JP4061407B2 - Chrome alloy for heat-resistant parts - Google Patents

Chrome alloy for heat-resistant parts Download PDF

Info

Publication number
JP4061407B2
JP4061407B2 JP2003352506A JP2003352506A JP4061407B2 JP 4061407 B2 JP4061407 B2 JP 4061407B2 JP 2003352506 A JP2003352506 A JP 2003352506A JP 2003352506 A JP2003352506 A JP 2003352506A JP 4061407 B2 JP4061407 B2 JP 4061407B2
Authority
JP
Japan
Prior art keywords
alloy
chromium
silver
heat
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003352506A
Other languages
Japanese (ja)
Other versions
JP2005113251A (en
Inventor
月峰 谷
広史 原田
芳一 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003352506A priority Critical patent/JP4061407B2/en
Priority to US10/575,548 priority patent/US20070003428A1/en
Priority to EP04792339A priority patent/EP1681361A4/en
Priority to PCT/JP2004/015099 priority patent/WO2005035812A1/en
Publication of JP2005113251A publication Critical patent/JP2005113251A/en
Application granted granted Critical
Publication of JP4061407B2 publication Critical patent/JP4061407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)

Description

この出願の発明は、航空機用ジェットエンジンや産業用ガスタービンの動静翼、乗用車用エンジンターボチャージャーの耐熱ホイール等に有用、高温での強度、耐酸化性に優れているとともに、室温での延性も良好な、耐熱部品用クロム合金に関するものである。 The invention of this application is useful for aircraft jet engines, moving and stationary blades of industrial gas turbines, heat-resistant wheels of passenger car engine turbochargers, etc., and has excellent strength and oxidation resistance at high temperatures, and also has ductility at room temperature. It relates to a good chromium alloy for heat-resistant parts .

近年、地球温暖化抑制のため、炭酸ガスの排出を減らすことが世界的な課題となっている。ガスタービンにおいては熱効率の上昇を図ることでその対策を実施しているが、動静翼の耐用温度により大きく制約を受けているのが実情である。実際、現在動静翼にはニッケル基耐熱合金が用いられているが、融点の制約により耐用温度は1100℃程度といわれている。   In recent years, reducing carbon dioxide emissions has become a global issue in order to suppress global warming. In gas turbines, countermeasures are implemented by increasing the thermal efficiency, but the reality is that they are greatly restricted by the service temperature of the stationary and stationary blades. In fact, nickel-based heat-resistant alloys are currently used for the moving and stationary blades, but the service temperature is said to be about 1100 ° C. due to the limitation of the melting point.

このガスタービンの動静翼材料に用いられているニッケル基耐熱合金においては、γ‘(ガンマプライム)相による析出強化により高温強度(クリープ、疲れ等)を発現しているが、この合金の融点は1350℃前後であるため、冷却およびコーティング技術を用いても前記の通りその耐用温度は1100℃程度に止まっている。このため、従来のニッケル基耐熱合金に代わって、より高温で使用できる耐熱合金が求められている(たとえば、非特許文献1−6参照)。   The nickel-base heat-resistant alloy used for the moving and stationary blade material of this gas turbine exhibits high-temperature strength (creep, fatigue, etc.) due to precipitation strengthening by the γ '(gamma prime) phase, but the melting point of this alloy is Since the temperature is around 1350 ° C., even if cooling and coating techniques are used, as described above, the durable temperature remains at about 1100 ° C. For this reason, in place of the conventional nickel-based heat-resistant alloy, a heat-resistant alloy that can be used at a higher temperature is demanded (for example, see Non-Patent Documents 1-6).

このような状況において、クロム基合金は高融点で、すぐれた耐食性、耐酸化性、良好な熱伝導性を有し、ニッケル基合金よりも低い密度である等々の性質によりニッケル基耐熱合金の代替合金として期待される(非特許文献7参照)。しかしながら、現状においては、高い延性脆性遷移温度や窒素吸収による室温脆化のため、室温での低延性、低靱性、加工性の悪さ等が克服できないでる。このため、Ni基合金に代わりうるものとはなってない。なお、レニウムをある程度以上添加すると延性を示すことが判明しているが、レニウムは希少金属として極めて高価であり、また、その添加による効果も必ずしも実用的なレベルではない。
Aerosp. Sci. Tech., 3(1999)513-523 日本ガスタービン学会誌 vol.28、 No.4 2000、7,14−20 日本金属学会誌 第66巻、第9号(2002)873−876 Metallurgical and Materials Transactions A, Vol.33A, Dec.2002, 3741-3746 Scripta Materialia, 49(2003) 1041-1046 まてりあ(Materia Japan)、第42巻、第9号(2003)621−625 工業材料、2002年8月号、61−64
Under such circumstances, chromium-based alloys have a high melting point, excellent corrosion resistance, oxidation resistance, good thermal conductivity, lower density than nickel-based alloys, etc. Expected as an alloy (see Non-Patent Document 7). However, in the current situation, since the room temperature embrittlement due to high ductility-brittle transition temperature and nitrogen absorption, that have not been able to overcome a low ductility, low toughness, workability poor like at room temperature. For this reason, it cannot replace the Ni-based alloy. Although it has been found that adding rhenium to a certain extent shows ductility, rhenium is extremely expensive as a rare metal, and the effect of the addition is not necessarily at a practical level.
Aerosp. Sci. Tech., 3 (1999) 513-523 Journal of the Gas Turbine Society of Japan vol.28, No.4 2000, 7, 14-20 Journal of the Japan Institute of Metals Vol. 66, No. 9 (2002) 873-876 Metallurgical and Materials Transactions A, Vol.33A, Dec.2002, 3741-3746 Scripta Materialia, 49 (2003) 1041-1046 Materia Japan, Vol. 42, No. 9 (2003) 621-625 Industrial Materials, August 2002, 61-64

そこで、この出願の発明は、以上のような背景から、Ni基耐熱合金に実用的に代替し得るものとして、クロム基合金の、高融点、優れた耐食性、耐酸化性、熱伝導性等の特徴を生かしつつ、しかも、室温での延性も良好な、新しいクロム合金を提供することを課題としている。   In view of the above, the invention of this application is a chromium-based alloy having a high melting point, excellent corrosion resistance, oxidation resistance, thermal conductivity, etc. It is an object to provide a new chromium alloy that makes use of the characteristics and also has good ductility at room temperature.

この出願の発明は、上記の課題を解決するものとして、第1には、その組成において、銀を0.1〜5原子%含有し、残部がクロムと不可避的不純物とからなることを特徴とする耐熱部品用クロム合金。
The invention of this application, as to solve the above problems, the first, characterized in that the composition, silver 0.1 to 5 original containing child%, the balance being chromium and incidental impurities Chrome alloy for heat-resistant parts.

また、第2にはその組成において、銀が0.1〜5原子%含有され、第三元素として珪素、イリジウムのいずれか1種の元素を6原子%含有することを特徴とする耐熱部品用クロム合金。 Further, in the composition of the second silver is contained% from 0.1 to 5 atom, silicon as a third element, heat, characterized by containing 6 atomic% of any one element of iridium Chrome alloy for parts.

上記の通りのこの出願の発明によって、従来のNi基合金に実用的に代替しうるものとして、クロム基合金の、高融点、優れた耐食性、耐酸化性、熱伝導性等の特徴を生かしつつ、しかも、室温での延性も良好な、新しい耐熱部品用クロム合金が提供される。 With the invention of this application as described above, it is possible to replace the conventional Ni-based alloy practically while taking advantage of the high melting point, excellent corrosion resistance, oxidation resistance, thermal conductivity, etc. of the chromium-based alloy. In addition, a new chromium alloy for heat-resistant parts having good ductility at room temperature is provided.

また、このクロム基合金によって、航空用ジェットエンジンおよび産業用ガスタービンの動静翼、吸入および排出バルブ、ロッカーアーム、連結棒、およびオートバイおよび自動車エンジン用タ−ボチャージャーの耐熱ホイール等の各種用途のための高温用物品が提供される。   In addition, this chromium-based alloy can be used for various applications such as moving and stationary blades for aircraft jet engines and industrial gas turbines, intake and exhaust valves, rocker arms, connecting rods, and heat resistant wheels for turbochargers for motorcycles and automobile engines. An article for high temperature is provided.

発明を実施されるための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

この出願の発明は上記の通りの特徴をもつものであるが、以下にその実施のための形態について説明する。   The invention of this application has the features as described above, and an embodiment for its implementation will be described below.

まずなによりも強調されることは、この出願の発明のクロム合金では、クロムに銀を添加することで、比較的低密度、高融点、良好な熱伝導性を維持し、室温で十分な延性を有するクロム基耐熱合金を実現していることである。室温での引張延性の向上のためには、クロムに銀を最小の0.1原子%添加することが必要であり、5原子%をこえると融点が急激に低下し、高温強度が減少する。このため、延性と強度のバランスから銀の添加量は0.1から5原子%の範囲とする。さらには0.5〜3.5原子%とすることが好ましい。   First and foremost, in the chromium alloy of the invention of this application, the addition of silver to chromium maintains a relatively low density, high melting point, good thermal conductivity, and sufficient ductility at room temperature. This is to realize a chromium-based heat-resistant alloy having In order to improve the tensile ductility at room temperature, it is necessary to add a minimum of 0.1 atomic% of silver to chromium, and if it exceeds 5 atomic%, the melting point rapidly decreases and the high temperature strength decreases. For this reason, the amount of silver added is in the range of 0.1 to 5 atomic% from the balance between ductility and strength. Furthermore, it is preferable to set it as 0.5-3.5 atomic%.

この出願の発明のクロム合金は、室温から高温(1600℃)まで、単相組織であり、強度は銀の添加による固溶強化により発現している。また、耐酸化性は高温(1300℃)においてクロム単体より著しくすぐれている。   The chromium alloy of the invention of this application has a single-phase structure from room temperature to high temperature (1600 ° C.), and the strength is manifested by solid solution strengthening by the addition of silver. In addition, oxidation resistance is significantly better than chromium alone at high temperatures (1300 ° C).

そして、この出願の発明の銀含有のクロム合金においては、第3添加元素としてケイ素、またはイリジウムを前記の通り含有させることが出来る。このケイ素の添加は耐酸化性のさらなる向上のために有効である。ただ、その添加量が多すぎると延性が低下することから、前記の数値に添加することが考慮される。イリジウムの添加は、強度とともに延性も向上させるのに考慮されるが、過剰な場合には密度を増加させるので好ましくない。 In the silver-containing chromium alloy of the present invention, silicon or iridium can be contained as described above as the third additive element . This addition of silicon is effective for further improving the oxidation resistance. However, if the addition amount is too large, the ductility is lowered, so it is considered to add to the above numerical values . The addition of iridium is considered to improve the ductility as well as the strength, but if it is excessive, the density is increased, which is not preferable.

これらの元素の添加には、その添加量が前記の通り10原子%以下に抑えられる
べきである。
The addition amount of these elements should be suppressed to 10 atomic% or less as described above.

そこで、以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Then, an Example is shown below and it demonstrates in detail. Of course, the invention is not limited by the following examples.

<実施例1>
次の表1に示した組成のクロム銀合金(alloy1〜6)の各々をアーク溶解により鋳造した。
<Example 1>
Each of the chromium silver alloys (alloys 1 to 6) having the compositions shown in the following Table 1 was cast by arc melting.


図1は、5原子%の銀を添加したクロム合金(alloy6)を5℃/minの速度で室温から1600℃間で昇温し、その後室温まで下降させた熱サイクル中の典型的な示差熱分析(DTA)のサーモグラフを示したものである。この図1の結果から、室温から1600℃の温度範囲では単相であることが判明した。   Fig. 1 shows typical differential heat during a thermal cycle in which a chromium alloy (alloy 6) with 5 atomic percent of silver added is heated at a rate of 5 ° C / min between room temperature and 1600 ° C and then lowered to room temperature. The thermograph of analysis (DTA) is shown. From the results shown in FIG. 1, it was found that a single phase was obtained in the temperature range from room temperature to 1600 ° C.

また、図2は、長さ12×幅 5×厚さ1(mm)の板状試験片を室温で静的に引張った場合の、銀添加クロム合金(alloy1〜6)の引張塑性歪(%)と銀添加量(原子%)との関係を示したものである。   FIG. 2 shows tensile plastic strain (%) of a silver-added chromium alloy (alloys 1 to 6) when a plate-like test piece of length 12 × width 5 × thickness 1 (mm) is statically pulled at room temperature. ) And the amount of silver added (atomic%).

この図2からは、銀を2原子%含有するクロム合金(alloy5)の場合には、室温で約24%の伸びをしめすことが確認される。同様にして、銀添加量を種々変更した合金については、図2から、銀が2〜3.4原子%のクロム合金では、室温で13%以上の伸びを示すことが確認される。実用的な構造用合金としては室温での引張延性(伸び)が2%以上必要であるとされているが、この出願の発明の銀を0.1原子%含有するクロム合金では、この2%の延性にすでに達してもいる。   FIG. 2 confirms that the chromium alloy (alloy 5) containing 2 atomic% of silver exhibits an elongation of about 24% at room temperature. Similarly, it is confirmed from FIG. 2 that an alloy with various amounts of added silver shows an elongation of 13% or more at room temperature in a chromium alloy having 2 to 3.4 atomic% of silver. A practical structural alloy is required to have a tensile ductility (elongation) of 2% or more at room temperature, but in a chromium alloy containing 0.1 atomic% of the silver of the invention of this application, this 2% The ductility of has already been reached.

そして、銀の添加量として好ましい0.5原子%〜3.5原子%の範囲では室温での延性が10〜24%の優れた性質を有するこの出願の発明の銀含有クロム合金は実用合金としてのNi記耐熱合金であるCMSX-4,CMSX-10,さらにはこの出願の発明者らが開発したCMSX合金とほぼ同等以上の性能を有するNi基耐熱合金TMS-75の室温での延性が最大でも6〜7%であることを考慮すると、十分、かつ顕著な室温での引張延性を有してることがわかる。   The silver-containing chromium alloy of the invention of this application having excellent properties of ductility at room temperature of 10 to 24% in the range of 0.5 atomic% to 3.5 atomic%, which is preferable as the addition amount of silver, is a practical alloy. The Ni-based heat-resistant alloys CMSX-4, CMSX-10, and the Ni-base heat-resistant alloy TMS-75, which has almost the same or better performance as the CMSX alloy developed by the inventors of this application, have the highest ductility at room temperature. However, considering that it is 6 to 7%, it can be seen that it has a sufficient and remarkable tensile ductility at room temperature.

図3は、室温から1400℃の温度範囲での0.2%降伏強度と銀添加量との関係を示している。降伏強度は銀の添加量が多いほど固溶強化により増大し、5原子%を銀を添加した合金(alloy6)は室温でクロム単体より50%近く増加していることがわかる。高温になると銀の添加による固溶強化の効果は低下するが、1400℃においてもクロム単体よりは大きい値を示している。   FIG. 3 shows the relationship between the 0.2% yield strength and the silver addition amount in the temperature range from room temperature to 1400 ° C. It can be seen that the yield strength increases as the amount of silver added increases due to solid solution strengthening, and the alloy (alloy 6) to which 5 atomic% of silver is added increases nearly 50% from chromium alone at room temperature. At higher temperatures, the effect of solid solution strengthening due to the addition of silver decreases, but even at 1400 ° C it shows a larger value than chromium alone.

このように降伏強度(0.2%耐力)が、1000℃で50MPa以上、1200℃でも20〜30MPa強、さらには1400℃でも10MPa以上であることは、この出願の発明の銀含有クロム合金の重要な特徴の一つである。従来のNi基耐熱合金では1200℃以上では使用が不可能であるのに対し、この出願の発明の合金は充分に使用可能である。   Thus, the yield strength (0.2% proof stress) is 50 MPa or more at 1000 ° C., 20-30 MPa even at 1200 ° C., and further 10 MPa or more at 1400 ° C. One of the important features. The conventional Ni-base heat-resistant alloy cannot be used at 1200 ° C. or higher, whereas the alloy of the present invention can be used sufficiently.

また、図4および5は、0.5原子%の銀含有クロム合金(alloy3)並びに2原子%の銀含有合金(alloy5)について、大気中1100℃、大気中1300℃における耐酸化性の試験結果を、銀を含有しないクロムの場合と比較した図である。この図4および図5にみられるように、銀を2原子%添加した合金(alloy5)は大気中1300℃において優秀な耐酸化性を示した。
<実施例2>
実施例1と同様にして、アーク溶解による鋳造で表2の組成の合金を製造した。
Figures 4 and 5 show the test results of oxidation resistance of 0.5 atomic percent silver-containing chromium alloy (alloy 3) and 2 atomic percent silver-containing alloy (alloy 5) at 1100 ° C in air and 1300 ° C in air. It is the figure compared with the case of chromium which does not contain silver. As shown in FIGS. 4 and 5, the alloy (alloy 5) to which 2 atomic% of silver was added showed excellent oxidation resistance at 1300 ° C. in the atmosphere.
<Example 2>
In the same manner as in Example 1, an alloy having the composition shown in Table 2 was manufactured by arc melting.

表2の合金のうち、alloy9(Cr-6Si-2Ag)およびalloy11(Cr-6Ir-2Ag)がこの出願の
発明のクロム合金である。
Among the alloys in Table 2, alloy9 (Cr-6Si-2Ag) and alloy11 (Cr-6Ir-2Ag) are the chromium alloys of the invention of this application.

表3は、表2の合金についての、室温における機械的性質(0.2%降伏強度、引張強度、伸び)の測定結果を示したものである。この出願の発明の合金においては、室温延性が改善され、機械的性質が顕著に向上していることが確認される。   Table 3 shows the measurement results of mechanical properties (0.2% yield strength, tensile strength, elongation) at room temperature for the alloys of Table 2. In the alloy of the invention of this application, it is confirmed that the room temperature ductility is improved and the mechanical properties are remarkably improved.



この出願の発明のクロム合金は、室温引張延性を充分に有するクロム基合金としては初めての構造用合金であり、かつ高温における強度、耐酸化性等も優れているため、ガスタービンの翼用材料を中心に耐熱部品として実用化が期待できる。原料の純度、製造法についても特別な水準を必要としない。ニッケル基耐熱合金の代替合金としては画期的である。   The chromium alloy of the invention of this application is the first structural alloy as a chromium-based alloy having sufficient room temperature tensile ductility, and is excellent in strength, oxidation resistance, etc. at high temperatures. It can be expected to be put into practical use as a heat-resistant part. No special standards are required for the purity of the raw materials and the manufacturing method. It is a revolutionary alternative to nickel-based heat-resistant alloys.

Cr-5Ag合金についてのDTAサーモグラフである。It is a DTA thermograph about Cr-5Ag alloy. Cr-Ag合金の引張塑性歪(%)とAg添加量との関係を示した図である。It is the figure which showed the relationship between the tensile plastic strain (%) of a Cr-Ag alloy, and Ag addition amount. 温度およびAg 添加量との関係として、0.2%降伏強度を示した図である。It is the figure which showed 0.2% yield strength as a relationship with temperature and Ag addition amount. Cr-Ag合金の、大気中1100℃における耐酸化性を示した図である。FIG. 3 is a diagram showing the oxidation resistance of a Cr—Ag alloy at 1100 ° C. in the atmosphere. Cr-Ag合金の、大気中1300℃における耐酸化性を示した図である。FIG. 3 is a diagram showing the oxidation resistance of a Cr—Ag alloy at 1300 ° C. in the atmosphere.

Claims (2)

銀を0.1〜5原子%含有し、残部がクロムと不可避的不純物とからなることを
特徴とする耐熱部品用クロム合金。
Silver containing 0.1 to 5 atomic%, the heat component chromium alloy balance being composed of chromium and incidental impurities.
銀が0.1〜5原子%含有され、第三元素として珪素、イリジウムのいずれか1
種の元素を6原子%含有することを特徴とする耐熱部品用クロム合金。
Silver is contained% from 0.1 to 5 atom, silicon as a third element, either iridium 1
Heat parts for chromium alloy characterized by containing seeds of the elements 6 atomic%.
JP2003352506A 2003-10-10 2003-10-10 Chrome alloy for heat-resistant parts Expired - Lifetime JP4061407B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003352506A JP4061407B2 (en) 2003-10-10 2003-10-10 Chrome alloy for heat-resistant parts
US10/575,548 US20070003428A1 (en) 2003-10-10 2004-10-06 Highly ductile chromium alloy containing silver
EP04792339A EP1681361A4 (en) 2003-10-10 2004-10-06 Highly ductile chromium alloy containing silver
PCT/JP2004/015099 WO2005035812A1 (en) 2003-10-10 2004-10-06 Highly ductile chromium alloy containing silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352506A JP4061407B2 (en) 2003-10-10 2003-10-10 Chrome alloy for heat-resistant parts

Publications (2)

Publication Number Publication Date
JP2005113251A JP2005113251A (en) 2005-04-28
JP4061407B2 true JP4061407B2 (en) 2008-03-19

Family

ID=34431113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352506A Expired - Lifetime JP4061407B2 (en) 2003-10-10 2003-10-10 Chrome alloy for heat-resistant parts

Country Status (4)

Country Link
US (1) US20070003428A1 (en)
EP (1) EP1681361A4 (en)
JP (1) JP4061407B2 (en)
WO (1) WO2005035812A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425836B1 (en) 2011-11-16 2013-04-23 Rolls-Royce Plc Chromium alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943228A (en) * 1956-10-22 1963-12-04 Commw Of Australia Improved chromium-tungsten-silicon alloys
US3239335A (en) * 1963-10-11 1966-03-08 Carlson Oscar Norman Ductile binary chromium alloy
SU580246A1 (en) * 1975-10-28 1977-11-15 Институт Металлофизики Академии Наук Украинской Сср Chromium-based alloy
JPH01138092A (en) * 1987-11-25 1989-05-30 Tosoh Corp Filler metal
JP2607157B2 (en) * 1989-11-17 1997-05-07 株式会社クボタ Heat-resistant alloy for supporting steel material to be heated in heating furnace
US5126106A (en) * 1990-05-22 1992-06-30 Tosoh Corporation Chromium-based weld material and rolled article and process for producing the rolled article
JPH04276068A (en) * 1991-03-04 1992-10-01 Daido Steel Co Ltd Manufacture of target for sputtering
JPH0849085A (en) * 1994-08-08 1996-02-20 Nisshin Steel Co Ltd Antibacterial stainless steel sheet and its production
JPH08134665A (en) * 1994-11-11 1996-05-28 Nisshin Steel Co Ltd Production of antibacterial stainless steel sheet
JP3933213B2 (en) * 1995-10-03 2007-06-20 財団法人電気磁気材料研究所 Cr-based alloy thin film, method for producing the same, and strain gauge
JP2000258095A (en) * 1999-03-09 2000-09-22 Kubota Corp Tube for heat exchanger of high temperature gas furnace

Also Published As

Publication number Publication date
US20070003428A1 (en) 2007-01-04
JP2005113251A (en) 2005-04-28
EP1681361A1 (en) 2006-07-19
EP1681361A4 (en) 2008-04-23
WO2005035812A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
JP6328398B2 (en) High strength titanium alloy with excellent oxidation resistance and compressor parts using the same
JP5278936B2 (en) Heat resistant superalloy
JP4982324B2 (en) Ni-based forged alloy, forged parts for steam turbine plant, boiler tube for steam turbine plant, bolt for steam turbine plant, and steam turbine rotor
JP5537587B2 (en) Ni-base alloy welding material and welding wire, welding rod and welding powder using the same
GB2554879B (en) Nickel alloy
JP2011162808A (en) Ni BASED ALLOY FOR FORGING AND COMPONENT FOR STEAM TURBINE PLANT USING THE SAME
TWI452149B (en) High heat-resistant and high-strength rh group alloy and method for manufacturing the same
JP5597598B2 (en) Ni-base superalloy and gas turbine using it
JP2004332116A (en) Nickel-base alloy
JP4839388B2 (en) Welding material and welding rotor
JP2010084166A (en) Nickel-based alloy and gas turbine blade using the same
JP4061407B2 (en) Chrome alloy for heat-resistant parts
AU2019235121B2 (en) High-performance metal alloy for additive manufacturing of machine components
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
WO2013031916A1 (en) Ni-BASED SUPERALLOY
JPH0657359A (en) Ni-base heat resistant alloy
JP2011174123A (en) Nickel-base alloy and gas turbine component for land using the same
JP5636639B2 (en) Ni-base superalloy
JP5062709B2 (en) Cr-based alloy containing Re and Ag
JP6045857B2 (en) High-strength Ni-base superalloy and gas turbine turbine blade using the same
KR102340057B1 (en) Ni base single crystal superalloy and Method of manufacturing thereof
JP6802991B2 (en) Ni-based super heat-resistant alloy
TW202231887A (en) Nickel-based superalloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

R150 Certificate of patent or registration of utility model

Ref document number: 4061407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term