not only blood vessels but also myocardium and muscles can be regenerated. That is, transplantation of the adherent cells into the heart may regenerate not only angiogenesis but also the myocardium. Furthermore, skeletal muscle can also be regenerated in the transplantation of adherent cells in the limbs. That is, the advantage of the transplant material according to claim 1 and claim 2 is that not only the effect of angiogenesis but also the regeneration of the surrounding tissue transplanted with cells is possible.
[0035]
As described above, the present invention utilizes the fact that transplanted cells differentiate into blood vessel constituent cells in the living body. In this case, a certain period of time for the transplanted cells to differentiate in vivo is required. It may be necessary to shorten the period. In addition, it may be necessary to increase the proportion of cells that differentiate into vascular constituent cells in the total transplanted cells. In these cases, it is possible to proliferate vascular endothelial cells and their progenitor cells in advance by adding various factors using the method described in the above, and these cells can also be transplanted. By this method, early blood vessel regeneration can be expected in vivo, and the efficiency of blood vessel regeneration is greatly increased.
[0036]
【Example】
Hereinafter, examples and comparative examples embodying the above embodiment will be described.
(Example 1: Rat bone marrow cell culture and transplantation experiment)
Bone marrow cells were collected from one femur of a 7 week old Fischer rat, and the fresh cells were added to α-MEM (minimum essential culture medium) containing 15% fetal bovine serum (FBS), and an incubator (37 The culture was performed in 5% carbon dioxide gas for about 10 days. The medium was changed three times a week. During this exchange, floating cells including blood cells are removed, and adherent cells attached to the culture dish grow. Cells grow so as to cover the culture dish in about 10 days (growth of cultured adherent cells by initial culture).
[0037]
75cm by treatment with 0.01% trypsin solution after initial culture 2 5-10x10 from culture dish 6 Individual cultured adherent cells can be collected. 5x10 of these 5 5-10 x 10 in about one week by further subculturing the individual 6 Grows into pieces. Similarly, further proliferation was possible by performing tertiary culture. A retrovirus having a B-galactosidase (lacZ) gene inserted was added during the secondary culture, and an exogenous lacZ gene was introduced into the cultured cells. When seven retroviruses were added at 24 hour intervals, this gene could be introduced into about 80% of cells. Growth in the secondary and tertiary cultures described above was possible not only on normal culture dishes but also on various polymers and ceramics. For example, polylactic acid or collagen is used as an example of the polymer, and hydroxyapatite, tricalcium phosphate, alumina ceramic or the like is used as the ceramic.
[0038]
1 × 10 1 of cultured adherent cells into which the galactosidase (lacZ) gene has been introduced 7 The cell concentration was adjusted to a cell / milliliter (cells / ml) and mixed with a porous hydroxyapatite ceramic. This ceramic-cell complex was implanted subcutaneously in the back of syngeneic 7-week-old Fisher rats. Ceramics were removed 4 weeks after transplantation. In addition to preparing excised ceramic tissue sections, X-gal (5-bromo-4-chloro-3-indolyl-B-galactosidase) staining was performed in order to test the lacZ gene expression product.
[0039]
Tissue section results showed new bone formation in many ceramic pores, and mesenchymal cells were present in cultured adherent cells. Many new blood vessels were observed in the ceramic pores. Further, when X-gal staining was performed, staining (black) was observed not only in cells (bone cells) in the new bone and surrounding cells (osteoblasts) but also in the new blood vessels themselves. In particular, strong staining was seen in the endothelial cells of the new blood vessels, and it was confirmed that the new blood vessels were derived from cultured adherent cells transplanted (see FIG. 1).
[0040]
1x10 in the above experiment 7 The cell / milliliter (cells / ml) cell / ceramic complex was transplanted at a concentration lower than this, eg 1 × 10 6 Bone formation was not seen in cell / milliliter (cells / ml) and ceramic composite implants. However, many new blood vessels were formed in the ceramic pores.
[0041]
(Comparative Example 1)
As a comparative example, only the ceramic containing no cells was transplanted subcutaneously to the back of 7-week-old Fisher rats. Ceramics were removed 4 weeks after transplantation. When the excised ceramic tissue sections were observed, no bone formation was observed. Furthermore, the number of new blood vessels in the ceramic pores was small compared to the ceramic complexed with adherent cells.
[0042]
(Example 2: Culture and transplantation experiment of various animal bone marrow cells)
As described above, adherent cells are obtained by culturing fresh rat bone marrow. Similar cultured adherent cells were obtained from bone marrow in other animals such as rabbits, mice, and dogs. Moreover, when a complex of these cultured adherent cells and a ceramic such as porous hydroxyapatite was transplanted and removed 4 weeks after transplantation, tissue observation was performed, and new bone formation was observed in the ceramic pores. A number of new blood vessels were also found in the ceramic pores.
[0043]
(Comparative Example 2: Experiment of transplanting ceramic to various animals)
Cell-free transplantation of ceramic alone was performed on rabbits, mice, and dogs and excised 4 weeks after transplantation. No bone formation was observed in the excised ceramic. In addition, the number of new blood vessels was small as compared with the above-mentioned adherent cell-ceramic composite.
[0044]
(Example 3: Human bone marrow cell culture experiment)
As described above, cultured adherent cells can be obtained using various animals, and several experiments were conducted to grow adherent cells using fresh human bone marrow cells. 3 ml of bone marrow was collected from the iliac and mixed with 3 ml of physiological saline supplemented with heparin. The bone marrow was transferred to a culture dish and cultured in the same manner as described in the above [0012] and [0016]. As seen in FIG. 2, hematopoietic cells were removed in a few days, adherent cells proliferated, and in about 10 days, they were grown to cover the culture dish. Thus, even human cells were able to grow adherent cells from bone marrow. In addition, this proliferation was possible in more than 70 human bone marrow, and adherent cells were able to grow even in elderly people. In the above method, fresh bone marrow is mixed with physiological saline and used as it is for culturing, and adherent cells can be obtained. Even if the upper layer was cultured, the adherent cells were able to grow.
[0045]
(Comparative Example 3: Human peripheral blood culture experiment)
Using the same method as in Example 3 above, culturing was performed using 3 ml of human peripheral blood instead of 3 ml of fresh bone marrow, but no proliferation of adherent cells was observed.
[Brief description of the drawings]
FIG. 1 is a micrograph of 4 weeks of subcutaneous implantation of LacZ gene-introduced rat adherent cells and a ceramic complex. Genes are introduced into bone cells (1) in new bone and osteoblasts (2) on new bone. In addition, it can be seen that the gene is also introduced into the endothelial cells (3) of the new blood vessels. Transfected cells are black. That is, it can be seen that it is derived from cultured adherent cells into which the new blood vessels have been transplanted.
FIG. 2 is a photomicrograph of transplantation of fresh human bone marrow cells into a culture dish. In about 10 days, adherent cells grow to cover the culture dish.

Claims (1)

培養皿に付着する、生体から採取した新鮮骨髄細胞の培養細胞からなり、血管障害または虚血性疾患による細胞障害部位に注入される、血管新生用移植材料であって、
細胞濃度が1x10 cells/ml〜1x10 cells/mlの範囲であり、かつ
緩衝液中に前記培養細胞を含む、移植材料。
An angiogenic transplant material comprising cultured cells of fresh bone marrow cells collected from a living body attached to a culture dish and injected into a site of cell damage caused by vascular injury or ischemic disease ,
The cell concentration ranges from 1 × 10 5 cells / ml to 1 × 10 7 cells / ml, and
A transplant material comprising the cultured cells in a buffer.
JP2002382098A 2002-11-21 2002-11-21 Transplant material for angiogenesis and method for producing the same Expired - Lifetime JP4061487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382098A JP4061487B2 (en) 2002-11-21 2002-11-21 Transplant material for angiogenesis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382098A JP4061487B2 (en) 2002-11-21 2002-11-21 Transplant material for angiogenesis and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004167202A JP2004167202A (en) 2004-06-17
JP4061487B2 true JP4061487B2 (en) 2008-03-19

Family

ID=32708563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382098A Expired - Lifetime JP4061487B2 (en) 2002-11-21 2002-11-21 Transplant material for angiogenesis and method for producing the same

Country Status (1)

Country Link
JP (1) JP4061487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025276A1 (en) 2020-07-31 2022-02-03 ニューロテックメディカル株式会社 Therapeutic agent for nerve disfunction
WO2022114216A1 (en) 2020-11-30 2022-06-02 ニューロテックメディカル株式会社 Therapeutic agent for nerve disorders

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003901668A0 (en) * 2003-03-28 2003-05-01 Medvet Science Pty. Ltd. Non-haemopoietic precursor cells
JPWO2006085697A1 (en) * 2005-02-14 2008-07-03 財団法人ヒューマンサイエンス振興財団 Combination therapy of adrenomedullin and mesenchymal stem cells for cerebrovascular disease
US20080317720A1 (en) * 2005-04-14 2008-12-25 Noritoshi Nagaya Fat-Derived Progenitor Cell and Use Thereof
JP5496675B2 (en) 2007-10-10 2014-05-21 国立大学法人京都大学 Heart disease treatments used in cell transplantation therapy
JP5725489B2 (en) * 2008-06-27 2015-05-27 公立大学法人大阪市立大学 Medical composition and medical kit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025276A1 (en) 2020-07-31 2022-02-03 ニューロテックメディカル株式会社 Therapeutic agent for nerve disfunction
WO2022114216A1 (en) 2020-11-30 2022-06-02 ニューロテックメディカル株式会社 Therapeutic agent for nerve disorders

Also Published As

Publication number Publication date
JP2004167202A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
Cancedda et al. Bone marrow stromal cells and their use in regenerating bone
Atala Regenerative medicine strategies
EP0422209B1 (en) Implants for large volumes of cells on polymeric matrices
US11045500B2 (en) Tissue engineering construct comprising fibrin
Miyagawa et al. Tissue-engineered cardiac constructs for cardiac repair
US20080026461A1 (en) Tissue-like organization of cells and macroscopic tissue-like constructs, generated by macromass culture of cells and the method of macromass culture
JP4339855B2 (en) How to make an artificial joint
US20040052768A1 (en) Vascularised tissue graft
Nasseri et al. Tissue engineering: an evolving 21st-century science to provide biologic replacement for reconstruction and transplantation
Xu et al. Fabrication of vascularized and scaffold-free bone tissue using endothelial and osteogenic cells differentiated from bone marrow derived mesenchymal stem cells
JP2004357694A (en) Method for producing tissue plug
CA2419923C (en) Vascularised tissue graft
JP4061487B2 (en) Transplant material for angiogenesis and method for producing the same
US20170306283A1 (en) Trypsin-free cell stamp system and use thereof
Martin et al. Producing prefabricated tissues and organs via tissue engineering
Yoshikawa et al. Bone and soft tissue regeneration by bone marrow mesenchymal cells
Zhang et al. Regenerative medicine of the bladder
KR101649375B1 (en) The method of manufacturing the transplantable spheroids of mixed cellular complexes for cell transplantation and the usage of the same
KR100907323B1 (en) Tissue-like organization of cells and macroscopic tissue-like constructs, generated by macromass culture of cells, and the method of macromass culture
Tara et al. Vessel regeneration and bioengineering
RU2335538C2 (en) Organization of cells similar to tissue and macroscopical designs similar to tissue obtained by means of culture of macromass of cells and method of macromass culture
Sundaram et al. Tissue engineering and regenerative medicine
RU137198U1 (en) CELLULAR IMPLANT FOR TREATMENT OF LIVER DISEASES AND Pancreas
Sumanasingh et al. The applications of biotextiles in tissue engineering
Quint et al. Tissue engineering and regenerative medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4061487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term