JP5327494B2 - Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same - Google Patents

Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same Download PDF

Info

Publication number
JP5327494B2
JP5327494B2 JP2005331485A JP2005331485A JP5327494B2 JP 5327494 B2 JP5327494 B2 JP 5327494B2 JP 2005331485 A JP2005331485 A JP 2005331485A JP 2005331485 A JP2005331485 A JP 2005331485A JP 5327494 B2 JP5327494 B2 JP 5327494B2
Authority
JP
Japan
Prior art keywords
catalyst
electroless plating
concentrate
acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331485A
Other languages
Japanese (ja)
Other versions
JP2007138218A (en
Inventor
健次 高井
澄子 中島
明子 伊藤
弘 山本
諭 赤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005331485A priority Critical patent/JP5327494B2/en
Publication of JP2007138218A publication Critical patent/JP2007138218A/en
Application granted granted Critical
Publication of JP5327494B2 publication Critical patent/JP5327494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)

Description

本発明は、無電解めっき用触媒濃縮液の製造方法とそれを用いためっき触媒付与方法に関する。 The present invention relates to a method for producing a catalyst concentrate for electroless plating and a method for applying a plating catalyst using the same.

近年、電子部品の小型化、高性能化、多機能化が進められており、これに使用される配線板においてもファインパターン化等の高密度化が進められている。近年はそれに伴ってセミアディティブ法による配線形成がファインパターン形成の主流になっている。一般的なセミアディティブ法は特開平3−217526に例示されるように、過マンガン酸等の酸化剤で絶縁層を粗面化し、パラジウム触媒を付与し、無電解銅めっきを行い、無電解銅めっき上にレジストパターンを形成し、パターン電気めっき後レジストを除去し、導体回路以外の無電解銅めっきをエッチング除去する手法である。パラジウム触媒としてはPd−Snコロイド系触媒を用いるのが一般的である。このPd−Snコロイド系触媒は過剰の塩化物イオンを含む酸性溶液中で多モルの塩化スズ(II)と塩化パラジウムを混合することによって生成される。コロイド径は500Å程度といわれており、比較的大きい為に密着性や絶縁性低下の弊害も示唆されている。   In recent years, downsizing, high performance, and multi-functionality of electronic components have been promoted, and higher density such as fine patterning has also been promoted in wiring boards used therefor. In recent years, the formation of wiring by the semi-additive method has become the mainstream of fine pattern formation. A general semi-additive method is to roughen the insulating layer with an oxidizing agent such as permanganic acid, impart a palladium catalyst, perform electroless copper plating, and electroless copper as exemplified in JP-A-3-217526. In this method, a resist pattern is formed on the plating, the resist is removed after pattern electroplating, and electroless copper plating other than the conductor circuit is removed by etching. As the palladium catalyst, a Pd—Sn colloidal catalyst is generally used. This Pd-Sn colloidal catalyst is produced by mixing polymolar tin (II) chloride and palladium chloride in an acidic solution containing excess chloride ions. The colloid diameter is said to be about 500 mm, and since it is relatively large, it has been suggested that the adhesiveness and the deterioration of the insulating property are adversely affected.

近年セミアディティブ法では、特開平1−279764や特開平1−195281に例示されるようなパラジウムイオンとアミン系錯化剤とからなる触媒を用いる例が増えてきている。特開平5−202483に例示されるように、パラジウムイオンとアミン系錯化剤とからなる触媒を用いると導体パターンの密着性及び絶縁性を維持しつつ触媒付与工程の時間短縮化を図ることができる。これらの触媒はアルカリ性で用いるのが一般的である。実操業において、上記パラジウムイオンとアミン系錯化剤からなる触媒は3〜40程度の濃縮液で保存し、使用時に希釈して使用する。それにより触媒の輸送コストを削減することができる。濃縮倍率が高いほど触媒の輸送コストを削減することができる。   In recent years, in the semi-additive process, an example using a catalyst composed of palladium ions and an amine complexing agent as exemplified in JP-A-1-279964 and JP-A-1-195281 has been increasing. As exemplified in JP-A-5-202483, when a catalyst composed of palladium ions and an amine complexing agent is used, the time required for the catalyst application process can be shortened while maintaining the adhesion and insulation of the conductor pattern. it can. These catalysts are generally used alkaline. In actual operation, the catalyst composed of the palladium ion and the amine complexing agent is stored in a concentrated solution of about 3 to 40 and diluted before use. Thereby, the transportation cost of the catalyst can be reduced. The higher the concentration factor, the more the catalyst transportation cost can be reduced.

特開平3−217526号公報JP-A-3-217526 特開平1−279764号公報Japanese Laid-Open Patent Publication No. 1-227964 特開平1−195281公報JP-A-1-195281 特開平5−202483号公報JP-A-5-202483

上記パラジウムイオンとアミン系錯化剤とからなる触媒は濃縮倍率が高く、pHが高いと安定性が極めて悪いことが分かってきた。更に発明者らは鋭意研究の末、以下のことを解明した。上記高濃度、高pHのパラジウムイオンとアミン系錯化剤からなる触媒は、保存しているうちに錯体構造が変化し、アクア配位子への置換反応が観察される。この置換反応は液中の水酸化物イオン濃度とパラジウムイオン濃度に依存する。従ってpHが高ければ高い程、触媒の劣化は起こりやすい。更に濃縮倍率が高いほど触媒の劣化は起こりやすい。従って、従来は錯形成をせずにpH4以下の酸性領域でパラジウム濃縮液を保管し、使用時に希釈及び錯形成を行うことで対策してきた。この方法は産業上、下記の問題を有している。   It has been found that the catalyst composed of the palladium ion and the amine complexing agent has a high concentration ratio, and the stability is extremely poor when the pH is high. Furthermore, the inventors have clarified the following after intensive research. The catalyst comprising the high concentration, high pH palladium ion and the amine complexing agent changes its complex structure during storage, and a substitution reaction with an aqua ligand is observed. This substitution reaction depends on the hydroxide ion concentration and palladium ion concentration in the liquid. Therefore, the higher the pH, the more likely the catalyst will deteriorate. Furthermore, the higher the concentration factor, the more likely the catalyst will deteriorate. Therefore, conventionally, countermeasures have been taken by storing the palladium concentrate in an acidic region having a pH of 4 or less without complex formation, and performing dilution and complex formation at the time of use. This method has the following problems in the industry.

めっき薬品の専業メーカーが工場で作製した錯形成されていないパラジウム濃縮液を顧客に外販する。購入先の各メーカーがパラジウム濃縮液を(酸性)→(中性又はアルカリ性)にすることで錯形成を行う。この錯形成には高温で2時間程度の熟成が必要であり、失敗する可能性がある。つまり一番失敗する可能性の高い錯形成の工程を購入先の各メーカーが行う必要がある。本発明は、上記の不具合を改善し、保存性良好な無電解めっき用触媒濃縮液の製造方法を提供すると共に、その最適使用方法(めっき触媒付与方法)を提供するものである。 Non-complexed palladium concentrate prepared at the factory by a manufacturer specializing in plating chemicals is sold to customers. Each manufacturer of the supplier performs complex formation by changing the palladium concentrate from (acidic) to (neutral or alkaline). This complex formation requires aging for about 2 hours at high temperature and may fail. In other words, it is necessary for each manufacturer to purchase a complex formation process that is most likely to fail. The present invention improves the above problems and provides a method for producing a concentrated catalyst solution for electroless plating with good storage stability, and also provides an optimum use method (plating catalyst application method).

本発明は以下の通りである。
1.2価のパラジウム化合物とアミン系錯化剤を含む無電解めっき用触媒濃縮液の製造方法であって、pH10以上で無電解めっき用触媒濃縮液を作製した後、pH調整用の緩衝剤によりpHを4以上10未満、無電解めっき用触媒液に対する濃縮倍率(n)が3〜40の範囲(パラジウム濃度として0.005n〜2.0ng/L、パラジウムイオンとアミン系錯化剤のモル比は1:1〜1:20の範囲、(nは、3〜40の実数)に調整して保存することを特徴とする無電解めっき用触媒濃縮液の製造方法
2.無電解めっき用触媒濃縮液の使用時に、無電解めっき用触媒濃縮液のpHよりアルカ
リ性(pH7以上)に調整して用いる項1に記載の無電解めっき用触媒濃縮液の製造方法
3.pH10以上で無電解めっき用触媒濃縮液を作製した時に2価のパラジウム化合物と
アミン系錯化剤が錯形成していることを特徴とする項1または2に記載の無電解めっき用
触媒濃縮液の製造方法
.pH調整用の緩衝剤が、シュウ酸、酒石酸、酢酸、クエン酸、フタル酸、2−(N−モルホリノ)エタンスルホン酸、クエン酸、コリジン、イミダゾール、りん酸、ホウ酸から選ばれる項1〜いずれかに記載の無電解めっき用触媒濃縮液の製造方法
.緩衝剤が、ホウ酸であることを特徴とする項に記載の無電解めっき用触媒濃縮液の製造方法
.無電解めっき用触媒濃縮液の濃縮倍率がn倍であり、かつホウ酸濃度が、0.2n〜10n(g/L)の範囲であることを特徴とする項に記載の無電解めっき用触媒濃縮液の製造方法(nは、3〜40の実数)
.アミン系錯化剤が、2種類以上のアミン系錯化剤からなることを特徴とする項1〜いずれかに記載の無電解めっき用触媒濃縮液の製造方法
.pHが3以下の水溶液に被めっき物を浸漬する工程、その後、項1〜いずれかに記載の無電解めっき用触媒濃縮液の製造方法により得られた無電解めっき用触媒濃縮液を3〜40倍で希釈してpH7以上に調整した無電解めっき用触媒液に被めっき物を浸漬する工程を有することを特徴とするめっき触媒付与方法。
.pHが3以下の水溶液に被めっき物を浸漬する工程の前に、アミン系添加剤を含有する水溶液に被めっき物を浸漬する工程を有する項に記載のめっき触媒付与方法。
The present invention is as follows.
A method for producing a catalyst concentrate for electroless plating containing a 1.2-valent palladium compound and an amine complexing agent, and after preparing a catalyst concentrate for electroless plating at a pH of 10 or higher, a buffer for adjusting pH The pH is 4 or more and less than 10 , and the concentration ratio (n) with respect to the electroless plating catalyst solution is in the range of 3 to 40 ( palladium concentration of 0.005 n to 2.0 ng / L, of palladium ion and amine complexing agent). A method for producing a concentrated catalyst solution for electroless plating, wherein the molar ratio is adjusted to a range of 1: 1 to 1:20 (n is a real number of 3 to 40) .
2. Item 2. The method for producing a catalyst concentrate for electroless plating according to Item 1, wherein the catalyst concentrate for electroless plating is adjusted to be alkaline (pH 7 or higher) from the pH of the catalyst concentrate for electroless plating.
3. Item 3. The catalyst concentrate for electroless plating according to Item 1 or 2, wherein a divalent palladium compound and an amine complexing agent are complexed when a catalyst concentrate for electroless plating is prepared at a pH of 10 or more. Manufacturing method .
4 . Item 1 wherein the pH adjusting buffer is selected from oxalic acid, tartaric acid, acetic acid, citric acid, phthalic acid, 2- (N-morpholino) ethanesulfonic acid, citric acid, collidine, imidazole, phosphoric acid, and boric acid 3. A method for producing a catalyst concentrate for electroless plating according to any one of 3 above.
5 . Item 5. The method for producing a catalyst concentrate for electroless plating according to Item 4 , wherein the buffer is boric acid.
6 . Concentration ratio of the electroless plating catalyst concentrate is n times, and boric acid concentration, for electroless plating according to claim 5, characterized in that in the range of 0.2n~10n (g / L) A method for producing a catalyst concentrate (n is a real number of 3 to 40) .
7 . Item 7. The method for producing a concentrated catalyst solution for electroless plating according to any one of Items 1 to 6 , wherein the amine complexing agent comprises two or more amine complexing agents.
8 . 3 process, then, an electroless plating catalyst concentrate obtained by the process of electroless plating catalyst concentrate according to any one claim 1 to 7 in which the pH is immersed object to be plated in an aqueous solution of 3 or less A plating catalyst application method comprising a step of immersing an object to be plated in an electroless plating catalyst solution diluted by 40 times and adjusted to pH 7 or higher.
9 . Item 9. The method for applying a plating catalyst according to Item 8 , comprising a step of immersing the object to be plated in an aqueous solution containing an amine-based additive before the step of immersing the object to be plated in an aqueous solution having a pH of 3 or less.

保存性良好な無電解めっき用触媒濃縮液を提供すると共に、それを使用しためっき触媒付与方法を提供することが可能となった。   In addition to providing a catalyst concentrate for electroless plating with good storage stability, it is possible to provide a method for applying a plating catalyst using the same.

本発明による無電解銅めっき濃縮液の製造方法により得られる無電解銅めっき濃縮液は2価のパラジウム化合物と、アミン系錯化剤とを含有する濃縮液なので実際には希釈して使用する。n倍濃縮液であればn倍に希釈して用いる。以下このnは濃縮倍率(=希釈倍率)として定義する。濃縮倍率nは3〜40の範囲であることが望ましい。濃縮倍率がこれより小さいと運搬コストが高くなり、濃縮倍率がこれより高いと安定性が不十分になる。


Actually used by diluting the electroless copper plating concentrate obtained by the method of electroless copper plating concentrate according to the invention with a divalent palladium compound, since enrichment solution you containing the amine complexing agent To do. If it is an n-fold concentrated solution, it is diluted n-fold and used. Hereinafter, n is defined as the concentration ratio (= dilution ratio). The concentration factor n is preferably in the range of 3-40. If the concentration rate is smaller than this, the transportation cost becomes higher, and if the concentration rate is higher than this, the stability becomes insufficient.


2価のパラジウム化合物としては塩化パラジウム、フッ化パラジウム、臭化パラジウム、ヨウ化パラジウム、硝酸パラジウム、硫酸パラジウム、酸化パラジウム、硫化パラジウム等が例示される。中でも塩化パラジウムが望ましい。パラジウム濃度として0.005〜2.0g/Lの範囲であることが望ましい。 Examples of the divalent palladium compound include palladium chloride, palladium fluoride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium oxide, palladium sulfide and the like. Of these, palladium chloride is preferred. It is desirable as palladium concentration in the range of 0.005 n ~2.0 n g / L.

アミン系錯化剤とはアンモニアの水素原子の1個またはそれ以上が炭化水素残基Rで置換された化合物であり、Pdイオンに対する錯形成剤である。ここではアンモニアも含むものとする。アミンはN原子上に非共有電子対を保持しており、パラジウムイオンと錯形成しやすい。アミンとしては、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ピリジン、2−アミノピリジン、3−アミノピリジン、4−アミノピリジン、エチレンジアミン、エタノールアミン、トリエタノールアミン、エチレンジアミンテトラ酢酸等の直鎖アミン化合物、環状アミン化合物が挙げられ、このうち一種或いは二種類以上を用いる。アミン系錯化剤の疎水性が強すぎるとパラジウム錯体の溶解性が低下し、アミン系錯化剤の親水性が強すぎると樹脂に対する吸着性が低下するので、二種類以上を用いる場合はバランスを考慮する必要がある。パラジウムイオンとアミン系錯化剤のモル比は1:1〜1:20の範囲であることが望ましい。   An amine complexing agent is a compound in which one or more hydrogen atoms of ammonia are substituted with a hydrocarbon residue R, and is a complexing agent for Pd ions. Here, ammonia is also included. The amine retains an unshared electron pair on the N atom and tends to complex with palladium ions. As amines, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, butylamine, dibutylamine, tributylamine, pyridine, 2-aminopyridine, 3-aminopyridine , 4-aminopyridine, ethylenediamine, ethanolamine, triethanolamine, linear amine compounds such as ethylenediaminetetraacetic acid, and cyclic amine compounds, and one or two or more of them are used. If the amine complexing agent is too strong, the solubility of the palladium complex will decrease, and if the amine complexing agent is too hydrophilic, the adsorptivity to the resin will decrease. Need to be considered. The molar ratio of palladium ion to amine complexing agent is preferably in the range of 1: 1 to 1:20.

通常パラジウムイオンとアミンはpH10以上で錯形成が容易に進む。しかしながらpH10以上で作製した無電解めっき用触媒濃縮液をそのまま保存すると不具合が生じる。発明者らは鋭意研究の末、パラジウムイオンとアミンから成る無電解めっき用触媒濃縮液は、パラジウム濃度が高く水酸化物イオン濃度が高いほど錯構造の変化が起こり、吸収スペクトルが変化することが分かってきた。そしてその反応速度は下記(1)式で表せることが分かってきた。   Usually, palladium ions and amines are easily complexed at pH 10 or higher. However, if the electroless plating catalyst concentrate prepared at a pH of 10 or more is stored as it is, a problem occurs. As a result of intensive research, the inventors have found that the catalyst concentration solution for electroless plating composed of palladium ions and amines changes in the complex structure as the palladium concentration is higher and the hydroxide ion concentration is higher, and the absorption spectrum is changed. I understand. It has been found that the reaction rate can be expressed by the following equation (1).

Figure 0005327494
Figure 0005327494

つまりパラジウムイオンとアミンから成る無電解めっき用触媒は、錯形成した状態においては、濃縮液での保存が難しくなることを示唆する。そこで、本発明においてはpH10以上で無電解めっき用触媒濃縮液を作製し、pHを4以上10未満の範囲に調整して保存することを特徴とする。望ましくは、pH10以上で無電解めっき用触媒濃縮液を作製し、pHを6〜9の範囲に調整して保存する。アミンの種類にもよるが、pH10以上だと錯構造の変化が起こりやすい。またpHが酸性になると逆に錯構造が変化しやすくなる。本発明の骨子は、強アルカリ条件(pH10以上)で作製した無電解めっき用触媒濃縮液をアルカリ〜弱酸(pH4以上10未満)で保存することであり、望ましくは、アルカリ〜弱酸で保存した無電解めっき用触媒濃縮液を保存条件よりアルカリ性(pH7以上)で使用することである。   That is, it is suggested that the electroless plating catalyst composed of palladium ions and amines is difficult to store in a concentrated solution in a complexed state. Therefore, the present invention is characterized in that a catalyst concentrate for electroless plating is prepared at a pH of 10 or more, and the pH is adjusted to a range of 4 or more and less than 10, and stored. Desirably, a catalyst concentrate for electroless plating is prepared at a pH of 10 or higher, and the pH is adjusted to a range of 6 to 9 and stored. Although it depends on the type of amine, if the pH is 10 or more, the complex structure tends to change. On the contrary, when the pH becomes acidic, the complex structure tends to change. The essence of the present invention is to store a catalyst concentrate for electroless plating prepared under strong alkaline conditions (pH 10 or more) with an alkali to weak acid (pH 4 or more and less than 10), and preferably without alkali stored with an alkali to weak acid. It is to use the catalyst concentrate for electroplating more alkaline (pH 7 or more) than the storage conditions.

上記濃縮液は、pH調整用の緩衝液が含まれていることが望ましい。緩衝液にはシュウ酸、酒石酸、酢酸、クエン酸、フタル酸、2−(N−モルホリノ)エタンスルホン酸、クエン酸、コリジン、イミダゾール、りん酸、ホウ酸などが挙げられるが、中でもホウ酸が好ましい。ホウ酸を添加することで、強アルカリで作製した無電解めっき用触媒濃縮液をpH4〜10の範囲にすることが可能になる。この緩衝液は保存液中でも緩衝能力があり、実際に無電解めっき用触媒として使用する際も緩衝能力がある。ホウ酸濃度は0.2〜10(g/L)の範囲であることが好ましい。例えば、濃縮倍率(=希釈倍率)が5倍であれば、ホウ酸濃度は1〜50g/Lの範囲であることが好ましい。ホウ酸濃度がこれより低い場合は緩衝能力が不十分であり、ホウ酸濃度がこれより高い場合はPd吸着量が低下する等の不具合がある。 The concentrated solution preferably contains a buffer solution for pH adjustment. Examples of the buffer include oxalic acid, tartaric acid, acetic acid, citric acid, phthalic acid, 2- (N-morpholino) ethanesulfonic acid, citric acid, collidine, imidazole, phosphoric acid, boric acid, etc. preferable. By adding boric acid, it becomes possible to bring the concentrated catalyst solution for electroless plating made of strong alkali into a pH range of 4-10. This buffer solution has a buffer capacity even in a storage solution, and also has a buffer capacity when actually used as a catalyst for electroless plating. The boric acid concentration is preferably in the range of 0.2 n to 10 n (g / L). For example, if the concentration ratio (= dilution ratio) n is 5 times, the boric acid concentration is preferably in the range of 1 to 50 g / L. When the boric acid concentration is lower than this, the buffering capacity is insufficient, and when the boric acid concentration is higher than this, there is a problem that the Pd adsorption amount decreases.

例えば上記無電解めっき用触媒10倍濃縮液(1L)は、次の様にして製造される。まず純水に塩化ナトリウムを0.5〜5g/L添加する。次に塩化パラジウムを0.1〜20g/L添加する。引き続き、1規定の水酸化ナトリウムを1〜20mlと、パラジウムの1〜20倍モル濃度のアミン系錯化剤を添加し、pH10以上にする。その後、2〜100(g/L)のホウ酸を添加し、pHを4以上10未満の範囲にする。   For example, the electroless plating catalyst 10-fold concentrated liquid (1 L) is produced as follows. First, 0.5-5 g / L of sodium chloride is added to pure water. Next, 0.1-20 g / L of palladium chloride is added. Subsequently, 1 to 20 ml of 1N sodium hydroxide and an amine complexing agent having a molar concentration of 1 to 20 times that of palladium are added to adjust the pH to 10 or more. Thereafter, 2 to 100 (g / L) boric acid is added to adjust the pH to a range of 4 or more and less than 10.

上記無電解めっき用触媒濃縮液は、倍に希釈して使用する。液の安定性や特性の観点から、pHをアルカリ性(pH7以上)に調整して使用することが好ましい。使用時のpHは7〜12がより好ましく、8〜11の範囲が特に好ましい。 The electroless plating catalyst concentrate is diluted n times. From the viewpoint of the stability and characteristics of the liquid, it is preferable to adjust the pH to be alkaline (pH 7 or higher). As for pH at the time of use, 7-12 are more preferable, and the range of 8-11 is especially preferable.

以下、上記無電解めっき用触媒濃縮液の希釈液(倍に希釈)の使用方法の一例を説明する。まず、樹脂等の被メッキ物を、アミン系添加剤を含有する水溶液に浸漬する。水溶液のpHはアルカリ性が好ましい。アミン系添加剤としてはアミノアルコール類やアミノシラン類が好ましい。これらアミン系添加剤に含まれるアミノ基はプラスに帯電しやすいのでマイナスに帯電したパラジウム錯体を吸着させやすくなる。このような水溶液の一例としてCLC201(日立化成工業株式会社製・商品名)が挙げられる。引き続き水洗を行い、余分なアミン系添加剤を除去する。


Hereinafter, an example of a method of using the diluted solution (diluted n times) of the above-described electroless plating catalyst concentrate will be described. First, an object to be plated such as a resin is immersed in an aqueous solution containing an amine-based additive. The pH of the aqueous solution is preferably alkaline. As the amine-based additive, amino alcohols and aminosilanes are preferable. Since the amino group contained in these amine-based additives tends to be positively charged, it becomes easy to adsorb the negatively charged palladium complex. An example of such an aqueous solution is CLC201 (trade name, manufactured by Hitachi Chemical Co., Ltd.). Subsequently, washing with water is performed to remove excess amine-based additives.


以下、必要に応じてエッチング工程等を経由し、pH3以下の水溶液に被めっき物を浸漬する。これにより被めっき物表面に吸着したアミノ基をプラスに帯電させることが出来るのでパラジウム吸着量が向上する。pH3以下の水溶液に被めっき物を浸漬した後、上記Pd触媒希釈液(無電解めっき用触媒濃縮液の希釈液)に被めっき物浸漬する。浸漬時間は1〜10分、浸漬温度は10〜50℃が好適である。   Thereafter, the object to be plated is immersed in an aqueous solution having a pH of 3 or less through an etching process or the like as necessary. Thereby, since the amino group adsorbed on the surface of the object to be plated can be positively charged, the amount of palladium adsorbed is improved. After the object to be plated is immersed in an aqueous solution having a pH of 3 or less, the object to be plated is immersed in the Pd catalyst diluent (diluted solution of the electroless plating catalyst concentrate). The immersion time is preferably 1 to 10 minutes, and the immersion temperature is preferably 10 to 50 ° C.

次に被めっき物を還元剤水溶液に浸漬することで金属Pdが被めっき物表面に形成される。還元剤水溶液としては、ホルムアルデヒド、塩化第一錫、次亜硫酸ナトリウム、ジメチルアミンボラン、水素化アルミニウムリチウム、水素化ホウ素ナトリウム等の還元性物質の水溶液が使用される。還元性物質の濃度はその還元力により異なるが、好ましくは0.01〜10重量%、より好ましくは0.1〜2重量%で、pH=7〜14が好ましい。   Next, the metal Pd is formed on the surface of the object by immersing the object to be plated in the reducing agent aqueous solution. As the reducing agent aqueous solution, an aqueous solution of a reducing substance such as formaldehyde, stannous chloride, sodium hyposulfite, dimethylamine borane, lithium aluminum hydride, sodium borohydride or the like is used. The concentration of the reducing substance varies depending on its reducing power, but is preferably 0.01 to 10% by weight, more preferably 0.1 to 2% by weight, and pH = 7 to 14 is preferable.

以上のようにして金属粒子が形成された被めっき物を電解銅めっき等の無電解めっき液に浸漬することでめっきが行われる。無電解銅めっき液としてはCUST−201(日立化成工業株式会社製・商品名)やCUST−4600(日立化成工業株式会社製・商品名)等がある。   Plating is performed by immersing the object on which the metal particles are formed as described above in an electroless plating solution such as electrolytic copper plating. Examples of the electroless copper plating solution include CUST-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) and CUST-4600 (trade name, manufactured by Hitachi Chemical Co., Ltd.).

実施例1
水200mlに対し、塩化ナトリウム2.6gと塩化パラジウム4g/Lを溶解させ、10重量%イソブチルアミン70mlと4重量%モノメチルアミン22mlを添加し、1規定のNaOHを6.2ml加えて攪拌し、pH10以上にした。その後、水及びホウ酸を1g/L加えて攪拌し、pHを調整し、2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表1に示した。
Example 1
In 200 ml of water, 2.6 g of sodium chloride and 4 g / L of palladium chloride are dissolved, 70 ml of 10% by weight isobutylamine and 22 ml of 4% by weight monomethylamine are added, and 6.2 ml of 1N NaOH is added and stirred. The pH was adjusted to 10 or higher. Then, 1 g / L of water and boric acid were added and stirred, pH was adjusted, and 2 L of electroless plating catalyst 5 times concentrated liquid was produced. The adjusted pH is shown in Table 1.

実施例2
ホウ酸を2g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表1に示した。
Example 2
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 2 g / L of boric acid was added. The adjusted pH is shown in Table 1.

実施例3
ホウ酸を3g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表1に示した。
Example 3
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 3 g / L of boric acid was added. The adjusted pH is shown in Table 1.

実施例4
ホウ酸を5g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表1に示した。
Example 4
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 5 g / L of boric acid was added. The adjusted pH is shown in Table 1.

実施例5
ホウ酸を7.5g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表1に示した。
Example 5
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 7.5 g / L of boric acid was added. The adjusted pH is shown in Table 1.

実施例6
ホウ酸を10g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表2に示した。
Example 6
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 10 g / L of boric acid was added. The adjusted pH is shown in Table 2.

実施例7
ホウ酸を17.5g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表2に示した。
Example 7
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 17.5 g / L of boric acid was added. The adjusted pH is shown in Table 2.

比較例1
ホウ酸を加えなかったこと以外は実施例1と同様に無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表2に示した。
Comparative Example 1
A 5-fold concentrated solution of electroless plating catalyst was prepared in the same manner as in Example 1 except that boric acid was not added. The adjusted pH is shown in Table 2.

比較例2
ホウ酸を水200mlに予め加えたこと以外は実施例1と同様に無電解めっき用触媒5倍濃縮液を作製した。この時のpHは10未満であった。建浴初期から濁っており、錯体形成が容易に行われないことが分かった。
Comparative Example 2
An electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that boric acid was added in advance to 200 ml of water. The pH at this time was less than 10. It was found that it was cloudy from the beginning of the bath, and complex formation was not easily performed.

比較例3
ホウ酸を0.5g/L加えた以外は実施例1と同様にして2Lの無電解めっき用触媒5倍濃縮液を作製した。調整したpHを表2に示した。
Comparative Example 3
A 2 L electroless plating catalyst 5-fold concentrated solution was prepared in the same manner as in Example 1 except that 0.5 g / L of boric acid was added. The adjusted pH is shown in Table 2.

吸収スペクトル試験
上記実施例1〜7、比較例1、比較例3の条件で作製した無電解めっき用触媒5倍濃縮液を0日、30日(一ヶ月)、60日(二ヶ月)保存し、保存した後5倍希釈し、ホウ酸を3.5g/Lとなるように加え、1規定水酸化ナトリウム水溶液によりpH9.8となるように調整した。次にダブルビーム分光光度計U−2001(日立製作所製・商品名)にて吸収スペクトルを測定し、320nmの吸光度(ABS)を測定した。
Absorption spectrum test The electroless plating catalyst 5-fold concentrated solution prepared under the conditions of Examples 1 to 7, Comparative Example 1 and Comparative Example 3 was stored for 0 days, 30 days (one month), and 60 days (two months). After storage, the mixture was diluted 5 times, boric acid was added to 3.5 g / L, and the pH was adjusted to 9.8 with a 1 N aqueous sodium hydroxide solution. Next, the absorption spectrum was measured with a double beam spectrophotometer U-2001 (trade name, manufactured by Hitachi, Ltd.), and the absorbance (ABS) at 320 nm was measured.

Pd吸着量確認試験
0.6mm厚の銅張積層板MCL−E679Fをエッチング液にて全面エッチングした。つぎにアミノシランを含む無電解銅めっき触媒前処理液CLC−201(日立化成工業株式会社製・商品名)に、50℃5分の条件で基板を浸漬した。次に室温(25℃)3分の条件で水洗を行った。引き続き10体積%硫酸に室温(25℃)1分の条件で基板を浸漬した。次に実施例1〜7、比較例1、比較例3の条件で作製した無電解めっき用触媒5倍濃縮液を0日、30日(一ヶ月)、60日(二ヶ月)保存し、保存した後5倍希釈し、ホウ酸を3.5g/Lとなるように加え、1規定水酸化ナトリウム水溶液によりpH9.8となるように調整して作製した各種無電解めっき用触媒で基板の処理を行った。次に室温(25℃)1分の条件で水洗を行った。引き続き、水素化ホウ素ナトリウム0.15重量%、水酸化ナトリウム0.5重量%を含む水溶液で室温(25℃)5分の処理を行った。次に室温(25℃)1分の条件で水洗を行った。次に王水に基板を浸漬し、パラジウムを溶解させた後、溶解液のパラジウムを原子吸光法で測定し、基板に吸着したパラジウム量の測定を行った。パラジウムの測定にはPolarized Zeeman Atomic Absorption Spectrometer Z−5310(株式会社日立製作所製・商品名)を用いた。
Pd adsorption amount confirmation test A copper clad laminate MCL-E679F having a thickness of 0.6 mm was entirely etched with an etching solution. Next, the substrate was immersed in an electroless copper plating catalyst pretreatment liquid CLC-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) containing aminosilane at 50 ° C. for 5 minutes. Next, it was washed with water at room temperature (25 ° C.) for 3 minutes. Subsequently, the substrate was immersed in 10% by volume sulfuric acid at room temperature (25 ° C.) for 1 minute. Next, the electroless plating catalyst 5-fold concentrated solution prepared under the conditions of Examples 1 to 7, Comparative Example 1 and Comparative Example 3 is stored for 0 days, 30 days (one month), and 60 days (two months). After that, the substrate was treated with various electroless plating catalysts prepared by adding boric acid to 3.5 g / L and adjusting the pH to 9.8 with a 1 N aqueous sodium hydroxide solution. Went. Next, it was washed with water at room temperature (25 ° C.) for 1 minute. Subsequently, treatment was carried out for 5 minutes at room temperature (25 ° C.) with an aqueous solution containing sodium borohydride 0.15 wt% and sodium hydroxide 0.5 wt%. Next, it was washed with water at room temperature (25 ° C.) for 1 minute. Next, the substrate was immersed in aqua regia to dissolve palladium, and then the palladium in the solution was measured by atomic absorption method to measure the amount of palladium adsorbed on the substrate. For measurement of palladium, Polarized Zeeman Atomic Absorption Spectrometer Z-5310 (manufactured by Hitachi, Ltd., trade name) was used.

表1及び表2に吸収スペクトル試験及びPd吸着量確認試験の結果を示す。   Tables 1 and 2 show the results of the absorption spectrum test and the Pd adsorption amount confirmation test.

Figure 0005327494
Figure 0005327494

Figure 0005327494
Figure 0005327494

表1に示す様に実施例1〜7で作製しためっき触媒濃縮液は、調整したpHが10未満であった。触媒の色の変化や吸光度変化、Pd吸着量変化が殆どなく保存安定性良好であることが分かった。一方、比較例2で作製しためっき触媒濃縮液は、作製した時のpHが10未満では、錯形成が上手く進まず、液全体が濁ってしまうことが分かった。錯形成はpH10以上で行ったほうが良いことが示された。一方比較例1、比較例3で作製しためっき触媒濃縮液は、調整後のpHが10以上あるために錯構造の変化が進んでいると考えられる。触媒の色、吸光度、Pd吸着量が何れも変化することが分かった。   As shown in Table 1, the concentrated pH of the plating catalyst prepared in Examples 1 to 7 was less than 10. It was found that there was almost no change in the color of the catalyst, no change in absorbance, and no change in the Pd adsorption amount, and the storage stability was good. On the other hand, it was found that the plating catalyst concentrate prepared in Comparative Example 2 did not proceed well with complex formation when the pH at the time of preparation was less than 10, and the entire solution became cloudy. It was shown that complexation should be performed at a pH of 10 or higher. On the other hand, it is considered that the plating catalyst concentrates prepared in Comparative Examples 1 and 3 have a complex structure changing because the adjusted pH is 10 or more. It was found that the catalyst color, absorbance, and Pd adsorption amount all changed.

以上詳述したように、本発明によれば触媒の色の変化や吸光度変化、Pd吸着量変化が殆どなく保存安定性良好な無電解めっき用触媒濃縮液を作製できる。

As described above in detail, according to the present invention, a catalyst concentrate for electroless plating with little change in catalyst color, change in absorbance, and change in Pd adsorption amount and good storage stability can be produced.

Claims (9)

2価のパラジウム化合物とアミン系錯化剤を含む無電解めっき用触媒濃縮液の製造方法であって、pH10以上で無電解めっき用触媒濃縮液を作製した後、pH調整用の緩衝剤によりpHを4以上10未満の範囲、無電解めっき用触媒液に対する濃縮倍率(n)が3〜40の範囲(パラジウム濃度として0.005n〜2.0ng/L、パラジウムイオンとアミン系錯化剤のモル比は1:1〜1:20の範囲、(nは、3〜40の実数)に調整して保存することを特徴とする無電解めっき用触媒濃縮液の製造方法A method for producing a catalyst concentrate for electroless plating containing a divalent palladium compound and an amine complexing agent, wherein the catalyst concentrate for electroless plating is prepared at a pH of 10 or higher, and then the pH is adjusted with a buffer for pH adjustment. In the range of 4 to less than 10 and the concentration ratio (n) to the electroless plating catalyst solution is in the range of 3 to 40 (as the palladium concentration of 0.005 n to 2.0 ng / L, of palladium ion and amine complexing agent). A method for producing a concentrated catalyst solution for electroless plating, wherein the molar ratio is adjusted to a range of 1: 1 to 1:20 (n is a real number of 3 to 40) . 無電解めっき用触媒濃縮液の使用時に、無電解めっき用触媒濃縮液のpHよりアルカリ性(pH7以上)に調整して用いる請求項1に記載の無電解めっき用触媒濃縮液の製造方法The method for producing a catalyst concentrate for electroless plating according to claim 1, wherein the catalyst concentrate for electroless plating is adjusted to be alkaline (pH 7 or more) from the pH of the catalyst concentrate for electroless plating. pH10以上で無電解めっき用触媒濃縮液を作製した時に2価のパラジウム化合物とアミン系錯化剤が錯形成していることを特徴とする請求項1または2に記載の無電解めっき用触媒濃縮液の製造方法The catalyst concentration for electroless plating according to claim 1 or 2, wherein a divalent palladium compound and an amine complexing agent are complexed when a catalyst concentration solution for electroless plating is prepared at a pH of 10 or more. Liquid manufacturing method . pH調整用の緩衝剤が、シュウ酸、酒石酸、酢酸、クエン酸、フタル酸、2−(N−モルホリノ)エタンスルホン酸、クエン酸、コリジン、イミダゾール、りん酸、ホウ酸から選ばれる請求項1〜3いずれかに記載の無電解めっき用触媒濃縮液の製造方法The buffer for pH adjustment is selected from oxalic acid, tartaric acid, acetic acid, citric acid, phthalic acid, 2- (N-morpholino) ethanesulfonic acid, citric acid, collidine, imidazole, phosphoric acid, and boric acid. The manufacturing method of the catalyst concentrate for electroless plating in any one of -3. 緩衝剤が、ホウ酸であることを特徴とする請求項4に記載の無電解めっき用触媒濃縮液の製造方法The method for producing a concentrated catalyst solution for electroless plating according to claim 4, wherein the buffer is boric acid. 無電解めっき用触媒濃縮液の濃縮倍率がn倍であり、かつホウ酸濃度が、0.2n〜10n(g/L)の範囲であることを特徴とする請求項5に記載の無電解めっき用触媒濃縮液の製造方法(nは、3〜40の実数)。 6. The electroless plating according to claim 5, wherein the concentration ratio of the catalyst concentrate for electroless plating is n times, and the boric acid concentration is in the range of 0.2 n to 10 n (g / L). (N is a real number of 3 to 40). アミン系錯化剤が、2種類以上のアミン系錯化剤からなることを特徴とする請求項1〜6いずれかに記載の無電解めっき用触媒濃縮液の製造方法The method for producing a concentrated catalyst solution for electroless plating according to any one of claims 1 to 6, wherein the amine complexing agent comprises two or more types of amine complexing agents. pHが3以下の水溶液に被めっき物を浸漬する工程、その後、請求項1〜7いずれかに記載の無電解めっき用触媒濃縮液の製造方法により得られた無電解めっき用触媒濃縮液を3〜40倍で希釈してpH7以上に調整した無電解めっき用触媒液に被めっき物を浸漬する工程を有することを特徴とするめっき触媒付与方法。 A step of immersing an object to be plated in an aqueous solution having a pH of 3 or less, and then 3 of the catalyst concentrate for electroless plating obtained by the method for producing a catalyst concentrate for electroless plating according to claim 1. A plating catalyst application method comprising a step of immersing an object to be plated in an electroless plating catalyst solution diluted to 40 times and adjusted to pH 7 or higher. pHが3以下の水溶液に被めっき物を浸漬する工程の前に、アミン系添加剤を含有する水溶液に被めっき物を浸漬する工程を有する請求項8に記載のめっき触媒付与方法。   The method for applying a plating catalyst according to claim 8, further comprising a step of immersing the object to be plated in an aqueous solution containing an amine-based additive before the step of immersing the object to be plated in an aqueous solution having a pH of 3 or less.
JP2005331485A 2005-11-16 2005-11-16 Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same Expired - Fee Related JP5327494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331485A JP5327494B2 (en) 2005-11-16 2005-11-16 Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331485A JP5327494B2 (en) 2005-11-16 2005-11-16 Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same

Publications (2)

Publication Number Publication Date
JP2007138218A JP2007138218A (en) 2007-06-07
JP5327494B2 true JP5327494B2 (en) 2013-10-30

Family

ID=38201457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331485A Expired - Fee Related JP5327494B2 (en) 2005-11-16 2005-11-16 Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same

Country Status (1)

Country Link
JP (1) JP5327494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434222B2 (en) * 2009-04-17 2014-03-05 コニカミノルタ株式会社 Metal pattern forming method and metal pattern
JP2010251594A (en) * 2009-04-17 2010-11-04 Konica Minolta Ij Technologies Inc Inkjet ink and method of manufacturing the same, and metal pattern forming method
JP6159205B2 (en) * 2013-09-04 2017-07-05 ローム・アンド・ハース電子材料株式会社 Catalyst solution for electroless plating
JP6272673B2 (en) * 2013-10-30 2018-01-31 ローム・アンド・ハース電子材料株式会社 Catalyst solution for electroless plating
CN113046734B (en) * 2021-03-12 2022-04-01 上海天承化学有限公司 Bivalent palladium complex solution and preparation method and application thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393129A (en) * 1977-01-28 1978-08-15 Hitachi Ltd Nonnelectrolytic palladium activated liquid
JPS58185794A (en) * 1982-04-21 1983-10-29 Hitachi Ltd Activated palladium solution
JPS6024380A (en) * 1983-07-20 1985-02-07 Hitachi Ltd Palladium activating solution
US4593016A (en) * 1985-02-14 1986-06-03 International Business Machines Corporation Process for manufacturing a concentrate of a palladium-tin colloidal catalyst
JPS61194183A (en) * 1985-02-21 1986-08-28 Hitachi Chem Co Ltd Electroless plating method
JPS64275A (en) * 1987-03-19 1989-01-05 Hitachi Chem Co Ltd Catalyst for electroless plating and method using said catalyst
GB8725148D0 (en) * 1987-10-27 1987-12-02 Omi International Gb Ltd Catalyst
JPH01195281A (en) * 1988-01-28 1989-08-07 Hitachi Chem Co Ltd Catalyst for electroless plating
JP2513270B2 (en) * 1988-05-06 1996-07-03 日立化成工業株式会社 Catalyst solution for electroless plating
FR2652822B1 (en) * 1989-10-11 1993-06-11 Onera (Off Nat Aerospatiale) HYDRAZINE BATH FOR THE CHEMICAL DEPOSITION OF PLATINUM AND / OR PALLADIUM, AND METHOD FOR MANUFACTURING SUCH A BATH.
JPH0426774A (en) * 1990-05-22 1992-01-29 Hitachi Chem Co Ltd Catalyst for electroless plating and electroless plating method
JP2649750B2 (en) * 1991-06-13 1997-09-03 石原薬品 株式会社 Selective electroless plating method on copper material
JP3035676B2 (en) * 1991-10-08 2000-04-24 奥野製薬工業株式会社 Method for electroless nickel plating on zinc-aluminum alloy, composition for catalytic treatment, composition for activation treatment, and composition for electroless nickel strike plating
WO1997048832A2 (en) * 1996-05-30 1997-12-24 E.I. Du Pont De Nemours And Company Process for making thermally stable metal coated polymeric monofilament or yarn
JPH11124680A (en) * 1997-10-21 1999-05-11 Ebara Udylite Kk Catalytic solution for electroless plating
JPH11207184A (en) * 1998-01-27 1999-08-03 Hideo Honma Palladium mixed catalyst and method for providing palladium catalyst utilizing same
JP2000096252A (en) * 1998-09-18 2000-04-04 C Uyemura & Co Ltd Method for plating to hard disk substrate
JP2003313671A (en) * 2002-04-23 2003-11-06 Japan Pure Chemical Co Ltd CATALYTIC SOLUTION FOR ELECTROLESS Ni PLATING
JP2004315895A (en) * 2003-04-16 2004-11-11 Hitachi Chem Co Ltd Pretreatment liquid for electroless plating, and electroless plating method using it
JP2004332036A (en) * 2003-05-06 2004-11-25 Hitachi Chem Co Ltd Electroless plating method

Also Published As

Publication number Publication date
JP2007138218A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
EP3351657B1 (en) Electroless copper plating compositions
EP2581470B1 (en) Electroless palladium plating bath composition
WO2010050266A1 (en) Method for surface treatment of copper and copper
JP5327494B2 (en) Method for producing catalyst concentrate for electroless plating and method for applying plating catalyst using the same
CA2417071A1 (en) Bath and method of electroless plating of silver on metal surfaces
TW201915216A (en) Stable electroless copper plating compositions and methods for electroless plating copper on substrates
US9914115B2 (en) Catalysts for electroless metallization containing five-membered heterocyclic nitrogen compounds
JP2018080369A (en) Method for manufacturing printed circuit board
KR20140106424A (en) Plating catalyst and method
JP6099678B2 (en) Alkaline plating bath for electroless plating of cobalt alloy
JP5978587B2 (en) Semiconductor package and manufacturing method thereof
WO2010023895A1 (en) Sensitizing solution for electroless plating and electroless plating method
TWI498454B (en) Plating catalyst and method
TWI804539B (en) Electroless gold plating bath
JP2015138222A (en) Method for manufacturing resist pattern, method for manufacturing wiring pattern, and wiring board
JP6562597B2 (en) Catalysts for electroless metallization involving iminodiacetic acid and derivatives
GB2253415A (en) Selective process for printed circuit board manufacturing employing noble metal oxide catalyst.
KR100973007B1 (en) Electroless Sn reduction plating solution for metal product and electroless plating method using the same
JP4059133B2 (en) Electroless nickel-gold plating method
US20220267906A1 (en) Solution and process for the activation of nonconductive area for electroless process
TWI780602B (en) Solution and process for the activation of nonconductive area for electroless process
JPH08291389A (en) Gold plating liquid not substituted with cyanide and gold plating method using this liquid
CA1206818A (en) Method of producing gold-alloy layers and patterns on substrates, products thus produced and the solutions to be used therefore
KR20240097762A (en) Catalyst application bath for electroless plating, method of producing catalytic nucleus-containing material to be electroless plated, method of producing material with electroless plating deposit, and material with electroless plating deposit
KR20230173025A (en) Etching solution, method for surface treatment of aluminum or aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R151 Written notification of patent or utility model registration

Ref document number: 5327494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees