JP5062709B2 - Cr-based alloy containing Re and Ag - Google Patents

Cr-based alloy containing Re and Ag Download PDF

Info

Publication number
JP5062709B2
JP5062709B2 JP2005004237A JP2005004237A JP5062709B2 JP 5062709 B2 JP5062709 B2 JP 5062709B2 JP 2005004237 A JP2005004237 A JP 2005004237A JP 2005004237 A JP2005004237 A JP 2005004237A JP 5062709 B2 JP5062709 B2 JP 5062709B2
Authority
JP
Japan
Prior art keywords
heat
mass
tensile ductility
resistant alloy
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004237A
Other languages
Japanese (ja)
Other versions
JP2006193762A (en
Inventor
月峰 谷
広史 原田
芳一 呂
英典 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005004237A priority Critical patent/JP5062709B2/en
Publication of JP2006193762A publication Critical patent/JP2006193762A/en
Application granted granted Critical
Publication of JP5062709B2 publication Critical patent/JP5062709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supercharger (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

この出願の発明はCr(クロム)基耐熱合金の改良に関するものである。さらに詳しくは、この出願の発明はジェットエンジンやガスタービンの翼、エンジンの吸入バルブや排気バルブ、ロッカーアーム、オートバイや自動車のエンジンのターボチャージャー連結棒のように、たとえば1100℃以上という、高温環境下で使用する構造用耐熱材料として好適な、高温における圧縮強度や耐酸化性に優れ、しかも室温での引張延性(伸び)が高いCr基合金に関する。   The invention of this application relates to an improvement of a Cr (chromium) based heat resistant alloy. More specifically, the invention of this application relates to high temperature environments such as jet engine and gas turbine blades, engine intake valves and exhaust valves, rocker arms, motorcycle and automobile engine turbocharger connecting rods, for example, 1100 ° C. or higher. The present invention relates to a Cr-based alloy that is suitable as a structural heat-resistant material to be used below and has excellent compressive strength and oxidation resistance at high temperatures and high tensile ductility (elongation) at room temperature.

ジェットエンジンやガスタービンの翼またはエンジンの吸入バルブや排気バルブ等の構造用耐熱材料としては、Ni(ニッケル)基合金やCo(コバルト)基合金が広く使用されている。しかしながら、これらの合金は高価であるだけでなく熱膨張係数の高さや融点等の制約から実際の耐用温度は1100℃程度までに制限される等の問題があった。   Ni (nickel) -based alloys and Co (cobalt) -based alloys are widely used as structural heat-resistant materials such as jet engines and gas turbine blades or engine intake valves and exhaust valves. However, these alloys are not only expensive, but also have a problem that the actual service temperature is limited to about 1100 ° C. due to restrictions such as a high thermal expansion coefficient and a melting point.

一般にガスタービンの熱効率はタービンの入り口の温度を高めることで飛躍的に向上させることができるとされている。ガスタービンのように大型で、しかも世界の多くの国々において使用されている装置は、装置の熱効率を向上させることで地球温暖化の抑制に多大に貢献することになるため高温で使用可能な耐熱性構造材料の開発が強く望まれている。   In general, it is said that the thermal efficiency of a gas turbine can be dramatically improved by increasing the temperature at the inlet of the turbine. Larger devices such as gas turbines that are used in many countries around the world can greatly contribute to the suppression of global warming by improving the thermal efficiency of the devices. Development of structural structural materials is strongly desired.

このような背景において、Cr(クロム)は高融点(1863℃)で良好な耐酸化性を示すとともに、Niより密度が低く、しかも熱伝導性が高いという耐熱合金として優れた条件を備えている。このためCr基合金は、Ni基合金やCo基合金に代わる合金として注目されており、これまでにもCr(クロム)基合金のこの特徴に着目し、さらに耐熱性や加工性、強度等を向上するための工夫や改善が提案なされている(たとえば特許文献1〜4及び非特許文献1〜5)。
特開2002−266046号公報 特開2000−336449号公報 特開2001−342534号公報 特開2003−155536号公報 A.H.Sully:Metallurgy of the rarer metals-1, Chromium,1st ed.,63-104; 1954, London, Butterworths Scientific Pub. M.J.Udy:“Chromium”,1956,N.Y.Reinhold. C.S.Wukusick:“The rhenium ductilizing effect”Refractory Metals and Alloys IV-Research and Development, N.Y.Gordon and Breach Science Pub.1967, p.231-245. W.D.Klopp:“A review of chromium, molybdenum and tungsten alloys”, J.Less-Common Metals 42(1975)261-278. C.N.Reid and A.Gilbert: Dislocation structure in chromium, Chromium-rhenium and Chromium-iron alloys, J.Less-common Metals, 10(1966)77-90.
Against this background, Cr (chromium) has excellent melting resistance (1863 ° C.) and good oxidation resistance, and has excellent conditions as a heat-resistant alloy that has a lower density than Ni and high thermal conductivity. . For this reason, Cr-based alloys are attracting attention as an alternative to Ni-based alloys and Co-based alloys. Up to now, attention has been paid to this feature of Cr (chromium) -based alloys, and further, heat resistance, workability, strength, etc. Ideas and improvements for improvement have been proposed (for example, Patent Documents 1 to 4 and Non-Patent Documents 1 to 5).
JP 2002-266046 A JP 2000-336449 A JP 2001-342534 A JP 2003-155536 A AHSully: Metallurgy of the rarer metals-1, Chromium, 1st ed., 63-104; 1954, London, Butterworths Scientific Pub. MJUdy: “Chromium”, 1956, NY Reinhold. CSWukusick: “The rhenium ductilizing effect” Refractory Metals and Alloys IV-Research and Development, NY Gordon and Breach Science Pub. 1967, p.231-245. WDKlopp: “A review of chromium, molybdenum and tungsten alloys”, J. Less-Common Metals 42 (1975) 261-278. CNReid and A. Gilbert: Dislocation structure in chromium, Chromium-rhenium and Chromium-iron alloys, J. Less-common Metals, 10 (1966) 77-90.

しかしながら、これまでのCr基耐熱合金は室温での難加工性や脆性、さらには高い延性脆性遷移温度(DBTT)等の問題が未だ十分に解決されていないため、Cr基耐熱合金を使用した製品は実用化されていない。したがって、Cr基耐熱合金が有するこれらの
問題点を克服することができればCr基耐熱合金は耐用温度の高いNi基耐熱合金に取って代わることが可能となる。
However, conventional Cr-based heat-resistant alloys have not yet been fully solved for problems such as difficult workability at room temperature, brittleness, and high ductile brittle transition temperature (DBTT). Has not been put to practical use. Therefore, if these problems of the Cr-base heat-resistant alloy can be overcome, the Cr-base heat-resistant alloy can replace the Ni-base heat-resistant alloy having a high service temperature.

そこで、この出願の発明は、上記の通りの事情に鑑みてなされたものであり、従来の問題点を解消し、たとえばジェットエンジンやガスタービンの翼等を始めとする耐熱構造用合金として、1100℃以上の高温環境においても使用可能な高温強度と対酸化性を有し、室温延性(伸び)にも優れたCr基耐熱合金を提供することを課題としている。   Therefore, the invention of this application has been made in view of the circumstances as described above, and solves the conventional problems. For example, as an alloy for heat-resistant structures such as jet engine and gas turbine blades, 1100 An object of the present invention is to provide a Cr-based heat-resistant alloy that has high-temperature strength and oxidation resistance that can be used even in a high-temperature environment at or above ° C., and is excellent in room temperature ductility (elongation).

この出願の発明は、上記の課題を解決するものとして、第1には、Agを0.05質量%〜0.1質量%含み、残部がCr及び不可避的不純物からなる高温使用環境下で使用されるCr基耐熱合金であって、室温における引張延性が3%以上であるCr基耐熱合金を提供する。
In order to solve the above problems, the invention of this application is as follows. First, it is used in a high temperature use environment containing 0.05 mass% to 0.1 mass% of Ag and the balance being Cr and inevitable impurities. A Cr-based heat-resistant alloy having a tensile ductility at room temperature of 3% or more is provided.

この出願の発明は、第2には、上記のCr基耐熱合金において、さらにReが0.3〜18. 0質量%の範囲で含有されている引張延性が良好なCr基耐熱合金を提供する。
In the invention of this application, secondly, in the above Cr-base heat-resistant alloy, Re is further 0.3 to 18. Provided is a Cr-based heat resistant alloy having a good tensile ductility and contained in the range of 0% by mass.

この出願の発明は、第3には、上記のCr基耐熱合金において、Irが0.5〜2.0質量% の範囲で含有されている引張延性が良好なCr基耐熱合金を提供する。
Thirdly, the invention of this application provides a Cr-based heat-resistant alloy having good tensile ductility, wherein Ir is contained in the range of 0.5 to 2.0 mass% in the above Cr-based heat-resistant alloy.

この出願の発明は、第4には、Reを0.3〜18.0質量%、Irを0.5〜2.0質量%含み、残部がCr及び不可避的不純物からなる高温使用環境下で使用されるCr基耐熱合金であって、室温における引張延性が3%以上であるCr基耐熱合金を提供する。
The invention of this application is, fourthly , in a high temperature use environment containing 0.3 to 18.0% by mass of Re , 0.5 to 2.0% by mass of Ir , and the balance of Cr and inevitable impurities. Provided is a Cr-based heat-resistant alloy that is used and has a tensile ductility at room temperature of 3% or more .

この出願の発明は、第には、前記の引張延性が良好なCr基合金で構成されていることを特徴とするジェットエンジンもしくはガスタービンの翼、エンジンの吸入バルブもしくは排気バルブ、ロッカーアーム、またはオートバイもしくは自動車のエンジンのターボチャージャー連結棒のいずれかの耐熱物品を提供する。
Fifth , the invention of this application is characterized in that it is composed of a Cr-based alloy having a good tensile ductility, a jet engine or gas turbine blade, an engine intake valve or exhaust valve, a rocker arm, Or provide a heat resistant article of either a turbocharger connecting rod of a motorcycle or an automobile engine.

上記第1のCr基耐熱合金の発明によれば、高温における圧縮強度や耐酸化性が優れ、しかも室温での引張延性(伸び)が高いCr基耐熱合金が実現される。
According to the invention of the first Cr-base superalloy, compressive strength and oxidation resistance at high temperatures is excellent, yet the tensile ductility (elongation) is high Cr-base superalloy at room temperature is achieved.

上記第2のCr基耐熱合金によれば、降伏強度と極限強度が高いCr基耐熱合金とすることができる。
According to the second Cr-base superalloy, it is possible to yield strength and ultimate strength is high Cr-base superalloy.

第3のCr基耐熱合金の発明によれば、上記第2と同様な効果が得られ、さらに降伏強度と極限強度が高いCr基耐熱合金とすることができる。
According to the invention of the third Cr-base heat-resistant alloy, the same effects as those of the second aspect can be obtained, and a Cr-base heat-resistant alloy having high yield strength and ultimate strength can be obtained.

上記第4のCr基耐熱合金によれば、少量のReの含有であってもIrを含有させることにより引張延性、降伏強度および極限強度が優れたCr基耐熱合金の耐熱物品とすることができる。
According to the fourth Cr-base heat-resistant alloy, even if a small amount of Re is contained, a heat-resistant article of Cr-base heat-resistant alloy having excellent tensile ductility, yield strength, and ultimate strength can be obtained by containing Ir. .

上記第の耐熱物品の発明によれば、耐熱性や加工性が要求される各種用途に使用することができる。
According to the fifth heat-resistant article of the invention, it can be used for various applications that require heat resistance and workability.

この出願の発明は上記のとおりの特徴を有し、Cr(クロム)に少量のAg(銀)またはAg(銀)とRe(レニウム)を含有させることにより、1100℃以上の高温環境下でも圧縮強度や耐酸化性等が優れ、しかも室温での引張延性(伸び)が優れたCr基合金を提供するものである。   The invention of this application has the characteristics as described above, and is compressed even in a high temperature environment of 1100 ° C. or higher by containing a small amount of Ag (silver) or Ag (silver) and Re (rhenium) in Cr (chromium). The present invention provides a Cr-based alloy having excellent strength, oxidation resistance, etc., and excellent tensile ductility (elongation) at room temperature.

本出願人はこれまでにもCrを主成分とし、これにRe(レニウム)やW(タングステン)を1〜40原子%(1.75〜70質量%)の範囲で含有させることにより高温強度や圧縮延性に優れたCr基耐熱合金を開発し、既に特許出願(前記特許文献1)もしているが、この出願の発明は、先の出願の発明においてCrにReやWを含有させることにより得られる高温強度や圧縮延性に優れたCr基耐熱合金をさらに改良したものである。   The present applicant has so far made Cr as a main component, and by adding Re (rhenium) and W (tungsten) in the range of 1 to 40 atomic% (1.75 to 70 mass%), high temperature strength and A Cr-based heat-resistant alloy with excellent compressive ductility has been developed and a patent application has already been filed (Patent Document 1). The invention of this application is obtained by adding Re or W to Cr in the invention of the previous application. It is a further improvement of the Cr-based heat-resistant alloy having excellent high-temperature strength and compressive ductility.

すなわち、この出願の発明はCrに対してReの含有量を少量(0.3〜18質量%)の範囲に制限してもAg(銀)とともに使用することにより引張延性(伸び)を、これまで全く予期できないこととして、著しく向上させたものである。さらに、この出願の発明はReとAgを併用するだけでなく、Agだけを少量(0.05質量%〜0.1質量%)含有させることによっても同様に引張延性(伸び)を著しく向上させている。この出願の発明は、以上のとおりのCr基耐熱合金は、その組成としては、Cr−AgおよびCr−Re−Agとして構成され、これらは不可避的不純物を含有してもよい。   In other words, the invention of this application shows that the tensile ductility (elongation) is reduced by using it together with Ag (silver) even if the Re content is limited to a small amount (0.3 to 18% by mass) relative to Cr. As a matter of fact, it is a significant improvement. Furthermore, the invention of this application not only uses Re and Ag together but also significantly improves the tensile ductility (elongation) by including only a small amount of Ag (0.05% to 0.1% by mass). ing. In the invention of this application, the Cr-base heat-resistant alloy as described above is configured as Cr—Ag and Cr—Re—Ag as the composition thereof, and these may contain inevitable impurities.

この出願の発明においては、Crと不可避的不純物のみで構成されるCr金属の場合には室温引張延性が0%と全く認められないのに対し、ReとAgの含有量をそれぞれ0.3〜18質量%および0.05〜0.1質量%の範囲に限定することにより、顕著な室温引張延性、たとえば3%以上の室温引張延性を示すことを知見したものである。   In the invention of this application, in the case of Cr metal composed only of Cr and inevitable impurities, room temperature tensile ductility is not recognized as 0% at all, whereas the contents of Re and Ag are 0.3 to 0.3 respectively. It has been found that by limiting to 18% by mass and 0.05 to 0.1% by mass, remarkable room temperature tensile ductility, for example, room temperature tensile ductility of 3% or more is exhibited.

Cr−Ag2元系合金では、0.05質量%のAgを含有させることで室温引張延性は8%にも達している。なお、Agの含有量が0.05質量%未満ではその効果はあまり大きくなく、またAgの含有量が0.1質量%を超える場合には金属の強度が低下するため好ましくない。   In the Cr-Ag binary alloy, the room temperature tensile ductility reaches 8% by containing 0.05% by mass of Ag. If the Ag content is less than 0.05% by mass, the effect is not so great. If the Ag content exceeds 0.1% by mass, the strength of the metal decreases, which is not preferable.

以上のように、この出願の発明はCrに少量のReとAgを含有させることにより高温における圧縮強度や耐酸化性が優れしかも室温での引張延性(伸び)が優れたCr基合金を実現するものであるが、この少量のReおよびAgが含有されたCr基合金に、Ir(イリジウム)元素を0.5〜2.0質量%の範囲で含有させることにより、降伏強度や極限強度を向上させることができる。   As described above, the invention of this application realizes a Cr-based alloy having excellent compressive strength and oxidation resistance at high temperatures and excellent tensile ductility (elongation) at room temperature by containing a small amount of Re and Ag in Cr. However, the yield strength and ultimate strength are improved by adding Ir (iridium) element in the range of 0.5 to 2.0 mass% in the Cr-based alloy containing a small amount of Re and Ag. Can be made.

また、Irと同様の効果は、Irの代わりに、Ta、Mo、W、Fe、Ru、Co、Rh、Ni、PtおよびTi等の遷移元素の1種以上を5.0質量%を超えない範囲で添加することによっても実現される。   Moreover, the effect similar to Ir does not exceed 5.0 mass% of 1 or more types of transition elements, such as Ta, Mo, W, Fe, Ru, Co, Rh, Ni, Pt, and Ti, instead of Ir. It is also realized by adding in a range.

たとえば、遷移元素の1つとしてTaを用いて、Cr−0.3Re−0.5Ta(質量
%)の組成からなる合金を製造して物性値を測定したところ、室温における降伏強度が196MPa、引張強度227MPa、また伸び2.1%の物性を有することが確認されている。
For example, when Ta was used as one of the transition elements and an alloy having a composition of Cr-0.3Re-0.5Ta (mass%) was manufactured and measured for physical properties, the yield strength at room temperature was 196 MPa, It has been confirmed that the material has a strength of 227 MPa and an elongation of 2.1%.

なお、本願発明のCr基合金には、Al、O、N、H、S、C、Fe、Si、Cu、およびPd等の不可避的不純物が含有されることが考えられるが、これら不可避的不純物は表1に記載されている範囲内にすることが必要である。   The Cr-based alloy of the present invention may contain inevitable impurities such as Al, O, N, H, S, C, Fe, Si, Cu, and Pd. Needs to be within the range described in Table 1.

そこで以下に実施例を示し、さらに詳しい説明をする。なお、この実施例ではアーク溶解により製造した合金を用いたが、鋳造や粉末冶金で製造した合金でも同じ結果が得られており以下の例によって発明が限定されることはない。   Therefore, an example will be shown below and further detailed description will be given. In this example, an alloy manufactured by arc melting was used, but the same result was obtained with an alloy manufactured by casting or powder metallurgy, and the invention is not limited by the following examples.

<実施例1>
表1の組成表にしたがって、Cr-Re、Cr-Ag、Cr-Re-Ag、Cr-Ir-Re、およびCr-Ir-Re-Agの成分からなるCr基合金をアーク溶解により製造し、こ
れを放電加工により試験片を切り出し、室温での引張延性(伸び)と室温から1300℃までの圧縮試験(降伏強度)を行った。
<Example 1>
According to the composition table of Table 1, a Cr-based alloy comprising Cr—Re, Cr—Ag, Cr—Re—Ag, Cr—Ir—Re, and Cr—Ir—Re—Ag components is produced by arc melting, A test piece was cut out from this by electric discharge machining, and a tensile ductility (elongation) at room temperature and a compression test (yield strength) from room temperature to 1300 ° C. were performed.

なお、表1におけるCr-ReはCrに対して、Reだけを単独に用いた際のReの含
有量と引張延性の変化を測定したものであるが図1に示されているようにReは、0.3〜18.0質量%の範囲で最も高い数値を示している。
Note that Cr—Re in Table 1 is a measurement of changes in Re content and tensile ductility when only Re is used relative to Cr. As shown in FIG. The highest numerical value is shown in the range of 0.3 to 18.0% by mass.

Figure 0005062709
Figure 0005062709

表2は表1の成分により得られたCr基合金の機械的特性を示したものである。表2に
示されている機械的特性からも明らかなようにCrだけの場合は、室温における引張延性(伸び)が0%であるのに対し、ReとAgが含有されたCr基耐熱合金の室温での引張延性(伸び)は、3〜9.4%であり著しく向上されている。一般に室温における引張り延性が5%前後であれば耐熱構造材料として実用性があるとされていることから、この出願の発明のCr基耐熱合金は、ガスタービンの動静翼、ジェットエンジン、ジェットエンジン等の吸入バルブおよび排気バルブ、ロッカーアームおよびエンジンのターボチャージャー連結棒等の高温で使用される構造用耐熱材料としての用途が期待される。
Table 2 shows the mechanical properties of the Cr-based alloys obtained with the components in Table 1. As is clear from the mechanical properties shown in Table 2, when only Cr is used, the tensile ductility (elongation) at room temperature is 0%, whereas the Cr-based heat-resistant alloy containing Re and Ag contains The tensile ductility (elongation) at room temperature is 3 to 9.4%, which is remarkably improved. Generally, if the tensile ductility at room temperature is around 5%, it is said that the Cr-based heat-resistant alloy of the invention of this application is practical as a heat-resistant structural material. These are expected to be used as heat-resistant structural materials used at high temperatures, such as intake and exhaust valves, rocker arms and engine turbocharger connecting rods.

また、表2の結果からIrを含有したCr基耐熱合金とIrを含有しないCr基耐熱合金を比較した場合ではIrを含有したCr基耐熱合金は室温での引張延性(伸び)は低下するが、圧縮強度(降伏強度)および極限強度はいずれも向上していることが確認できる。
Although Cr-base heat-resistant alloy containing Ir at when comparing Cr-base superalloy containing no Cr-base superalloy and Ir which contains Ir from the results in Table 2 is reduced tensile ductility (elongation) at room temperature It can be confirmed that both the compressive strength (yield strength) and the ultimate strength are improved.

Figure 0005062709
Figure 0005062709

また、この出願の発明で得られるCr基耐熱合金は1100および1300℃の大気中における200時間の暴露試験における耐酸化性はCr単体のものより著しく向上したものが得られているし、大気中で室温から1300℃の温度範囲における室温延性(圧縮延性)においても、Cr単体のものに比較して、約2倍程度のものが得られることが確認されている。   In addition, the Cr-based heat-resistant alloy obtained by the invention of this application has been obtained in which the oxidation resistance in the exposure test for 200 hours in the atmosphere at 1100 and 1300 ° C. is remarkably improved as compared with that of Cr alone. Thus, it has been confirmed that the room temperature ductility (compression ductility) in the temperature range from room temperature to 1300 ° C. can be about twice as high as that of Cr alone.

<実施例2>
実施例1と同様にして、表1の合金を基準として、これにReとAgを添加して製造したCr基耐熱合金とCr単体との圧縮強度について評価すると、図2に示されているようにRe とAg が含有されたCr基耐熱合金は、室温から1300℃ までの温度で圧縮強度(0.2% 降伏強度)がCr単体のほぼ2倍の値を示している。さらに、耐酸化性について評価すると、図3の「単位面積における重量変化」は、Crに対してAgの含有量を0.1質量%に保ちながらReの含有量を5〜18質量%の範囲で変化させたCr-Re-Ag合金とCr単体を1100℃の温度で、大気中で200時間まで暴露させた時の重量変化を調べたものである。図3からも明らかなようにCr-Re-Ag耐熱合金は、Cr単体に比較して重量変化が少なく高い耐酸化性(耐熱性)を示している。
<Example 2>
In the same manner as in Example 1, when the compressive strength of Cr-based heat-resistant alloy and Cr alone produced by adding Re and Ag to this alloy as shown in Table 1 was evaluated, as shown in FIG. The Cr-based heat-resistant alloy containing Re and Ag in addition shows a compressive strength (0.2% yield strength) almost twice that of Cr alone at temperatures from room temperature to 1300 ° C. Further, when the oxidation resistance is evaluated, “weight change in unit area” in FIG. 3 indicates that the content of Re is in the range of 5 to 18% by mass while maintaining the content of Ag at 0.1% by mass with respect to Cr. The change in weight was examined when the Cr—Re—Ag alloy and Cr alone changed in the above were exposed at a temperature of 1100 ° C. in the atmosphere for up to 200 hours. As is clear from FIG. 3, the Cr—Re—Ag heat - resistant alloy shows less oxidation change and higher oxidation resistance (heat resistance) than Cr alone.

また、図4の「単位面積における重量変化」は、Crに対してReが5質量%とAgが0. 1質量%含有されたCr基耐熱合金とCr単体を1300℃の温度で、大気中で200時間まで暴露させた時の重量変化を調べたものである。 In addition, “weight change in unit area” in FIG. 4 indicates that Re is 5 mass% with respect to Cr and Ag is 0.2%. This is a change in weight when a Cr-based heat-resistant alloy and Cr alone contained at 1 mass% are exposed at a temperature of 1300 ° C. in the atmosphere for up to 200 hours.

図4からも明らかなようにCr-Re-Ag合金は重量変化が少ないのに対してCr単体の重量は激減しておりCr-Re-Ag合金は高い耐酸化性(耐熱性)を示している。   As is clear from FIG. 4, the Cr—Re—Ag alloy has little change in weight, whereas the weight of the Cr alone is drastically reduced, and the Cr—Re—Ag alloy exhibits high oxidation resistance (heat resistance). Yes.

この出願の発明で得られるCr基合金は、高温環境下で使用する構造用耐熱材料として好適な高温における圧縮強度や耐酸化性が優れており、しかも室温での引張延性(伸び)が5%もあるためジェットエンジンおよびガスタービンの翼、エンジンの吸入バルブや排気バルブ、ロッカーアーム、オートバイ及び自動車のエンジンのターボチャージャー連結棒等の耐熱物品としての実用化の可能性が期待される。   The Cr-based alloy obtained by the invention of this application is excellent in compressive strength and oxidation resistance at high temperatures suitable as a structural heat-resistant material for use in high-temperature environments, and has a tensile ductility (elongation) of 5% at room temperature. Therefore, the possibility of practical application as heat-resistant articles such as jet engine and gas turbine blades, engine intake and exhaust valves, rocker arms, and turbocharger connecting rods of motorcycle and automobile engines is expected.

Cr-Re合金の室温での引張延性とReの含有量の関係を示したものである。This shows the relationship between the tensile ductility at room temperature of the Cr-Re alloy and the content of Re. Cr及びCr-5Re-0.1Ag合金(質量%)の0.2%圧縮降伏強度の室温から1300℃までの温度依存性を示したものである。This shows the temperature dependence of 0.2% compressive yield strength of Cr and Cr-5Re-0.1Ag alloy (mass%) from room temperature to 1300 ° C. Cr及びCr-5〜18Re-0.1Ag合金を大気中に1100℃で200時間(h)まで暴露した時の単位面積当りの重量変化を示したものである。3 shows the change in weight per unit area when Cr and Cr-5 to 18Re-0.1Ag alloy were exposed to the atmosphere at 1100 ° C. for up to 200 hours (h). Cr及びCr-5Re-0.1Ag(質量%)を大気中に1300℃で200時間(h)まで暴露した時の単位面積当りの重量変化を示したものである。It shows the change in weight per unit area when Cr and Cr-5Re-0.1Ag (mass%) are exposed to the atmosphere at 1300 ° C. for up to 200 hours (h).

Claims (5)

Agを0.05質量%〜0.1質量%含み、残部がCr及び不可避的不純物からなる高温使用環境下で使用されるCr基耐熱合金であって、室温における引張延性が3%以上であることを特徴とする引張延性が良好なCr基耐熱合金。 A Cr-based heat-resistant alloy containing 0.05 mass% to 0.1 mass% of Ag , the balance being Cr and inevitable impurities, which is used in a high temperature use environment, and has a tensile ductility of 3% or more at room temperature A Cr-based heat-resistant alloy with good tensile ductility. 請求項1に記載のCr基耐熱合金において、さらにReが0.3〜18.0質量%の範囲で含有されていることを特徴とする引張延性が良好なCr基耐熱合金。   The Cr-base heat-resistant alloy according to claim 1, further comprising Re in a range of 0.3 to 18.0 mass%, and having a good tensile ductility. 請求項1または2に記載のCr基耐熱合金において、Irが0.5〜2.0質量%の範囲で含有されていることを特徴とする引張延性が良好なCr基耐熱合金。   The Cr-base heat-resistant alloy according to claim 1 or 2, wherein Ir is contained in a range of 0.5 to 2.0% by mass, and the tensile ductility is good. Reを0.3〜18.0質量%、Irを0.5〜2.0質量%含み、残部がCr及び不可避的不純物からなる高温使用環境下で使用されるCr基耐熱合金であって、室温における引張延性が3%以上であることを特徴とする引張延性が良好なCr基耐熱合金。 A Cr-based heat-resistant alloy used in a high-temperature environment including Re of 0.3 to 18.0% by mass , Ir of 0.5 to 2.0% by mass and the balance of Cr and inevitable impurities, A Cr-based heat-resistant alloy having good tensile ductility, characterized by having a tensile ductility at room temperature of 3% or more . 請求項1から4のいずれか1項に記載される引張延性が良好なCr基耐熱合金で構成されていることを特徴とするジェットエンジンもしくはガスタービンの翼、エンジンの吸入バルブもしくは排気バルブ、ロッカーアーム、またはオートバイもしくは自動車のエンジンのターボチャージャー連結棒のいずれかの耐熱物品。
Wing of a jet engine or gas turbine, characterized in that the tensile ductility is claimed in any one of 4 is formed from a good Cr-base superalloy, suction valve or an exhaust valve of an engine, the rocker A heat-resistant article, either an arm or a turbocharger connecting rod of a motorcycle or automobile engine.
JP2005004237A 2005-01-11 2005-01-11 Cr-based alloy containing Re and Ag Expired - Fee Related JP5062709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004237A JP5062709B2 (en) 2005-01-11 2005-01-11 Cr-based alloy containing Re and Ag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004237A JP5062709B2 (en) 2005-01-11 2005-01-11 Cr-based alloy containing Re and Ag

Publications (2)

Publication Number Publication Date
JP2006193762A JP2006193762A (en) 2006-07-27
JP5062709B2 true JP5062709B2 (en) 2012-10-31

Family

ID=36800072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004237A Expired - Fee Related JP5062709B2 (en) 2005-01-11 2005-01-11 Cr-based alloy containing Re and Ag

Country Status (1)

Country Link
JP (1) JP5062709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113107633A (en) * 2021-04-14 2021-07-13 潍柴动力股份有限公司 Air valve and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5755819B2 (en) 2012-10-31 2015-07-29 福田金属箔粉工業株式会社 Ni-Cr-Co alloy with high-temperature corrosion resistance and surface-modified poppet valve using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138092A (en) * 1987-11-25 1989-05-30 Tosoh Corp Filler metal
JPH04276606A (en) * 1991-03-04 1992-10-01 Daido Steel Co Ltd Magnetic film and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113107633A (en) * 2021-04-14 2021-07-13 潍柴动力股份有限公司 Air valve and preparation method thereof

Also Published As

Publication number Publication date
JP2006193762A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
JP5696995B2 (en) Heat resistant superalloy
CA2677574C (en) High-temperature-resistant cobalt-base superalloy
JP6328398B2 (en) High strength titanium alloy with excellent oxidation resistance and compressor parts using the same
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
JP2007185712A (en) Braze alloy composition
JPWO2007032293A1 (en) High heat resistance, high strength Co-based alloy and method for producing the same
WO2007091576A1 (en) Iridium-based alloy with high heat resistance and high strength and process for producing the same
TWI452149B (en) High heat-resistant and high-strength rh group alloy and method for manufacturing the same
JP2006070360A5 (en)
JP2011231403A (en) Cobalt-nickel superalloy, and related article
JP2008525634A (en) Ni-based alloys, components, gas turbine equipment and use of Pd in connection with the alloys
JPWO2006104138A1 (en) Heat resistant material
JP4463763B2 (en) Abrasion and corrosion resistant cobalt alloys
US6582534B2 (en) High-temperature alloy and articles made therefrom
JP5062709B2 (en) Cr-based alloy containing Re and Ag
US6982059B2 (en) Rhodium, platinum, palladium alloy
US20170051382A1 (en) Optimized nickel-based superalloy
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
CN100497701C (en) NiAl-Cr(Mo) biphase eutectic crystal intermetallic compound modified by V
JP5636639B2 (en) Ni-base superalloy
JP2011174123A (en) Nickel-base alloy and gas turbine component for land using the same
Povarova et al. Heat-resistant RuAl-based alloys: Part I. Cast alloys
JP4061407B2 (en) Chrome alloy for heat-resistant parts
KR102197355B1 (en) Ni base single crystal superalloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees