JP6006931B2 - Plated fiber and manufacturing method thereof - Google Patents

Plated fiber and manufacturing method thereof Download PDF

Info

Publication number
JP6006931B2
JP6006931B2 JP2011255817A JP2011255817A JP6006931B2 JP 6006931 B2 JP6006931 B2 JP 6006931B2 JP 2011255817 A JP2011255817 A JP 2011255817A JP 2011255817 A JP2011255817 A JP 2011255817A JP 6006931 B2 JP6006931 B2 JP 6006931B2
Authority
JP
Japan
Prior art keywords
fiber
tensile strength
plated
plating
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011255817A
Other languages
Japanese (ja)
Other versions
JP2013108198A (en
Inventor
宏樹 近藤
宏樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011255817A priority Critical patent/JP6006931B2/en
Publication of JP2013108198A publication Critical patent/JP2013108198A/en
Application granted granted Critical
Publication of JP6006931B2 publication Critical patent/JP6006931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、メッキ繊維及びその製造方法に関する。   The present invention relates to a plated fiber and a manufacturing method thereof.

近年、高強度化、軽量化、及び耐屈曲化等の目的で、アラミド繊維、PBO(poly(p-phenylenebenzobisoxazole)繊維、及びポリアリレート繊維などの抗張力繊維にメッキ加工を施したメッキ繊維が提案されている。また、このメッキ繊維を導体とし絶縁体を被覆した電線についても提案されている(例えば特許文献1〜3参照)。   In recent years, for the purpose of increasing strength, reducing weight, and bending resistance, plated fibers obtained by plating tensile strength fibers such as aramid fibers, PBO (poly (p-phenylenebenzobisoxazole) fibers, and polyarylate fibers) have been proposed. In addition, electric wires in which this plated fiber is used as a conductor and covered with an insulator have also been proposed (see, for example, Patent Documents 1 to 3).

特開2011−153365号公報JP 2011-153365 A 特開2008−130241号公報JP 2008-130241 A 特開2009−242839号公報JP 2009-242839 A

ここで、メッキ繊維を電線の導体部材として用いるためには、導体抵抗値の安定性が絶対条件となり、電線の全長に亘って均一な膜厚のメッキを施す必要がある。このような観点から、繊維へのメッキ処理方法としてはバッチ方式よりも連続的にメッキを施せるリール・トゥ・リール方式が望ましい。   Here, in order to use the plated fiber as the conductor member of the electric wire, the stability of the conductor resistance value is an absolute condition, and it is necessary to perform plating with a uniform film thickness over the entire length of the electric wire. From this point of view, the reel-to-reel method that allows continuous plating rather than the batch method is desirable as a method for plating fibers.

しかし、リール・トゥ・リール方式でメッキ処理を行う場合、抗張力繊維が一般的に耐摩耗性に弱いことから、メッキ処理の工程中にガイド類と接触して羽毛立ちや切れが生じていまい、これが原因となって導体抵抗値の安定性が損なわれてしまう問題があった。   However, when plating with the reel-to-reel method, the tensile strength fiber is generally weak in abrasion resistance, so it does not come into contact with guides during the plating process, causing feathering and cutting. This causes a problem that the stability of the conductor resistance value is impaired.

本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、導体抵抗値の安定性が損なわれてしまう可能性を抑制することが可能なメッキ繊維及びその製造方法を提供することにある。   The present invention has been made to solve such a conventional problem, and the object of the present invention is to provide a plated fiber capable of suppressing the possibility that the stability of the conductor resistance value is impaired, and It is in providing the manufacturing method.

本発明のメッキ繊維は、パラ系アラミド繊維、PBO繊維、又はポリアリレート繊維からなる抗張力繊維に金属メッキを施してなるメッキ繊維であって、前記抗張力繊維と前記金属メッキとの間に、ポリエチレンテレフタラート、ポリエチレンナフタレート、ウレタン、フッ素、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフェニレンファルサイド、ポリイミド、ポリエーテル・エーテル・ケトン、アクリル、ABS、ポリカーボネートの少なくとも1つからなる樹脂である耐摩耗性樹脂層が介在されていることを特徴とする。 The plated fiber of the present invention is a plated fiber obtained by subjecting a tensile strength fiber made of para-aramid fiber, PBO fiber, or polyarylate fiber to metal plating, and between the tensile strength fiber and the metal plating, Abrasion resistance, a resin composed of at least one of tarate, polyethylene naphthalate, urethane, fluorine, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyphenylene falside, polyimide, polyether ether ketone, acrylic, ABS, polycarbonate A resin layer is interposed.

本発明のメッキ繊維によれば、抗張力繊維と金属メッキとの間に耐摩耗性樹脂層が介在されているため、一般的に耐摩耗性に弱い抗張力繊維が直接ガイド類に接触することが防止され、抗張力繊維の羽毛立ちや切れが抑制されることとなる。これにより、導体抵抗値の安定性が損なわれてしまう可能性を抑制することができる。   According to the plated fiber of the present invention, since the abrasion resistant resin layer is interposed between the tensile strength fiber and the metal plating, it is generally prevented that the tensile strength fiber which is weak in abrasion resistance directly contacts the guides. As a result, feathering and cutting of the tensile strength fiber are suppressed. Thereby, possibility that the stability of a conductor resistance value will be impaired can be suppressed.

また、本発明のメッキ繊維の製造方法は、パラ系アラミド繊維、PBO繊維、又はポリアリレート繊維からなる抗張力繊維に金属メッキを施してなるメッキ繊維の製造方法であって、前記抗張力繊維の外周に、ポリエチレンテレフタラート、ポリエチレンナフタレート、ウレタン、フッ素、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフェニレンファルサイド、ポリイミド、ポリエーテル・エーテル・ケトン、アクリル、ABS、ポリカーボネートの少なくとも1つからなる樹脂である耐摩耗性樹脂層を形成する第1工程と、前記第1工程において前記耐摩耗性樹脂層が形成された抗張力繊維を第1リールから送り出すと共に第2リールで巻き取る間に、当該抗張力繊維をメッキ槽に浸すことによってメッキを施す第2工程と、を備えることを特徴とする。 Moreover, the method for producing a plated fiber of the present invention is a method for producing a plated fiber obtained by performing metal plating on a tensile strength fiber made of para-aramid fiber, PBO fiber, or polyarylate fiber, and the outer periphery of the tensile strength fiber. , Polyethylene terephthalate, polyethylene naphthalate, urethane, fluorine, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyphenylene falside, polyimide, polyether ether ketone, acrylic, ABS, polycarbonate resin The first step of forming the wear-resistant resin layer, and the tensile strength fiber formed with the wear-resistant resin layer in the first step is sent out from the first reel and wound around the second reel. Apply plating by immersing in a plating bath Characterized in that it comprises a step.

このメッキ繊維によれば、抗張力繊維の外周に耐摩耗性樹脂層を形成するため、一般的に耐摩耗性に弱い抗張力繊維が直接ガイド類に接触することが防止され、抗張力繊維の羽毛立ちや切れが抑制されることとなる。また、耐摩耗性樹脂層が形成された抗張力繊維を両リールで送り出し及び巻き取りを行う間に、メッキ槽に浸すため、メッキ膜厚を均一にし易く導体抵抗値の安定性の面で有利とすることができる。従って、導体抵抗値の安定性が損なわれてしまう可能性を抑制することができる。   According to this plated fiber, since the abrasion-resistant resin layer is formed on the outer periphery of the tensile strength fiber, it is generally prevented that the tensile strength fiber that is weak in abrasion resistance comes into direct contact with the guides. Cutting is suppressed. In addition, since the tensile strength fiber with the abrasion-resistant resin layer formed is immersed in the plating tank while being fed and wound by both reels, it is easy to make the plating film thickness uniform, which is advantageous in terms of stability of the conductor resistance value. can do. Therefore, the possibility that the stability of the conductor resistance value is impaired can be suppressed.

本発明によれば、導体抵抗値の安定性が損なわれてしまう可能性を抑制することが可能なメッキ繊維及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the plating fiber which can suppress possibility that the stability of a conductor resistance value will be impaired, and its manufacturing method can be provided.

本発明の実施形態に係るメッキ繊維の構成を示す断面図である。It is sectional drawing which shows the structure of the plating fiber which concerns on embodiment of this invention. 本実施形態に係るメッキ繊維の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the plating fiber which concerns on this embodiment.

以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係るメッキ繊維の構成を示す断面図である。同図に示すように、メッキ繊維1は、繊維層10と、メッキ層(金属メッキ)20と、耐摩耗性樹脂層30とから構成されている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a plated fiber according to an embodiment of the present invention. As shown in the figure, the plated fiber 1 includes a fiber layer 10, a plated layer (metal plating) 20, and an abrasion-resistant resin layer 30.

繊維層10は、抗張力繊維によって構成されている。ここで、抗張力繊維は、例えばパラ系アラミド繊維、PBO(poly(p-phenylenebenzobisoxazole)繊維、ポリアリレート繊維、及び高分子ポリエチレン繊維が該当する。   The fiber layer 10 is composed of tensile strength fibers. Here, examples of the tensile strength fiber include para-aramid fiber, PBO (poly (p-phenylenebenzobisoxazole) fiber, polyarylate fiber, and high-molecular polyethylene fiber.

メッキ層20は、例えば軟銅線、銀メッキ軟銅線、錫メッキ軟銅線、及び錫メッキ銅合金により形成されている。このメッキ層が電線でいうところの導体の役割を果たす。   The plated layer 20 is formed of, for example, an annealed copper wire, a silver plated annealed copper wire, a tin plated annealed copper wire, and a tin plated copper alloy. This plating layer plays the role of a conductor in the sense of an electric wire.

このようなメッキ繊維1は、内部が抗張力繊維からなる繊維層10により構成されている。このため、メッキ繊維1は、軽量且つ高強度であり、しかも耐屈曲性に優れることとなる。   Such a plated fiber 1 is composed of a fiber layer 10 whose inside is made of a tensile strength fiber. For this reason, the plated fiber 1 is lightweight and has high strength, and is excellent in bending resistance.

また、メッキ繊維1を電線として用いるためには、導体抵抗値の関係からメッキ膜厚をより均一にする必要がある。このため、メッキ繊維1の製造にあたってはバッチ方式よりもリール・トゥ・リール方式が採用される。   Further, in order to use the plated fiber 1 as an electric wire, it is necessary to make the plating film thickness more uniform from the relationship of the conductor resistance value. For this reason, the reel-to-reel method is adopted in the production of the plated fiber 1 rather than the batch method.

しかし、抗張力繊維は、一般的に耐摩耗性に弱いという特性を有する。このため、リール・トゥ・リール方式にてメッキ繊維1を製造する場合、抗張力繊維がガイド類に接触してしまい、羽毛立ちや切れが発生してしまう。そして、これが原因となってメッキ層20を形成した場合に導体抵抗値の安定性が損なわれてしまう。   However, tensile strength fibers generally have a characteristic that they are weak in wear resistance. For this reason, when the plated fiber 1 is manufactured by the reel-to-reel method, the tensile strength fiber comes into contact with the guides, and feathering or cutting occurs. And when this forms the plating layer 20, the stability of a conductor resistance value will be impaired.

そこで、本実施形態に係るメッキ繊維1は、繊維層10とメッキ層20との間に耐摩耗性樹脂層30が介在されている。耐摩耗性樹脂層30は、例えばポリエチレンテレフタラート、ポリエチレンナフタレート、ウレタン、フッ素、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフェニレンファルサイド、ポリイミド、ポリエーテル・エーテル・ケトン、アクリル、ABS(Acrylonitrile・Butadiene・Styrene)、ポリカーボネートの少なくとも1つにより構成されている。   Therefore, in the plated fiber 1 according to this embodiment, the wear-resistant resin layer 30 is interposed between the fiber layer 10 and the plated layer 20. The abrasion-resistant resin layer 30 is made of, for example, polyethylene terephthalate, polyethylene naphthalate, urethane, fluorine, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyphenylene falside, polyimide, polyether ether ketone, acrylic, ABS (Acrylonitrile. Butadiene / Styrene) and at least one of polycarbonate.

このような耐摩耗性樹脂層30が形成されているため、一般的に耐摩耗性に弱い抗張力繊維が直接ガイド類に接触することが防止され、抗張力繊維の羽毛立ちや切れが抑制されることとなる。   Since such an abrasion-resistant resin layer 30 is formed, it is generally possible to prevent the tensile fibers that are weak in abrasion resistance from coming into direct contact with the guides, and to suppress the feathering and cutting of the tensile fibers. It becomes.

次に、本実施形態に係るメッキ繊維1の製造方法について説明する。図2は、本実施形態に係るメッキ繊維1の製造方法を示す概略図である。まず、抗張力繊維である繊維層10に対して耐摩耗性樹脂層30を形成する。この際、耐摩耗性樹脂層30は、UV照射や、ディンピング等により設けることができる。   Next, the manufacturing method of the plated fiber 1 which concerns on this embodiment is demonstrated. FIG. 2 is a schematic view showing a method for manufacturing the plated fiber 1 according to the present embodiment. First, the abrasion resistant resin layer 30 is formed on the fiber layer 10 which is a tensile strength fiber. At this time, the wear-resistant resin layer 30 can be provided by UV irradiation, dipping, or the like.

次いで、図2に示すように、繊維層10上に耐摩耗性樹脂層30が設けられた抗張力繊維を第1リール41から送り出し、第2リール42にて巻き取る。この際、第1リール41と第2リール42との間には、メッキ槽43が設けられており、第1リール41から第2リール42に送り出される抗張力繊維は、耐摩耗性樹脂層30上にメッキ層20が施されることとなる。しかも、図2に示すリール・トゥ・リール方式であると、抗張力繊維上のメッキ層20をより均一な膜厚で形成し易い。   Next, as shown in FIG. 2, the tensile strength fiber in which the abrasion-resistant resin layer 30 is provided on the fiber layer 10 is sent out from the first reel 41 and wound around the second reel 42. At this time, a plating tank 43 is provided between the first reel 41 and the second reel 42, and the tensile strength fibers fed from the first reel 41 to the second reel 42 are on the wear-resistant resin layer 30. The plating layer 20 is applied to the surface. Moreover, the reel-to-reel system shown in FIG. 2 makes it easier to form the plating layer 20 on the tensile strength fiber with a more uniform film thickness.

また、従来では第1リール41からメッキ槽43までのガイド部材44、及び、メッキ槽43から第2リール42までのガイド部材45に、抗張力繊維が接触して羽毛立ちや切れが発生してしまう原因となっていたが、本実施形態では繊維層10上に耐摩耗性樹脂層30が形成されているため、羽毛立ちや切れが発生し難くなっている。   Further, conventionally, the tensile strength fibers come into contact with the guide member 44 from the first reel 41 to the plating tank 43 and the guide member 45 from the plating tank 43 to the second reel 42, and feathering or cutting occurs. Although it was a cause, in this embodiment, since the abrasion-resistant resin layer 30 is formed on the fiber layer 10, it is hard to generate | occur | produce a feather and a piece.

このようにして、本実施形態に係るメッキ繊維1によれば、繊維層10とメッキ層20との間に耐摩耗性樹脂層30が介在されているため、一般的に耐摩耗性に弱い抗張力繊維が直接ガイド類に接触することが防止され、抗張力繊維の羽毛立ちや切れが抑制されることとなる。これにより、導体抵抗値の安定性が損なわれてしまう可能性を抑制することができる。   Thus, according to the plated fiber 1 which concerns on this embodiment, since the abrasion-resistant resin layer 30 is interposed between the fiber layer 10 and the plating layer 20, the tensile strength generally weak in abrasion resistance The fibers are prevented from coming into direct contact with the guides, and the occurrence of feathering and breakage of the tensile strength fibers is suppressed. Thereby, possibility that the stability of a conductor resistance value will be impaired can be suppressed.

また、本実施形態に係るメッキ繊維1の製造方法によれば、繊維層10の外周に耐摩耗性樹脂層30を形成するため、一般的に耐摩耗性に弱い抗張力繊維が直接ガイド類に接触することが防止され、抗張力繊維の羽毛立ちや切れが抑制されることとなる。また、耐摩耗性樹脂層30が形成された抗張力繊維を両リール41,42で送り出し及び巻き取りを行う間に、メッキ槽43に浸すため、メッキ膜厚を均一にし易く導体抵抗値の安定性の面で有利とすることができる。従って、導体抵抗値の安定性が損なわれてしまう可能性を抑制することができる。   In addition, according to the method for manufacturing the plated fiber 1 according to the present embodiment, since the wear-resistant resin layer 30 is formed on the outer periphery of the fiber layer 10, the tensile strength fiber generally weak in wear resistance is in direct contact with the guides. This prevents the tensile strength fibers from falling and being cut off. Further, since the tensile strength fiber on which the wear-resistant resin layer 30 is formed is immersed in the plating tank 43 while being fed and taken up by the reels 41 and 42, the plating film thickness is easily uniformed and the conductor resistance value is stable. This can be advantageous. Therefore, the possibility that the stability of the conductor resistance value is impaired can be suppressed.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。   As described above, the present invention has been described based on the embodiment, but the present invention is not limited to the above embodiment, and may be modified without departing from the gist of the present invention.

例えば、上記実施形態では抗張力繊維が耐摩耗性に弱いことを強調したが、今後の技術改良によって耐摩耗性に優れた抗張力繊維が開発されたとしても、この抗張力繊維について本発明を適用可能であることはいうまでもない。この場合であっても、耐摩耗性樹脂層30によって抗張力繊維の羽毛立ちや切れの可能性を低減できる点に変わりはないからである。   For example, in the above-described embodiment, it was emphasized that the tensile strength fiber is weak in abrasion resistance. However, even if a tensile strength fiber excellent in abrasion resistance is developed by future technical improvement, the present invention can be applied to this tensile strength fiber. Needless to say. This is because even in this case, the wear-resistant resin layer 30 can reduce the possibility of feathering or breaking of the tensile strength fiber.

1…メッキ繊維
10…繊維層
20…メッキ層(金属メッキ)
30…耐摩耗性樹脂層
41,42…リール
43…メッキ槽
44,45…ガイド部材
DESCRIPTION OF SYMBOLS 1 ... Plating fiber 10 ... Fiber layer 20 ... Plating layer (metal plating)
30 ... Abrasion resistant resin layer 41, 42 ... Reel 43 ... Plating tank 44, 45 ... Guide member

Claims (2)

パラ系アラミド繊維、PBO繊維、又はポリアリレート繊維からなる抗張力繊維に金属メッキを施してなるメッキ繊維であって、
前記抗張力繊維と前記金属メッキとの間に、ポリエチレンテレフタラート、ポリエチレンナフタレート、ウレタン、フッ素、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフェニレンファルサイド、ポリイミド、ポリエーテル・エーテル・ケトン、アクリル、ABS、ポリカーボネートの少なくとも1つからなる樹脂である耐摩耗性樹脂層が介在されている
ことを特徴とするメッキ繊維。
A plated fiber obtained by performing metal plating on a tensile fiber composed of para-aramid fiber, PBO fiber, or polyarylate fiber ,
Between the tensile strength fiber and the metal plating, polyethylene terephthalate, polyethylene naphthalate, urethane, fluorine, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyphenylene falside, polyimide, polyether ether ketone, acrylic, ABS A plated fiber, wherein a wear-resistant resin layer, which is a resin made of at least one of polycarbonate, is interposed.
パラ系アラミド繊維、PBO繊維、又はポリアリレート繊維からなる抗張力繊維に金属メッキを施してなるメッキ繊維の製造方法であって、
前記抗張力繊維の外周に、ポリエチレンテレフタラート、ポリエチレンナフタレート、ウレタン、フッ素、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフェニレンファルサイド、ポリイミド、ポリエーテル・エーテル・ケトン、アクリル、ABS、ポリカーボネートの少なくとも1つからなる樹脂である耐摩耗性樹脂層を形成する第1工程と、
前記第1工程において前記耐摩耗性樹脂層が形成された抗張力繊維を第1リールから送り出すと共に第2リールで巻き取る間に、当該抗張力繊維をメッキ槽に浸すことによってメッキを施す第2工程と、
を備えることを特徴とするメッキ繊維の製造方法。
A method for producing a plated fiber obtained by applying metal plating to a tensile fiber composed of para-aramid fiber, PBO fiber, or polyarylate fiber ,
At least one of polyethylene terephthalate, polyethylene naphthalate, urethane, fluorine, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyphenylene falcide, polyimide, polyether ether ketone, acrylic, ABS, polycarbonate on the outer periphery of the tensile strength fiber A first step of forming a wear-resistant resin layer which is a resin composed of;
A second step of performing plating by immersing the tensile strength fiber in a plating tank while the tensile strength fiber having the abrasion-resistant resin layer formed in the first step is fed from the first reel and wound by the second reel; ,
A method for producing a plated fiber, comprising:
JP2011255817A 2011-11-24 2011-11-24 Plated fiber and manufacturing method thereof Active JP6006931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255817A JP6006931B2 (en) 2011-11-24 2011-11-24 Plated fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011255817A JP6006931B2 (en) 2011-11-24 2011-11-24 Plated fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013108198A JP2013108198A (en) 2013-06-06
JP6006931B2 true JP6006931B2 (en) 2016-10-12

Family

ID=48705237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011255817A Active JP6006931B2 (en) 2011-11-24 2011-11-24 Plated fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6006931B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278582U (en) * 1988-12-02 1990-06-15
EP0902854B1 (en) * 1996-05-30 2001-12-12 E.I. Du Pont De Nemours And Company Process for making thermally stable metal coated polymeric monofilament
JP2004346349A (en) * 2003-05-20 2004-12-09 Du Pont Toray Co Ltd Plated textile
JP2006328599A (en) * 2005-05-27 2006-12-07 Teijin Techno Products Ltd Monofilament with high abrasion resistance and method for producing the same
JP2009074229A (en) * 2007-08-29 2009-04-09 Sanyo Chem Ind Ltd Sizing agent for fiber
JP2009121013A (en) * 2007-10-26 2009-06-04 Sanyo Chem Ind Ltd Sizing agent for fiber
JP5039638B2 (en) * 2008-06-05 2012-10-03 ダイワボウホールディングス株式会社 Metal-plated fiber structure and metal structure obtained by firing the same
JP5615562B2 (en) * 2010-01-28 2014-10-29 セーレン株式会社 Continuous plating method for fiber bundles

Also Published As

Publication number Publication date
JP2013108198A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP4757159B2 (en) Method for producing hollow core body for coaxial cable
US8822872B2 (en) Electrode wire for electro-discharge machining and method for manufacturing the same
TWI448240B (en) Electromagnetic wave shielding composite
EP3194346B1 (en) Method for fabrication of metal-coated optical fiber
WO2003067611A1 (en) High accuracy foamed coaxial cable and method for manufacturing the same
JP6220113B2 (en) Manufacturing method of shield sleeve
TW201515748A (en) Electrode wire for wire electric discharge machining, and method for producing same
CN102017018A (en) Electrical wire and method for producing same
JP5027896B2 (en) Thin film superconducting wire and manufacturing method thereof
EP2724805A1 (en) Electrode wire for electro-discharge machining and method for manufacturing the same
JP6006931B2 (en) Plated fiber and manufacturing method thereof
US10589369B2 (en) Electrode wire for electrical discharge machining and method of manufacturing electrode wire for electrical discharge machining
TWI298170B (en) High-accuracy foaming coaxial cable
JP5926934B2 (en) Electric wire manufacturing method and electric wire
JP4004824B2 (en) Surface treatment method for coated electric wire and method for producing coated electric wire
JP6251114B2 (en) Electric wire cord
KR102579741B1 (en) Insulated wire, and multi-core cable
JP3963067B2 (en) Tinned copper wire
JP4405337B2 (en) Ultra-fine coaxial cable and manufacturing method thereof
CN210110377U (en) Super-thin bending-resistant cable suitable for robot
JPH08241633A (en) Coaxial cable and manufacture thereof
JP4944400B2 (en) Multi-core twisted yarn structure
JP2015072737A (en) Coaxial cable
JP5119038B2 (en) Manufacturing method of optical fiber parts
JP2002208323A (en) Manufacturing method of very thin wire or coated very thin wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6006931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250