JP4060363B2 - Production of polymer monofilaments or yarns coated with heat stable metals - Google Patents

Production of polymer monofilaments or yarns coated with heat stable metals Download PDF

Info

Publication number
JP4060363B2
JP4060363B2 JP50299398A JP50299398A JP4060363B2 JP 4060363 B2 JP4060363 B2 JP 4060363B2 JP 50299398 A JP50299398 A JP 50299398A JP 50299398 A JP50299398 A JP 50299398A JP 4060363 B2 JP4060363 B2 JP 4060363B2
Authority
JP
Japan
Prior art keywords
monofilament
nickel
yarn
coated
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50299398A
Other languages
Japanese (ja)
Other versions
JP2000512690A (en
Inventor
カウストン,ジヨン・デイ
フーバー,マーウイン・エフ
バーク,トーマス・エフ
スターンズ,トーマス・エイチ
Original Assignee
イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/656,914 external-priority patent/US5935706A/en
Priority claimed from US08/655,733 external-priority patent/US6045680A/en
Application filed by イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー filed Critical イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー
Publication of JP2000512690A publication Critical patent/JP2000512690A/en
Application granted granted Critical
Publication of JP4060363B2 publication Critical patent/JP4060363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal

Description

本発明は、無電解メッキされたニッケルで、そして場合によっては該ニッケル上へ電気メッキされた金属でコートされている、複数のポリマーのモノフィラメントから製造されている、完全にそして実質的に均一に、金属でコートされたポリマーのモノフィラメント又は糸の製法に関する。より具体的には、本発明は、後になって、無電解メッキニッケルでコートされる、ポリマーのモノフィラメントの表面を活性化させるための方法に関する。
本発明時までは、ポリマーのモノフィラメント又はマルチフィラメントの糸上に金属コーティングをメッキして、熱に安定な複合生成物を形成すること及び/又は、低いもしくは中程度の摩擦力によりモノフィラメント又は糸から容易には外れない金属コーティングをメッキすることが困難であった。ポリマーの繊維を、無電解メッキされた銅で、そして次には、電気メッキされた銅でコートすることが提唱されてきた。しかし、熱サイクル(cycling)テストに暴露される時、これらのコーティングは不安定で、亀裂して、金属付着性を喪失する。
糸を金属コートするための、商業的に効果的な方法を提供するためには、バッチ法でなく連続的な方法を提供しなければならない。これのような方法においては、処理されるモノフィラメントの糸を供給物貯蔵リールから巻出して、適宜な化学的処理段階を通過させ、そして次に、巻き取りリール上に貯蔵する。残念なことに、現在使用可能な糸の処理手段においては、糸の内側に配置されたモノフィラメントはコートされないか又は不十分にコートされるので、モノフィラメント上の金属コーティングは不均一である。不均一にコートされた糸は、望ましくない、不均一な導電性をもつ。ケーブルのための遮蔽用の外側層のためのような多数の用途において、不均一な金属の外側層は許容できない。
湿潤性の化学的な無電解法により、マルチフィラメント糸の束中のモノフィラメントの表面上に、均一にそして完全に、無電解ニッケルをメッキすることは極めて困難であった。種々のタイプの前以て織られた布が、電磁妨害(EMI)制御及びシールドとしての使用のために、無電解金属、主として無電解銅でコートされている。しかし、無電解銅は、前織り布においては、個々のモノフィラメントポリマーの表面に対しては適当な付着性をもつように見えるが、完全には理解されない理由のために、高温への暴露又は湿度への暴露後には、その付着性を維持しないであろう。この問題は、本発明の方法により処理されたポリマーの表面上に、種々の官能基に対して強いポリマー結合を形成する無電解ニッケルを使用することにより、軽減させることができる。生成されるニッケルコートフィラメントは、熱サイクル及び湿度に対する崩壊的暴露に対して抵抗性である。
ポリマーの表面に無電解金属をメッキするための方法において、概括的に、それが、無電解金属メッキのための触媒を受け入れるように、表面を処理することが必要である。米国特許第5,302,415号明細書は、銅、ニッケル、銀、又はコバルトを使用する、種々のアラミド繊維を無電解的に金属化させるための方法につき記載している。公表された方法は、80ないし90%の硫酸溶液を使用して、アラミド繊維の表面を改質させている。改質は、脱重合化の結果としての、制御された繊維の崩壊により達成されて、無電解金属メッキを促進する増感剤の付着のための場所を提供する。しかし、アラミド繊維は酸中で溶解又は崩壊されるであろうから、ごく短時間しか、この強硫酸溶液と接触させることができない。無電解銅のメッキは具体的に、問題のケーブルシールドの用途が要求するような、付着性、延性及び曲げ耐久性に欠ける、粗粒コーティングを生成する。更に、全−無電解銅構成物は、長期間の酸化に対して暴露される銅を遮蔽するために、各モノフィラメント上にもう1枚の金属層の追加を必要とする。従来の亜リン酸還元無電解ニッケル法によるニッケルメッキは具体的に、銅の15%未満の伝導度をもつコーティングをもたらす。これらのニッケル法の、ニッケル−亜リン酸合金中での亜リン酸の酸化により、これらのコーティングは、はるかに安定な表面を形成し、概括的に、高い腐食抵抗に関与する用途に対して好まれる。しかし、それらは、清浄化に著しく抵抗性で困難である。そのために、特に、コートされる表面がポリマーのフィラメント上である時には、これらのニッケル−亜リン酸層上へ、その他の金属を電気メッキすることが困難である。従って、従来の亜リン酸還元化学に基づく、全−無電解ニッケルは、重量/厚さの観点に対して、高い伝導度をもつ金属化繊維コーティングを達成する目的に対しては余り適宜でない。
従って、完全にそして実質的に均一に、金属でコートされているポリマーの糸の製法を提供することは望ましいことであろう。更に、重量/厚さの観点に対して、高い伝導度をもつことができるこのような、完全にコートされた糸を提供することも望ましいことであろう。更に、ポリマーのモノフィラメント又は糸を実質的には崩壊させない、ポリマーの表面の活性化段階を含む方法を提供することも望ましいことであろう。更に、連続的なリールからリールへの方法により形成することができる金属コートの糸を提供することも望ましいことであろう。このような方法は、EMIシールドのような多様な環境において使用することができる可能性がある、完全にそして実質的に均一に金属コートされた糸の、商業的な生産を可能にするであろう。
発明の要約
本発明は、ポリマーのモノフィラメントの表面を改質させて前記の表面を水湿潤性にさせるための方法で、前記の表面を、75ないし85重量パーセントの濃度をもつ、硫酸又は硫酸の強酸誘導体、及び界面活性剤を含んでなる活性化水溶液と、前記の表面を水湿潤性にさせるのに十分な、しかしそこで、前記のモノフィラメントの実質的な機械的崩壊が起こる程度には至らないような時間及び温度で、接触させることを特徴とする方法、を提供する。
本方法はまた、前記のモノフィラメントを、少なくとも1個の供給リールから、無電解ニッケル浴を通して、そこで、前記の浴中の前記のモノフィラメント上の張力が、完全なそして実質的に均一なコートを可能にするのに十分低い、少なくとも1個の巻き取りリールに供給すること、を特徴とする、前記のニッケルでコートする前に、モノフィラメントを、酸及び界面活性剤の溶液と接触させる方法により、前記の表面を改質させる、ポリマーのモノフィラメントの表面を、導電性の無電解ニッケル−コーティングで、完全にそして実質的に均一にコートするための方法、を提供する。
本発明は、導電性のニッケル−ホウ素合金コーティングでコートされた、モノフィラメント及びモノフィラメントの糸、を含む。
図の簡単な説明
図は本発明に従う、糸の処理に適した機器を示している。
発明の詳細な説明
本発明の方法の実施法に従う第1段階として、金属でコートされる糸中のモノフィラメントの表面を、表面を親水性にさせて、無電解ニッケルメッキをもたらすための触媒の吸着を容易にさせる活性化水溶液と接触させる。活性化水溶液は、硫酸のような酸、又はメタンスルホン酸、クロロスルホン酸、フルオロスルホン酸、等のような、硫酸の強酸誘導体、並びに8ないし12個の炭素原子をもつ界面活性剤、を含んでなる。適宜な界面活性剤は、フルオロアルキル塩、エーテル及びエステル、ポリエトキシル化第四級アンモニウム塩、アルキル安息香酸ナトリウム、ポリエトキシル化直鎖アルコール等を含む。特に適宜な界面活性剤は、ペルフルオロアルキルスルホン酸アミン、フッ素化アルキルアルコキシラート、フッ素化アルキルエステル、フッ素化アルキルカルボン酸塩等を含む。界面活性剤の使用は、実質的な崩壊をもたらさずに、モノフィラメントとのより長い接触時間を可能にする、より弱い酸の組成物の使用を可能にする。増加した許容できる接触時間が、処理されるあらゆる糸の内側のモノフィラメント中への水性活性化組成物の増加した浸透を可能にする。
次いで、導電性金属の無電解メッキのための触媒性の表面を提供するために、糸又はモノフィラメントの表面を、パラジウム触媒と接触させる。本明細書で使用される、無電解的に適用された金属コーティングに関する語の「ニッケル」は、ニッケル/ホウ素合金を意味し、ニッケル/亜リン酸合金を排除する。ポリマーのモノフィラメントのためのニッケル−ホウ素合金コーティングを生成する無電解ニッケル浴は、ニッケル及びホウ素の両者及び還元剤を含有する。
活性化溶液との接触段階の後、金属コートされるモノフィラメントを、概括的には糸として、無電解浴を通過させて、すべてのモノフィラメント表面上に完全にそして実質的に均一に、ニッケルをコートさせる。ニッケルコート用溶液が全体の糸の束の中に、なかでも糸の束の内側に配置されているモノフィラメントの表面上にすら浸透することができるように、無電解ニッケル浴を通過する糸への張力は、除去されるか又は十分に低く維持される。糸が中程度に有意な張力下で無電解ニッケル浴を通過する時には、糸の束の内側のモノフィラメントが全くコートされないか又は、モノフィラメント上の金属コーティングが均一でないように、不完全にコートされることが発見された。
本発明の無電解ニッケルコート後には、ニッケルコートされた糸は、銅又はニッケルのような電解金属で電解的にコートすることができる。電解金属メッキはまた、そこで、撹拌電解水浴内に配置されたニッケルコート糸が、ほとんど又は全く張力にさらされないで、水性電解浴を、コートされる糸の内側に浸透させる、リールからリール法において実施することができる。
ポリマーのモノフィラメント又は糸として、ポリアラミドのモノフィラメントを使用する時に、低い電気抵抗及び高い強度対重量の組み合わせが重要な設計目的であるような、電気シールド及び信号伝達の用途のための最適な複合体が得られる。編組したり又は織ることができるニッケルコートの、又はニッケルと電解金属でコートされたモノフィラメント又は糸は、金属ワイヤの代替物として働く。多層の構造物は、その製造方法のみならず、それらの中に、従来の当該技術に勝る幾つかの改良点:
1. (a) 適宜に処理されたポリマー表面と一緒に、温度/湿度サイクル又ははんだ付け温度への暴露下で明白には崩壊しない金属−ポリマー結合;
(b) 本質的に純粋なニッケル基材が、
(1)銅のような金属の、後になって電解的に適用される層と冶金学的に相容性であり、
(2)ニッケル層と金属、例えば銅の層との間の界面において、ポリマーからの、吸収された湿気又は酸素の移行を阻止し、
(3) 薄い層(0.5ミクロン未満の厚さ)で十分に伝導性なので、金属、例えば銅の高速の電気メッキによるメッキを可能にさせること;
(c) ポリマーの糸の束中の各モノフィラメントの、均一で完全な金属化、
を達成するための、最初の金属化層としての、アミン−ボラン還元無電解ニッケルの使用、
2. その密度の高い微粒子組成のために(a)優れた延性及び曲げ耐久性をもち;(b)無電解銅よりも、単位重量当たりの伝導性が大きい、電気メッキされた金属の層、例えばアミン−ボラン・ニッケル層上の銅、
3. 銅に対する摩耗抵抗性のみならず、酸化/腐食保護性を提供するために、銅の層の上に、ニッケル、銀、スズ、等のうちの、1種又は数種の電気メッキ層、
を含む。
本発明の用途の1つの態様において、アミン−ボラン還元無電解ニッケルのみで金属化されたポリアラミドのモノフィラメントの糸の束からなる構成物が提供されている。これらの金属化繊維は、短い長さに切断されると、電気/電子製品中に使用される成型プラスチックの部品の表面への静電気の蓄積を最小にする、伝導性充填剤としての用途が見いだされる。本態様において、理想的な金属コーティングは、10〜20オーム/フィートの範囲において、ニッケル−亜リン酸合金と異なり、酸化により本質的に変化しない、許容できる程度の伝導性を同時に提供しながら、射出成型法で経験される高温のみならず、切断の機械的な摩耗に耐えるのに十分な接着性をもって、ポリアラミドのモノフィラメントの表面に接着されなければならない。
好ましい態様の説明
本発明に従って処理されるモノフィラメントの表面は、接着性でそして、伝導性ニッケル上へのその後の電解金属コートを容易にするのに十分に導電性の、すべてのモノフィラメント表面上への、より完全で、より均一な無電解ニッケルのコートを可能にする、酸及び界面活性剤の活性化溶液により、更に親水化されたポリマー組成物から形成される。モノフィラメント又は糸を形成するための、代表的で適宜なポリマー組成物は、ポリ(p−フェニレンテレフタルアミド)、ポリ(m−フェニレンイソフタルアミド)、等のようなアラミド、ナイロン6、ナイロン66、等のようなポリアミド、ポリエステル、ポリイミド、ポリエーテルイミド、アクリル系誘導体、ポリテトラフルオロエチレン等、好ましくは、それが、単位重量当たりの優れた張力を提供するので、アラミド、を含む。具体的には、糸は、約55と3,000の間のデニールを、そしてより具体的には、10〜15ミクロンの直径のモノフィラメントにおいて、約55と600の間のデニールをもつ。モノフィラメントは固形でも中空でもよい。
非改質の酸の溶液によるよりも、酸中の界面活性剤により、酸の、糸中への更に有効な浸透が得られることが発見された。界面活性剤は、より弱い酸の使用を可能にさせ、それが、モノフィラメントの表面に対する崩壊の減少をもたらす。界面活性剤と組み合わせて使用される硫酸の場合、75ないし85%、好ましくは78ないし83%の硫酸を使用することができ、それが、望ましくないモノフィラメントの崩壊を回避しながら、活性化組成物との糸の接触時間を著しく増加させる。増加された接触時間及び界面活性剤の存在が、糸の内部への活性化溶液のより完全な浸透をもたらし、それにより、その後の、より確実な、完全なそして実質的に均一な、無電解金属コートを可能にさせる。界面活性剤は約10と1000ppmの間、好ましくは約100と500ppmの間の活性化溶液の濃度で使用される。
活性化溶液中への界面活性剤の使用は好ましく、驚くほど改善された製品を生成するが、許容できるニッケルコートされたモノフィラメントは、単独で又は、メタノールもしくはエタノールのような低級アルコール、又はクロム酸、等と組み合わせて使用される、水酸化カリウム、水酸化ナトリウム、又はその他のかせい組成物のような、表面の水湿潤性を改善することが知られている溶液で、モノフィラメントを処理することにより、生成することができる。モノフィラメントはまた、繊維はこのような浸漬により幾らか崩壊するかも知れないが、例えば、80ないし90重量パーセントの硫酸中への、10ないし100℃における、2ないし60秒間の浸漬によるような、米国特許第5,302,415号明細書に記載されたような濃硫酸中への浸漬により処理することができる。
モノフィラメントの表面が一旦水湿潤性にされた後に、表面は、無電解メッキの分野の専門家には周知の触媒系のいずれか1種に接触されて、無電解金属メッキをもたらす。増感化表面と一緒に使用することができる触媒組み合わせ物は、米国特許第3,011,920号及び同第3,562,038号明細書に公表されている。触媒の使用は概括的に1ないし約5分間の間、実施され、そして次にサンプルを酸性溶液に浸けて、加速法(acceleration)と称される方法で、表面からスズを除去する。次に、約2ないし10分間にわたる期間、サンプルを無電解ニッケル浴中を通過させて、所望のニッケルの厚さをもたらす。
触媒のメッキ及び活性化並びにその後の無電解ニッケルのメッキは、処理浴がすべてのモノフィラメントの表面に接触するように、ゼロか又は十分に低い張力下の糸で実施される。
図において、貯蔵ロール10がその上にマルチフィラメントの糸12及び14を巻取ってある。ガイドローラー16及び18が貯蔵ロール10から糸14及び12を引っ張り、浴20中において、そしてエンドレスウェブ22上へ、糸をメッキする。エンドレスウェブ22は、少なくともその一方が動力化されている、ローラー24及び26の周囲を移動する。糸12及び14はガイドローラー28及び30の下方を通過し、
処理された糸36及び38として動力の付いたローラー32及び34により浴20から取出される。浴は前処理された浴でも、触媒メッキ又は活性化浴でも又は、前記の無電解ニッケル浴でもよい。動力付きローラー32及び34及びエンドレスウェブ22は、エンドレスウェブ22上に浴20中でメッキされた糸40及び42上に、確実に、ほとんどもしくは全く張力がかからないスピードで操作される。従って、糸の中の各モノフィラメントの全表面が浴20の組成物と接触される。
ホウ素を基礎にした浴は、酸化に抵抗性で、それに続く、ニッケル表面上への、銅のような電解金属のメッキを容易にするのに十分に伝導性である、ニッケルの形態をメッキするので、適宜な無電解ニッケル浴は、亜リン酸を基礎にしたものより、むしろホウ素を基礎にしたものである。適宜な、ホウ素を基礎にした無電解ニッケル浴は、米国特許第3,062,666号;第3,140,188号;第3,338,762号;第3,531,301号;第3,537,878号;及び第3,562,038号明細書に公表されている。幾つかの具体的な調製物は以下のようである:
1. 硫酸ニッケル(NiSO4・6H2O) 20.00g/l
ジメチルアミンボランクエン酸 3.0g/l
クエン酸 10.0g/l
濃HCl 25.0ml/l
水酸化アンモニウム pH7.0まで
2−メルカプトベンゾチアゾール 0.5〜2.0mg/l
65℃
2. 塩化ニッケル(NiCl26H2O) 16.0g/l
ジメチルアミンボラン 3.0g/l
クエン酸ナトリウム 18.0g/l
グリシン 8.0g/l
硝酸ビスマス 20.0mg/l
チオ尿素 15.0mg/l
pH7.0、65℃
ニッケルは、無電解メッキにより受容表面上にメッキされて、ニッケル亜リン酸合金よりも、ニッケル−ホウ素合金から形成された導電性ニッケルコートの表面を形成する。ニッケルイオンは、この過程で、モノフィラメントの触媒表面上にコートされたニッケル金属に還元されて、完全で実質的に均一な導電性の層を形成する。ニッケル−ホウ素合金の具体的な比抵抗性は約8と15マイクロ−オームcmの間である。ニッケル−低亜リン酸合金の具体的な比抵抗性は20〜50マイクロ−オームcmであり;そしてニッケル−高亜リン酸合金に対しては、150〜250マイクロ−オームcmである。無電解層は銅のような均一な金属層の、その後の電気メッキを可能にするのに十分に厚い。概括的に無電解ニッケル層は、約0.1と1.0マイクロメーターの間の厚さであるが、所望の場合は更に厚くすることができる。
電気メッキ法の一段階では、ニッケルコートのモノフィラメントを、電気銅のような電解金属で更にコートすることができる。好ましい電気メッキ法の段階においては、ニッケルコートの糸を、電気メッキ水性浴が糸全体の中に浸透して、すべてのニッケルコートのモノフィラメントの表面に接触できるように、ほとんどもしくは全く張力のない状態で電気メッキ浴を通過させる。電荷を電気メッキ浴にかけて、すべてのニッケルの表面に完全にそして実質的に均一に電解金属メッキをもたらす。電解金属コーティングの厚さは、時間、温度及び、浴の金属濃度を調節することにより、そして、当該技術分野で周知の方法で、浴中を通る電荷量を調節することにより、調節することができる。
以下の実施例は本発明を具体的に示しており、それを制限する意図はない。
実施例1
89本のモノフィラメントをもつ200デニール(d)のパラ−アラミドの糸を、過フッ素化アルキルエステルの界面活性剤及び、過フッ素化アルキルアルコキシラートの界面活性剤、の3:1混合物の50ppmを含有する79%硫酸の活性化水溶液中で、40℃で90秒間、処理した。パラ−アラミドの糸はE.I.du Pont de Nemours and Company社により、“Kevlar”の商品名で販売されている製品であった。次いで糸を水で濯ぎ、図に示されたような運搬用フィルム上でゼロもしくは非常に低い張力下で、連続的処理法により運搬した。連続法は、無電解ニッケルメッキ、最終濯ぎ、乾燥、及び巻取り段階の前に、触媒系を提供する溶液を含む、図に示されるような一連の装置中における、一連の段階を含んでいた。最初に、糸を、Atotech,Inc,社により、Neoganth 834の商品名で販売されているイオン性の、可溶性パラジウム複合物である、パラジウムの活性化溶液中に通過させる前に、モノフィラメントの表面をアルカリ性にさせる、約5%のNaOHの溶液を通過させた。この溶液は、pHを11.5に調整するために使用された50%NaOH溶液を0.5%を含む、脱イオン水96.5容量%中に、Neoganth 834パラジウム活性剤濃厚液を3%使用することにより生成された。浴を約2時間50℃に加熱し、次に、糸の処理の使用のために45℃に冷却した。パラジウム浴の後に、糸を、各々脱イオン水で約1分間の濯ぎを与える、2カ所の濯ぎステーションを通過させ、次にAtotech,Inc.社により「Neoganth WA」の商品名で販売されているジメチルアミンボラン還元剤溶液を通過させた。還元剤溶液をNeoganth WA濃厚液の0.5重量%を採り、それを、pH緩衝液として0.5%ホウ酸を含む、99%脱イオン水で希釈することにより、生成した。この溶液を、ポリマーの表面上に、無電解ニッケルメッキを開始させるための活性触媒部位を提供する、パラジウム金属への、可溶性パラジウムイオンの還元に使用するために、35℃に加熱した。糸を、還元剤溶液から、MacDermid Corp.社から販売されているNiklad 752を含んでなる無電解ニッケルメッキ浴中に直接移動させた。この浴は70℃でpH6.6で処理され、還元剤としてジメチルアミンボランを含有しており;そして、所望のパーセントのニッケル及び還元剤に対する、供給会社の指示に従って製造された。糸を、非常に低い張力下で運搬フィルム上に支持しながら、浴中を移動させた。浴中で激しく撹拌することにより、糸の束中への浴の完全な浸透、及び各々のモノフィラメントの均一な金属化、を得ることができた。具体的には、この浴中での4分間の滞留により、ニッケルコーティングにより、糸の約30重量%の増加をもたらした。生成されたコートされた糸は、約100オーム/ft.の抵抗性をもった。より短い滞留時間で処理された更なる糸は、それに比例して、より少ないニッケル及び、より高い抵抗性をもたらし、一方、より長い滞留時間はそれに比例して、より低い抵抗性を伴って、より高い金属の付着をもたらした。提供された横断面の分析は、糸の束中のすべてのモノフィラメントの周囲に、ニッケルの、完全で均一な付着を示した。
実施例2
中空の、絵のフレーム型のラックを、1/16”のポリエチレンのシート材料から切り取り、ラックの側部の折り返し接触接合部でモノフィラメントを固くまとめないで、糸がラックの周囲に緩く巻くことができるように、ラックの上下にU−型の溝を付けた。実施例1の酸の界面活性剤の活性化溶液により処理された、約20〜25ft.の糸をラック上に巻き、以下の順序で以下の処理溶液中に、手で浸漬させた:外界温度でpH11.5における5%NaOH浸漬前溶液中に2分間;Atotech Corp社からActibator 834として入手可能なパラジウム触媒溶液中に45℃で約2分間、直接に浸漬;次に脱イオン水中で1分間濯ぎ;次に30〜35℃でNeoganth WA還元剤中に2分間浸漬し、次に低亜リン酸無電解ニッケル浴中に浸ける。この浴は、両者ともMacDermid Corp.社から入手可能な、Niklad 797A(金属濃厚物)190ミリリットル及びNiklad 797B(次亜リン酸ナトリウム溶液)570ミリリットル及び脱イオン水を添加して、無電解ニッケルメッキ溶液3.8リットルを生成することにより調製した。pHを50%アンモニアで5.0〜5.2に調整し、糸のサンプルを含むラックの浸漬の前に、溶液を90℃に加熱した。ラックを無電解ニッケル浴中で5分間浸漬する間、撹拌した。これにより、ニッケルコーティングによる糸の33重量%の増加をもたらした。最後の乾燥された糸は、実施例1のコートされた糸より3倍大きい300オーム/ft.の抵抗性をもっていた。
実施例3及び4
米国特許第5,302,415号明細書中で教示されたように、ずっと短い時間、濃硫酸中で糸を処理したことを除いて、実施例1及び2を繰り返した。モノフィラメントの実質的な崩壊を最小にするためには、濃硫酸中への糸の浸漬を、実施例1及び2の浸漬の半分だけの時間に制限することが必要であった。コートされた糸は実施例1及び2のコート糸と同様な電気抵抗を示した。
実施例5
実施例1の方法により得られた金属化された糸を、ニッケルコートされた糸を、それがメッキ浴に侵入し排出される時に、糸中に電流を通じる接触棒の付いた、ガスにより撹拌される電解性の酸の硫酸銅メッキ浴を通過させることにより、後になって、銅で電気メッキさせた。ニッケルコート糸は、糸の損傷を受けるまでに約5ampsの電流に耐久することができ、約65重量%の銅を付加して、1オーム/ft.未満の抵抗をもつ物質を生成した。この銅メッキ糸はまだ最初の出発糸の、良好な処理性、ドレープ性及び柔軟性の特徴すべてを保持していた。この電気メッキ法は、銅上に、微粒子の等軸性結晶構造を提供した。
The present invention is completely and substantially uniform made of a plurality of polymer monofilaments coated with electroless nickel and optionally with a metal electroplated onto the nickel. The invention relates to the production of metal-coated polymer monofilaments or yarns. More specifically, the present invention relates to a method for activating the surface of a polymer monofilament that is subsequently coated with electroless plated nickel.
Until the present invention, metal coatings are plated on polymer monofilament or multifilament yarns to form heat stable composite products and / or from monofilaments or yarns with low or moderate frictional forces. It was difficult to plate a metal coating that did not come off easily. It has been proposed to coat polymer fibers with electrolessly plated copper and then with electroplated copper. However, when exposed to a cycling test, these coatings are unstable, crack and lose metal adhesion.
In order to provide a commercially effective method for metal coating yarns, a continuous method must be provided rather than a batch method. In such a process, the monofilament yarn to be treated is unwound from a feed storage reel, passed through an appropriate chemical treatment stage, and then stored on the take-up reel. Unfortunately, in currently available yarn processing means, the monofilament located inside the yarn is not coated or is poorly coated so that the metal coating on the monofilament is non-uniform. Non-uniformly coated yarns have undesirable, non-uniform conductivity. In many applications, such as for shielding outer layers for cables, non-uniform metal outer layers are unacceptable.
It was extremely difficult to plate electroless nickel uniformly and completely on the surface of monofilaments in a bundle of multifilament yarns by wet chemical electroless methods. Various types of prewoven fabrics are coated with electroless metal, primarily electroless copper, for use as electromagnetic interference (EMI) control and shielding. However, electroless copper appears to have adequate adhesion to the surface of individual monofilament polymers in prewoven fabrics, but for reasons that are not fully understood, exposure to high temperatures or humidity It will not maintain its adherence after exposure to. This problem can be alleviated by using electroless nickel that forms strong polymer bonds to various functional groups on the surface of the polymer treated by the method of the present invention. The resulting nickel coated filament is resistant to disintegrative exposure to thermal cycling and humidity.
In the method for plating electroless metal on the surface of a polymer, it is generally necessary to treat the surface so that it accepts a catalyst for electroless metal plating. U.S. Pat. No. 5,302,415 describes a method for electroless metallization of various aramid fibers using copper, nickel, silver, or cobalt. The published method uses an 80-90% sulfuric acid solution to modify the surface of aramid fibers. The modification is achieved by controlled fiber disintegration as a result of depolymerization and provides a place for the deposition of sensitizers that promote electroless metal plating. However, since aramid fibers will be dissolved or disintegrated in acid, they can only be contacted with this strong sulfuric acid solution for a very short time. Electroless copper plating specifically produces a coarse coating that lacks adhesion, ductility and bending durability as required by the cable shield application in question. Furthermore, the all-electroless copper composition requires the addition of another metal layer on each monofilament to shield the copper exposed to prolonged oxidation. Nickel plating by the conventional phosphite-reduced electroless nickel process specifically results in a coating having a conductivity of less than 15% of copper. Due to the oxidation of these nickel methods, phosphorous acid in nickel-phosphite alloys, these coatings form a much more stable surface, generally for applications involving high corrosion resistance. Liked. However, they are extremely resistant and difficult to clean. Therefore, it is difficult to electroplate other metals onto these nickel-phosphorous acid layers, especially when the surface to be coated is on polymer filaments. Thus, all-electroless nickel, based on conventional phosphite reduction chemistry, is not very suitable for the purpose of achieving a metallized fiber coating with high conductivity, in terms of weight / thickness.
Accordingly, it would be desirable to provide a method for making a polymer-coated polymer yarn that is completely and substantially uniform. Furthermore, it would be desirable to provide such a fully coated yarn that can have high conductivity in terms of weight / thickness. It would also be desirable to provide a method that includes an activation step on the surface of the polymer that does not substantially disrupt the polymer monofilament or yarn. It would also be desirable to provide a metal coated yarn that can be formed by a continuous reel-to-reel method. Such a method would allow commercial production of fully and substantially uniformly metal-coated yarns that could be used in a variety of environments such as EMI shielding. Let's go.
Summary of invention
The present invention is a method for modifying the surface of a polymer monofilament to render the surface water wettable, wherein the surface is sulfuric acid or a strong acid derivative of sulfuric acid having a concentration of 75 to 85 weight percent, And an aqueous activating solution comprising a surfactant and a time sufficient to render the surface water wettable, but not to the extent that substantial mechanical disruption of the monofilament occurs. And a method of contacting at a temperature.
The method also allows the monofilament to be coated from at least one supply reel through an electroless nickel bath where the tension on the monofilament in the bath is completely and substantially uniform. By means of contacting the monofilament with an acid and surfactant solution prior to coating with nickel, characterized in that the monofilament is fed to at least one take-up reel low enough to A method for completely and substantially uniformly coating the surface of a polymer monofilament with a conductive electroless nickel-coating is provided.
The present invention includes monofilaments and monofilament yarns coated with a conductive nickel-boron alloy coating.
Brief description of the figure
The figure shows an apparatus suitable for yarn processing according to the present invention.
Detailed Description of the Invention
As a first step in accordance with the practice of the method of the invention, the activity of making the surface of the monofilament in the metal coated yarn easy to adsorb the catalyst to make the surface hydrophilic and to provide electroless nickel plating Contact with aqueous solution. The activated aqueous solution includes an acid such as sulfuric acid or a strong acid derivative of sulfuric acid such as methanesulfonic acid, chlorosulfonic acid, fluorosulfonic acid, and the like, and a surfactant having 8 to 12 carbon atoms. It becomes. Suitable surfactants include fluoroalkyl salts, ethers and esters, polyethoxylated quaternary ammonium salts, sodium alkylbenzoates, polyethoxylated linear alcohols, and the like. Particularly suitable surfactants include perfluoroalkyl sulfonate amines, fluorinated alkyl alkoxylates, fluorinated alkyl esters, fluorinated alkyl carboxylates, and the like. The use of a surfactant allows the use of weaker acid compositions that allow longer contact times with the monofilament without causing substantial disintegration. Increased acceptable contact time allows for increased penetration of the aqueous activated composition into the monofilament inside any yarn being treated.
The surface of the yarn or monofilament is then contacted with a palladium catalyst to provide a catalytic surface for electroless plating of the conductive metal. As used herein, the term “nickel” with respect to an electrolessly applied metal coating refers to a nickel / boron alloy and excludes a nickel / phosphorous alloy. Electroless nickel baths that produce nickel-boron alloy coatings for polymeric monofilaments contain both nickel and boron and a reducing agent.
After the contact step with the activation solution, the metal-coated monofilament is passed through an electroless bath, generally as a yarn, and the nickel is coated completely and substantially uniformly on all monofilament surfaces. Let To the yarn passing through the electroless nickel bath, the nickel coating solution can penetrate into the entire yarn bundle, especially on the surface of the monofilament located inside the yarn bundle. The tension is removed or kept sufficiently low. When the yarn passes through an electroless nickel bath under moderately significant tension, either the monofilament inside the yarn bundle is not coated at all or is incompletely coated so that the metal coating on the monofilament is not uniform It was discovered.
After the electroless nickel coating of the present invention, the nickel coated yarn can be electrolytically coated with an electrolytic metal such as copper or nickel. Electrolytic metal plating also provides that in a reel-to-reel process, the nickel-coated yarn placed in a stirred electrolytic water bath is exposed to little or no tension, allowing the aqueous electrolytic bath to penetrate inside the yarn to be coated. Can be implemented.
When using polyaramid monofilaments as polymer monofilaments or yarns, there is an optimal composite for electrical shielding and signaling applications where low electrical resistance and high strength versus weight combination is an important design objective. can get. Nickel-coated or nickel-electrolytic metal-coated monofilaments or yarns that can be braided or woven serve as an alternative to metal wires. Multi-layer structures are not only their manufacturing method, but also include several improvements over the prior art:
1. (A) a metal-polymer bond with an appropriately treated polymer surface that does not appreciably collapse under exposure to temperature / humidity cycles or soldering temperatures;
(B) an essentially pure nickel substrate,
(1) Metallurgically compatible with later applied electrolytically layers of metals such as copper,
(2) preventing the migration of absorbed moisture or oxygen from the polymer at the interface between the nickel layer and the metal, eg copper layer,
(3) to enable plating by high-speed electroplating of metals such as copper, since thin layers (thickness less than 0.5 microns) are sufficiently conductive;
(C) uniform and complete metallization of each monofilament in the polymer yarn bundle,
The use of amine-borane reduced electroless nickel as the first metallization layer to achieve
2. Due to its dense particulate composition (a) has excellent ductility and bending durability; (b) a layer of electroplated metal, such as an amine, that has greater conductivity per unit weight than electroless copper -Copper on the borane-nickel layer,
3. To provide oxidation / corrosion protection as well as abrasion resistance to copper, one or several electroplating layers of nickel, silver, tin, etc. on the copper layer,
including.
In one aspect of the application of the present invention, a composition comprising a bundle of polyaramid monofilament yarns metallized only with amine-borane reduced electroless nickel is provided. These metallized fibers find use as conductive fillers when cut to short lengths to minimize the accumulation of static electricity on the surface of molded plastic parts used in electrical / electronic products. It is. In this embodiment, an ideal metal coating, in the range of 10-20 ohms / ft, unlike nickel-phosphite alloys, while simultaneously providing acceptable conductivity that is essentially unchanged by oxidation, It must adhere to the surface of the polyaramide monofilament with sufficient adhesion to withstand the mechanical wear of the cut as well as the high temperatures experienced in injection molding processes.
Description of preferred embodiments
The surface of the monofilament treated in accordance with the present invention is more complete on all monofilament surfaces that are adhesive and sufficiently conductive to facilitate subsequent electrolytic metal coating on conductive nickel. Formed from a polymer composition that has been further hydrophilized with an activated solution of acid and surfactant, allowing a more uniform electroless nickel coating. Typical suitable polymer compositions for forming monofilaments or yarns are aramids such as poly (p-phenylene terephthalamide), poly (m-phenylene isophthalamide), nylon 6, nylon 66, etc. Polyamides, polyesters, polyimides, polyetherimides, acrylic derivatives, polytetrafluoroethylene, and the like, preferably including aramid because it provides excellent tension per unit weight. Specifically, the yarn has a denier between about 55 and 3,000, and more specifically, between about 55 and 600 in a 10-15 micron diameter monofilament. The monofilament may be solid or hollow.
It has been discovered that surfactants in acid provide more effective penetration of the acid into the yarn than by unmodified acid solutions. Surfactants allow the use of weaker acids, which leads to a decrease in the decay to the monofilament surface. In the case of sulfuric acid used in combination with a surfactant, 75 to 85%, preferably 78 to 83% sulfuric acid can be used, which avoids undesirable monofilament breakdown while activating composition. Significantly increase the yarn contact time with. Increased contact time and the presence of surfactant result in more complete penetration of the activation solution into the interior of the yarn, thereby ensuring a more reliable, complete and substantially uniform electroless Enable metal coating. The surfactant is used at a concentration of the activation solution between about 10 and 1000 ppm, preferably between about 100 and 500 ppm.
The use of surfactants in the activation solution is preferred and produces surprisingly improved products, but acceptable nickel-coated monofilaments can be used alone or in lower alcohols such as methanol or ethanol, or chromic acid. By treating the monofilament with a solution known to improve surface water wettability, such as potassium hydroxide, sodium hydroxide, or other skein compositions used in combination with Can be generated. Monofilaments also can be used in the United States, for example, by immersion for 2 to 60 seconds at 10 to 100 ° C. in 80 to 90 weight percent sulfuric acid, although the fibers may disintegrate somewhat by such immersion. The treatment can be performed by immersion in concentrated sulfuric acid as described in Japanese Patent No. 5,302,415.
Once the surface of the monofilament has been wetted, the surface is contacted with any one of the catalyst systems well known to those skilled in the electroless plating field to provide electroless metal plating. Catalyst combinations that can be used with sensitized surfaces are published in US Pat. Nos. 3,011,920 and 3,562,038. The use of the catalyst is generally carried out for 1 to about 5 minutes, and then the sample is immersed in an acidic solution to remove tin from the surface in a method called acceleration. The sample is then passed through an electroless nickel bath for a period of about 2 to 10 minutes to provide the desired nickel thickness.
Catalyst plating and activation, and subsequent electroless nickel plating, is performed with a thread under zero or sufficiently low tension so that the treatment bath contacts the surface of all monofilaments.
In the figure, a storage roll 10 has wound thereon multifilament yarns 12 and 14. Guide rollers 16 and 18 pull the yarns 14 and 12 from the storage roll 10 and plate the yarns in the bath 20 and onto the endless web 22. The endless web 22 moves around rollers 24 and 26, at least one of which is motorized. The yarns 12 and 14 pass under the guide rollers 28 and 30,
The treated yarns 36 and 38 are removed from the bath 20 by powered rollers 32 and 34. The bath may be a pretreated bath, a catalytic plating or activation bath, or an electroless nickel bath as described above. The powered rollers 32 and 34 and the endless web 22 are operated on the yarns 40 and 42 plated in the bath 20 on the endless web 22 reliably and at a speed with little or no tension. Accordingly, the entire surface of each monofilament in the yarn is contacted with the composition of bath 20.
The boron-based bath is plated with a form of nickel that is resistant to oxidation and is sufficiently conductive to facilitate subsequent plating of an electrolytic metal, such as copper, onto the nickel surface. Thus, suitable electroless nickel baths are based on boron rather than those based on phosphorous acid. Suitable boron-based electroless nickel baths are disclosed in US Pat. Nos. 3,062,666; 3,140,188; 3,338,762; 3,531,301; , 537,878; and 3,562,038. Some specific preparations are as follows:
1. Nickel sulfate (NiSOFour・ 6H2O) 20.00 g / l
Dimethylamine boronic acid 3.0 g / l
Citric acid 10.0 g / l
Concentrated HCl 25.0 ml / l
Ammonium hydroxide up to pH 7.0
2-mercaptobenzothiazole 0.5-2.0 mg / l
65 ° C
2. Nickel chloride (NiCl26H2O) 16.0 g / l
Dimethylamine borane 3.0g / l
Sodium citrate 18.0 g / l
Glycine 8.0g / l
Bismuth nitrate 20.0mg / l
Thiourea 15.0mg / l
pH 7.0, 65 ° C
Nickel is plated on the receiving surface by electroless plating to form a surface of a conductive nickel coat formed from a nickel-boron alloy rather than a nickel phosphite alloy. In this process, the nickel ions are reduced to nickel metal coated on the monofilament catalyst surface to form a complete and substantially uniform conductive layer. The specific resistivity of the nickel-boron alloy is between about 8 and 15 micro-ohm cm. The specific resistivity of the nickel-low phosphite alloy is 20-50 micro-ohm cm; and for a nickel-high phosphite alloy is 150-250 micro-ohm cm. The electroless layer is thick enough to allow subsequent electroplating of a uniform metal layer such as copper. Generally, the electroless nickel layer is between about 0.1 and 1.0 micrometers thick, but can be thicker if desired.
In one step of the electroplating process, the nickel-coated monofilament can be further coated with an electrolytic metal such as electrolytic copper. In the preferred electroplating stage, the nickel coated yarn is in little or no tension so that the aqueous electroplating bath can penetrate into the entire yarn and contact the surface of all the nickel coated monofilaments. Pass through the electroplating bath. The charge is applied to an electroplating bath to provide an electrolytic metal plating completely and substantially uniformly on all nickel surfaces. The thickness of the electrolytic metal coating can be adjusted by adjusting the time, temperature, and metal concentration of the bath, and by adjusting the amount of charge passing through the bath in a manner well known in the art. it can.
The following examples illustrate the present invention and are not intended to limit it.
Example 1
200 denier (d) para-aramid yarn with 89 monofilaments containing 50 ppm of a 3: 1 mixture of surfactant of perfluorinated alkyl ester and surfactant of perfluorinated alkyl alkoxylate Treated in an activated aqueous solution of 79% sulfuric acid at 40 ° C. for 90 seconds. The para-aramid yarn was a product sold under the trade name “Kevlar” by E.I.du Pont de Nemours and Company. The yarn was then rinsed with water and conveyed by a continuous process on zero or very low tension on a conveying film as shown in the figure. The continuous process involved a series of steps in a series of equipment as shown in the figure, including a solution that provides the catalyst system prior to the electroless nickel plating, final rinse, drying, and winding steps. . First, the monofilament surface is passed through the yarn before passing it through an activated solution of palladium, an ionic, soluble palladium complex sold under the trade name Neoganth 834 by the company Atotech, Inc. A solution of about 5% NaOH was passed through which was made alkaline. This solution contains 0.5% 50% NaOH solution used to adjust the pH to 11.5, 3% Neoganth 834 palladium activator concentrate in 96.5% by volume deionized water. Generated by using. The bath was heated to 50 ° C. for about 2 hours and then cooled to 45 ° C. for use in yarn processing. After the palladium bath, the yarn is passed through two rinsing stations, each rinsing with deionized water for about 1 minute, and then sold under the name “Neoganth WA” by Atotech, Inc. A dimethylamine borane reducing agent solution was passed through. A reducing agent solution was produced by taking 0.5% by weight of Neoganth WA concentrate and diluting it with 99% deionized water containing 0.5% boric acid as pH buffer. This solution was heated to 35 ° C. for use in the reduction of soluble palladium ions to palladium metal, which provides active catalytic sites on the polymer surface to initiate electroless nickel plating. The yarn was transferred directly from the reducing agent solution into an electroless nickel plating bath comprising Niklad 752 sold by MacDermid Corp. This bath was treated at pH 6.6 at 70 ° C. and contained dimethylamine borane as the reducing agent; and was prepared according to the supplier's instructions for the desired percent nickel and reducing agent. The yarn was moved through the bath while being supported on the transport film under very low tension. By vigorous stirring in the bath, complete penetration of the bath into the yarn bundle and uniform metallization of each monofilament could be obtained. Specifically, a 4 minute dwell in this bath resulted in an increase of about 30% by weight of the yarn due to the nickel coating. The coated yarn produced is about 100 ohm / ft. Has the resistance of Additional yarns treated with shorter residence times yielded proportionally less nickel and higher resistance, while longer residence times proportionately with lower resistance, This resulted in higher metal adhesion. The provided cross-sectional analysis showed complete and uniform deposition of nickel around all monofilaments in the yarn bundle.
Example 2
A hollow, picture-frame rack can be cut from a 1/16 "polyethylene sheet material and the yarn can be wrapped loosely around the rack without clumping the monofilaments together at the folded contact joints on the sides of the rack U-shaped grooves were formed on the top and bottom of the rack so that about 20-25 ft. Yarn treated with the acid surfactant activation solution of Example 1 was wound on the rack and the following: Hand-immersed in the following treatment solutions in sequence: 2 minutes in 5% NaOH pre-immersion solution at pH 11.5 at ambient temperature; 45 ° C. in a palladium catalyst solution available as Actibator 834 from Atotech Corp. Soak in direct deionized water for about 2 minutes; then rinse in deionized water for 1 minute; then soak in Neoganth WA reducing agent for 2 minutes at 30-35 ° C. and then soak in a low phosphite electroless nickel bath This bath is both 190 ml of Niklad 797A (metal concentrate) and 570 ml of Niklad 797B (sodium hypophosphite solution) and deionized water, also available from MacDermid Corp., and 3.8 liters of electroless nickel plating solution The pH was adjusted to 5.0-5.2 with 50% ammonia and the solution was heated to 90 ° C. before dipping the rack containing the yarn sample. Stirred while immersed in the bath for 5 minutes, which resulted in a 33% weight gain of the yarn due to the nickel coating, the final dried yarn being 300 times larger than the coated yarn of Example 1 300 Ohm / ft.
Examples 3 and 4
Examples 1 and 2 were repeated except that the yarn was treated in concentrated sulfuric acid for a much shorter time as taught in US Pat. No. 5,302,415. In order to minimize substantial disintegration of the monofilament, it was necessary to limit the soaking of the yarn in concentrated sulfuric acid to only half the time of soaking in Examples 1 and 2. The coated yarn exhibited an electrical resistance similar to that of Examples 1 and 2.
Example 5
Stirring the metallized yarn obtained by the method of Example 1 with a gas, with a contact rod through which an electric current is passed into the yarn when the nickel-coated yarn enters the plating bath and is discharged. Later, it was electroplated with copper by passing it through a copper sulfate plating bath of electrolytic acid. Nickel-coated yarns can withstand about 5 amps of current before being damaged, with the addition of about 65 wt% copper and 1 ohm / ft. A material with less than resistance was produced. This copper-plated yarn still retained all the good processability, draping and flexibility characteristics of the original starting yarn. This electroplating method provided an equiaxed crystal structure of fine particles on copper.

Claims (11)

アラミドモノフィラメントの表面を連続的にコートする方法であって、前記の表面を、75ないし85重量%の濃度をもつ、硫酸又は、硫酸の強酸誘導体並びに界面活性剤、を含んでなる水溶液と、前記の表面を水湿潤性にさせるのに十分であるが、そこで前記のモノフィラメントの実質的な機械的崩壊が起こらない期間及び温度において、接触させることによって水湿潤性ならしめ、そして、前記のモノフィラメントを、少なくとも1個の供給ロールから、活性化溶液及び無電解ニッケル浴を通して少なくとも1個の巻き取りリールに供給する、ことを特徴とする方法。A method for continuously coating the surface of an aramid monofilament, the surface comprising an aqueous solution comprising sulfuric acid or a strong acid derivative of sulfuric acid having a concentration of 75 to 85% by weight and a surfactant; In a period and at a temperature that is sufficient to make the surface of the monofilament water-wettable, wherein substantial mechanical collapse of the monofilament does not occur , and the monofilament is Supplying from at least one supply roll to at least one take-up reel through an activation solution and an electroless nickel bath. 前記の界面活性剤がフッ素化された界面活性剤である、第1項の方法。The method of claim 1 wherein the surfactant is a fluorinated surfactant. 前記の無電解ニッケルコーティングを、少なくとも1種類の電解金属でコートする、追加的段階を含む第1項の方法。The method of claim 1 including the additional step of coating said electroless nickel coating with at least one electrolytic metal. 前記の電解金属コーティングが電気銅、電気ニッケル又は電気銀である、第3項の方法。The method of claim 3, wherein the electrolytic metal coating is electrolytic copper, electrolytic nickel, or electrolytic silver. 前記のモノフィラメントが固形である、第1項の方法。The method of claim 1 wherein the monofilament is solid. 前記のモノフィラメントが中空である、第1項の方法。The method of claim 1, wherein said monofilament is hollow. 前記モノフィラメントの複数から成る糸を工程を通して移送する、第1項の方法。The method of claim 1, wherein the monofilament yarn is transported through a process. 前記のモノフィラメントの複数から成る糸を工程を通して移送する、第3項の方法。A method according to claim 3 wherein said monofilament yarn is transported through the process. 前記のモノフィラメントが固形である、第8項の方法。The method of claim 8, wherein said monofilament is solid. 前記のモノフィラメントが中空である、第8項の方法。The method of claim 8, wherein said monofilament is hollow. 第1項の方法により、導電性の無電解ニッケル−ホウ素合金コーティングで、完全にそして実質的に均一にコートされた、ポリマーのモノフィラメント。A polymer monofilament coated completely and substantially uniformly with a conductive electroless nickel-boron alloy coating according to the method of paragraph 1.
JP50299398A 1996-05-30 1997-05-30 Production of polymer monofilaments or yarns coated with heat stable metals Expired - Lifetime JP4060363B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/655,733 1996-05-30
US08/656,914 US5935706A (en) 1996-05-30 1996-05-30 Thermally stable metal coated polymeric monofilament or yarn
US08/656,914 1996-05-30
US08/655,733 US6045680A (en) 1996-05-30 1996-05-30 Process for making thermally stable metal coated polymeric monofilament or yarn
PCT/US1997/009116 WO1997048832A2 (en) 1996-05-30 1997-05-30 Process for making thermally stable metal coated polymeric monofilament or yarn

Publications (2)

Publication Number Publication Date
JP2000512690A JP2000512690A (en) 2000-09-26
JP4060363B2 true JP4060363B2 (en) 2008-03-12

Family

ID=27097017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50299398A Expired - Lifetime JP4060363B2 (en) 1996-05-30 1997-05-30 Production of polymer monofilaments or yarns coated with heat stable metals

Country Status (6)

Country Link
EP (1) EP0902854B1 (en)
JP (1) JP4060363B2 (en)
CA (1) CA2255646C (en)
DE (1) DE69709094T2 (en)
ES (1) ES2165628T3 (en)
WO (1) WO1997048832A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1435407A1 (en) 2003-01-02 2004-07-07 Teijin Twaron B.V. Aramid filament yarn provided with a conductive finish
WO2006081622A1 (en) * 2005-02-03 2006-08-10 Australian Wool Innovation Limited Fibre coating composition
GB0505822D0 (en) * 2005-03-22 2005-04-27 Conductive Inkjet Tech Ltd Treatment of flexible web material
JP5327494B2 (en) * 2005-11-16 2013-10-30 日立化成株式会社 Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same
GB0614706D0 (en) * 2006-07-25 2006-09-06 Gore W L & Ass Uk Fabric
CA2806480A1 (en) * 2010-07-23 2012-01-26 Syscom Advanced Materials, Inc. Electrically conductive metal-coated fibers, continuous process for preparation thereof, and use thereof
US9324472B2 (en) 2010-12-29 2016-04-26 Syscom Advanced Materials, Inc. Metal and metallized fiber hybrid wire
JP6220113B2 (en) * 2011-02-17 2017-10-25 矢崎総業株式会社 Manufacturing method of shield sleeve
JP6006931B2 (en) * 2011-11-24 2016-10-12 矢崎総業株式会社 Plated fiber and manufacturing method thereof
JP2014120327A (en) * 2012-12-17 2014-06-30 Yazaki Corp Conductor for electric wire
CN114687205A (en) * 2022-04-19 2022-07-01 中国科学院苏州纳米技术与纳米仿生研究所 Multi-metal compounding method of high polymer fiber material and multi-metal composite fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1243493B (en) * 1961-02-04 1967-06-29 Bayer Ag Aqueous bath for chemical deposition of boron-containing metal coatings
US3515649A (en) * 1967-05-02 1970-06-02 Ivan C Hepfer Pre-plating conditioning process
GB1243481A (en) * 1969-01-22 1971-08-18 Hoechst Ag Metallisation of plastics
US4673469A (en) * 1984-06-08 1987-06-16 Mcgean-Rohco, Inc. Method of plating plastics
US4634805A (en) * 1985-05-02 1987-01-06 Material Concepts, Inc. Conductive cable or fabric
US4639380A (en) * 1985-05-06 1987-01-27 International Business Machines Corporation Process for preparing a substrate for subsequent electroless deposition of a metal
US5302415A (en) * 1992-12-08 1994-04-12 E. I. Du Pont De Nemours And Company Electroless plated aramid surfaces and a process for making such surfaces

Also Published As

Publication number Publication date
DE69709094D1 (en) 2002-01-24
EP0902854A2 (en) 1999-03-24
CA2255646A1 (en) 1997-12-24
EP0902854B1 (en) 2001-12-12
DE69709094T2 (en) 2002-07-18
WO1997048832A2 (en) 1997-12-24
CA2255646C (en) 2008-04-08
ES2165628T3 (en) 2002-03-16
WO1997048832A3 (en) 1998-02-26
JP2000512690A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
EP0673451B1 (en) Process for electrolessly plating aramid fibers
US6045680A (en) Process for making thermally stable metal coated polymeric monofilament or yarn
US20180187077A1 (en) Electrically conductive metal-coated fibers, continuous process for preparation thereof, and use thereof
US5935706A (en) Thermally stable metal coated polymeric monofilament or yarn
US4900618A (en) Oxidation-resistant metal coatings
JP4060363B2 (en) Production of polymer monofilaments or yarns coated with heat stable metals
WO1994009181A1 (en) Electroless deposition of metal employing thermally stable carrier polymer
JP2004513229A (en) Method for electroless metal plating
CN111254423B (en) Method for electroplating silver on aromatic polyamide fiber and application
US5453299A (en) Process for making electroless plated aramid surfaces
US5466485A (en) Process for batch-plating aramid fibers
KR101664857B1 (en) Conductive yarn and method for preparing the same
US4643918A (en) Continuous process for the metal coating of fiberglass
KR100466993B1 (en) Process For Making Thermally Stable Metal Coated Polymeric Monofilament or Yarn
JP6746842B2 (en) Method for producing cycloolefin yarn with metal coating
JP5117656B2 (en) Electroless plating pretreatment method and conductive material using the same
JP6746843B2 (en) Method for producing cycloolefin yarn with metal coating
EP0137912B1 (en) Apparatus and process for continuously plating fiber
KR930005928B1 (en) Non-electrolysis gilding method for fabrics
JP6758578B2 (en) Method for manufacturing cycloolefin yarn with metal film
CN115613014A (en) Method for chemically plating silver on aramid fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061101

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070626

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term