JP4058561B2 - Metal continuous casting method and ingot mold for carrying out the method - Google Patents

Metal continuous casting method and ingot mold for carrying out the method Download PDF

Info

Publication number
JP4058561B2
JP4058561B2 JP53590397A JP53590397A JP4058561B2 JP 4058561 B2 JP4058561 B2 JP 4058561B2 JP 53590397 A JP53590397 A JP 53590397A JP 53590397 A JP53590397 A JP 53590397A JP 4058561 B2 JP4058561 B2 JP 4058561B2
Authority
JP
Japan
Prior art keywords
metal
ingot mold
wall
heat flow
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53590397A
Other languages
Japanese (ja)
Other versions
JP2000508243A (en
Inventor
ジョリヴェ,ジャン―マルク
ペラン,エリック
サラリス,コジモ
スピケル,ジャック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA filed Critical Sollac SA
Publication of JP2000508243A publication Critical patent/JP2000508243A/en
Application granted granted Critical
Publication of JP4058561B2 publication Critical patent/JP4058561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Confectionery (AREA)
  • Steroid Compounds (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

An ingot mould has energetically cooled metal walls (1, 3) having means in their upper portion for decreasing the intensity of the heat flow extracted from the cast metal (2), such as a coating (6, 15) of a less conductive metal than that of the walls, or grooves (31) provided in said walls. On top of the walls is provided a heat insulating feeder bush (7) associated with gas injection means terminating in nozzles distributed on the inner periphery of said ingot mould. During the casting, the free surface of the liquid metal is maintained at the same level as the feeder bush, wherein the solid skin (21) only starts to solidify at the upper edge of the metal walls (3). The invention is particularly useful for the continuous casting of steel.

Description

本発明は金属、特に鋼の連続鋳造に関するものである。
周知のように、連続鋳造操作の概念は鋳造金属の通路を規定する無底の管状要素で基本的に構成されるインゴット鋳型に溶融金属を流し込むものである。この鋳型の壁は銅、より一般には銅合金で作られ、循環水によって強制冷却されている。鋳型からからは厚さ数cmにわたって外側が凝固した鋳造物が連続的に抜き出される。この凝固は鋳造物の中心に向かって進行し、鋳造物がインゴット鋳型の下流へ下降する間にいわゆる「二次冷却」領域において水噴霧の作用で凝固は完了する。得られた鋳造物(ブルーム、ビレットまたはスラブ)は一定の長さに切断され、圧延された後に顧客に運送されるか、バー、ワイヤー、プロフィル、プレート、シート等に変形される。
鋼の連続鋳造によって得られる鋳造物の表面欠陥または表面下の欠陥は不良品の原因になることが多い。これは欠陥が圧延操作に十分に耐えられないか、圧延によって欠陥が拡大して、圧延された鋳造物の金属特性が許容できない程度に低下することによる。
溶融金属は鋳造時にノズルによってインゴット鋳型に供給され、インゴット鋳型の冷却壁と接触して固体膜(solid film)を形成する。この膜は鋳造物の抽出し中にインゴット鋳型の垂直振動による律動的な動きによって下方へ駆動されると同時に、インゴット鋳型の壁介して続く熱の抽出によって膜厚は増加する。
従って、固体金属の新しい膜はインゴット鋳型内の金属の自由表面の高さで連続的に生じ(「メニスカス」とよばれる)、この膜はインゴット鋳型の内壁の周辺(perimeter)全体にわたって凝固し、インゴット鋳型内で下降する間に受ける冷却によって収縮しやすい固体リングを形成する。
このリングの収縮度は熱抽出量が増加につれて増大し、さらには、0.1%炭素鋼またはAISI304グレードのステンレス鋼の場合のように、例えば凝固終了時の固相の変化によって冷却時に収縮する鋳造金属の本来の性質によって増大する。
この周縁部収縮によって凝固外皮はインゴット鋳型の壁から離れやすくなり、従って、外皮と冷却壁との接触が減少して熱交換効率が低下する。一般に、この分離は凝固外皮の周辺にわたって一様でなく、最終的に得られる鋳造物の表面欠陥の原因となる。
これらの欠陥を防止または制限するために、外皮の生成中および凝固開始時に抽出される熱流を減少させる試みが行われてきた。
すなわち、溶融金属がインゴット鋳型の冷却壁に直接接触しないようにするための遮熱層を形成するインサートを、鋳造物が凝固し始める上側部分に備えたインゴット鋳型を用いて熱流を減少させることが試みられた。しかし、このようなインサートの耐久性は不確かで、しかも、そうしたインゴット鋳型の維持費は非常に高いことが分かった。
さらに、インゴット鋳型の壁に表面仕上げを施し、例えば壁に彫刻して壁の表面にエンボスを形成したり、例えばサンドブラスチングによって不規則な粗さにすることによって鋳造金属が冷却壁の銅と直接接触する領域の面積を減らして熱流を減少させる試みが行われた。しかし、この方法では鋳造物の表面の品質を大幅に改良させることはできない。事実、インゴット鋳型の壁を表面仕上げして得られる熱流の緩和効果に比べて、鋳造金属の自由表面の高さの変動によって生じる乱流ははるかに優勢であるため、凝固の不均質性が残り、表面欠陥は無くならない。
鋳造金属と壁の冷たい銅との直接接触を減らすという同じ目的で、壁に垂直方向の溝を形成する試みも行われたが、この溝には液体金属の自由表面の被覆層に一般に用いられるスラグが直ぐに詰まって、期待された熱的効果が弱まることがわかった。
本発明の目的は上記の問題点を解決し、凝固外皮の生成中および成長開始時に抽出される熱流を有効に減少させ、しかも、インゴット鋳型内の液体金属の自由表面の高さ変動の悪影響を防いで、極めて表面品質に優れた鋳造物を得ることができる方法を提供することにある。
本発明の対象は、鋳造金属の通路を規定する、ほぼ垂直方向へ延びた強制冷却された金属壁を有し、この金属壁の高さ全体にわたって鋳造金属の熱流を抽出し、金属を冷却して徐々に凝固させ、金属が上記壁に接触して凝固し始める高さの所で抽出される熱流の強度を低下させる、インゴット鋳型で溶融金属、特に鋼を連続鋳造する方法において、冷却された金属壁の上側に断熱フレームを配置し、鋳造中は鋳造金属の自由表面の高さを断熱フレームの内側に維持し、断熱フレームの高さの所の少なくともこの下側端縁の高さでインゴット鋳型にガスを注入し、注入したガスをジェット流の形で上記通路の内周縁部全体に分配させることを特徴とする方法にある。
本発明では、液体金属浴の自由表面(メニスカス)は上記フレーム内に位置している。このフレームは断熱材料で作られているので、凝固した金属膜はこの金属壁の上側端縁でのみ均一に生成し始める。そのために、フレームの底部にパージガスを送り込んで、冷却された金属部分における望ましい均一な凝固を、断熱材料で作られた部分で起こりうる全ての望ましくない局部的な凝固から正確に分離して、鋳造金属の凝固をメニスカスから一定の距離の所でのみ開始させる。この凝固開始領域はほぼ完全に水平であり、浴の自由表面を攪拌する避けられない変動や乱流に影響されない。最初の凝固外皮で構成される固体リングは幾何学的に完全に均一であり、それに続いてできる新しいリングも同様にほとんど完全に均一であり、鋳造物の下降につれて次第に成長するこの凝固外皮も同様である。
さらに、鋳造金属の凝固はフレーム内で開始しないので、鋳造金属はこの高さでは収縮しない。鋳造金属はフレームの壁との接触を維持し、鋳造金属と壁との間にスラグが侵入するのが防がれる。その結果、壁と接触して凝固する外皮とインゴット鋳型の金属壁との間にスラグが侵入することは、凝固の縮みのために凝固外皮が壁から離れやすい場合でもあり得ない。さらに、フレーム内に収容された液体金属によって生じる液体金属の鉄の静圧がこの分離を妨げ、従って、外皮の金属壁表面との接触を維持し、さらに、外皮の厚さおよび凝固状態はインゴット鋳型の内周縁で均一であるので、インゴット鋳型の内周全体で均一に維持される。
従って、金属壁の上側部分で行われる熱流抽出はこの内周縁部での規則性によって同じく鋳造物の内周縁全体で均一に行われ、固体外皮の局部的分離と、その結果としての生じる厚さ不足が防がれ、凝固開始領域で抽出される熱流の強度は金属壁によって規定される通路の内周縁全体で極めて均一になる。
抽出される熱流の強度は、インゴット鋳型によって抽出される熱全体の特性を大きく変えずに、フレームの下側端縁から所定の高さの領域で低下させるのが好ましい。この高さを制限することで、固体金属外皮が生成する領域で抽出される熱流を減少でき、従来の鋳造工程で観察される金属外皮の収縮作用および分離を防止することができる。
本発明の第1実施例では、上記領域の全高でほぼ一定の熱流が抽出される。この場合、抽出される熱流の減少率は高くできるが、狭い高さ範囲、例えば約10mmになる。
本発明の第2実施例では、上記領域で上から下へ向かって熱流抽出能が増大する。この場合には、抽出される熱流の減少率は高さ範囲の大きい領域でインゴット鋳型の底へ向かって徐々に低下する。これによって、抽出される熱流の減少率はこの領域の大きい高さ範囲で上記の場合に比べて高くすることができ、さらに、抽出される熱流が少ないフレームと最大の熱流抽出が求められるインゴット鋳型の冷却された金属部分との間で抽出される熱流の変化に一定の漸進性を付けることができる。
本発明の他の対象は、鋳造金属の通路を規定するほぼ垂直方向へ延びる金属壁と、この金属壁のほぼ全高にわたってその壁を強制冷却する壁の内側に配置された冷却手段と、金属壁の上側に設けられた、冷却手段によって生じる壁の内側表面を通る熱流の強度を低下させる手段とを有する連続鋳造インゴット鋳型において、金属壁の上側に金属壁の上方延長上に配置された断熱性材料で作られたフレームと、加圧ガスをジェット流の形でインゴット鋳型に注入する注入手段とを有し、加圧ガスがフレームの高さの所の少なくともその下側端縁の高さで上記通路の内周縁部全体に分配されることを特徴とするインゴット鋳型にある。
本発明の第1実施例では、熱流強度を低下させる手段が壁を構成する金属に比べて熱伝導性が低い金属、例えばニッケルの層から成り、これはインゴット鋳型の壁の銅または銅合金に電気分解方法によって形成できる。
本発明の第1実施例では、上記層が金属壁上、従って金属壁とフレームを構成する断熱材料との間に位置し、その厚さは例えば約1mmにすることができる。
本発明の別の実施例では、上記層が冷却された金属壁の内側面に沿って延び、この場合、約数cmの高さにすることができる。伝導性の悪い金属の層は鋳造金属の凝固外皮とインゴット鋳型の伝導性に優れた金属との間に遮熱層を形成する。この伝導性の悪い層が延びている全高で抽出される熱流は、鋳造金属が金属壁の伝導性の良い金属と直接接触する場合に比べて、大幅に減少する(減少率は50%またはそれ以上に達しうる)。
銅または銅合金の壁の上側およびその壁の内側面の両方に伝導性の悪い金属層を形成することによって、冷却壁の上側部分で抽出される熱流の平均値を変え、金属壁の上側端縁から鋳造金属の膜が凝固し始める高さまでの距離に応じて熱流を分散させることが同時にでき、上記層の厚さを上から下へ徐々に減少させることによってこの分散を容易に予備調節することができる。
本発明の第2実施例では、熱流強度を低下させる手段が金属壁の内側表面に形成されたほぼ垂直方向に延びる溝から成る。この溝によって凝固膜が生じる領域でインゴット鋳型の壁によって形成される通路の内周縁に沿って鋳造金属が冷却壁の銅または銅合金と直接接触する点とこの溝に対応する熱流の抽出量が減少する点とを交互に配置することができる。本明細書の最初に記載した方法と違って、この溝の付いた装置を用いると、金属浴の自由表面の下側の一定距離の所、従ってスラグの非存在下で凝固を開始させることができるので、鋳造中にスラグがスリットに侵入してスリットを詰まらせることはあり得ないということは理解できよう。この構成の一つの実施例では、溝の少なくとも一部を金属壁を形成する金属に比べて伝導性の低い材料で充填する。
本発明の他の特徴および利点は、本発明の鋼連続鋳造インゴット鋳型およびその実施を示す以下の説明からより良く理解できよう。
添付図面を参照する:
図1は本発明の第1実施例を概念的に示すインゴット鋳型の上側部分の縦方向部分断面図。
図2はインゴット鋳型において鋳造中に抽出される熱流の変化を金属壁の上側端縁からの距離の関数で示すグラフ。
図3は本発明のインゴット鋳型の第2実施例の図1に対応する図。
図4は第2実施例のインゴット鋳型の図2に対応するグラフ。
図5は金属壁の上側部分に溝を形成した、第2実施例のインゴット鋳型の壁の上側部分の概念図。
図6は図5の金属壁の上側部分の拡大水平断面図。
図7は溝が伝導性の悪い金属によって充填されている図6と同様な図。
図8は抵抗発熱体を有するフレームの特に有利な設計図。
図9は図8の線IX-IXによるインゴット鋳型の縮小断面図。
図1に示すインゴット鋳型は管状体を形成し、公知のように内部循環水で冷却された金属壁1を有し、鋳造鋼2の垂直方向の通路を規定する金属壁1を有する。金属壁1の上側部分はその下側部分ろは独立した部材で作られるのが好ましい。この独立した部材は例えば環状部分3の形をしており、同じ銅または銅合金で作られ、水循環用導管4によって概念的に示されるそれ固有の冷却回路を備えている。
この環状部分3はその金属壁がこの壁の全高にわたって単一な部品で形成されている場合に、より容易且つ安価に取替えることができる。厚さが例えば1.5mmの電解ニッケル層6が環状部分3の上側面5に塗布される。
断熱フレーム7は、絶縁性の高い断熱材料で作られた高さが例えば200mmの上側部分8と、上側部分8に比べて絶縁性は場合によっては劣るが強度が勝っている断熱材料、例えば、厚さが例えば20mmのSiAlONとよばれる材料で作られた下側部分9とを有している。この断熱フレーム7は高さが例えば40mmで、環状部分3の上側に配置される。
ニッケル層6とSiAlON9との間に形成された空間は高さの低い、例えば数1/10mmの高さのスリット10を形成する。こののスリット10はインゴット鋳型の内周縁全体に沿ってインゴット鋳型の内側表面に開口し且つ図1に概念的に示した加圧不活性ガス源、例えばアルゴン源110に連通している。
インゴット鋳型への液体金属の供給は、断熱材料で作られたフレーム7の高さの所に開口したノズル11、例えばフレーム7の上側部分8のほぼ半分の高さの位置に開口した横方向開口部12を有する周知形式のノズル11によって行うことができる。
鋳造時には、ノズル11が取付けられたタンディッシュ(図示せず)に収容された溶融鋼がノズルおよびその開口部12を通ってインゴット鋳型を充填する。液体金属の自由表面13の高さはフレーム7の上側端縁と開口部12との間に維持され、開口部12は液体鋼浴2中に浸漬され、一般に、自由表面はスラグの層13で覆われている。
図1からわかるように、鋼の固体外皮21はニッケル層6の上側端縁の高さで生成を開始し、インゴット鋳型の金属壁によって生じる冷却のために底に向かって徐々に厚くなる。当然、この外皮は移動し、実際には鋳造物の抜き出しともに下方へ連続的に移動し、ニッケル層6と接触した液体金属の凝固によって連続的に更新される。
スリット10から加圧アルゴンを供給することによって、インゴット鋳型の壁の内側表面に対してほぼ直角なガスジェット流が生じる。このガスジェット流がフレームの下側部分9と接触して生じ得る全ての初期凝固を剪断するので、外皮21はニッケル層6の上側端縁14の高さの位置で同一の水平面の内周縁部全体に沿って確実に凝固し始める。
図2は抽出される熱流Φの変化を端縁14からの垂直方向距離の関数で示している。実線の曲線22は図1に示す本発明のインゴット鋳型を用いた場合に抽出される熱流を示し、破線の曲線23は比較のためにニッケル層6が存在しない場合すなわち外皮21が上側部分3の銅と直接接触して生成し始める場合に抽出される熱流を示している。
ニッケル層の厚さに対応する垂直方向の領域では抽出される熱流が減少し、この熱流の減少はニッケル層から下方へ数mmにわたってさらに続くが、環状部分3全体によって抽出される熱流全体には大きく影響しないことが理解できよう。
図3はインゴット鋳型の第2実施例を示している。図1の部材に対応する部材には同じ参照番号を付けてある。この実施例では、追加のニッケル層15は環状部分3の内側の横方向表面16上に塗布され、この環状部分はニッケルの付着層のために予め切削加工され、この層15が形成された後のこの層の内側表面17はインゴット鋳型の下側部分の内側表面の延長線上とほぼ同一平面にある。ニッケル層15の厚さは環状部分3の高さ方向に上から下へ徐々に減少するのが好ましい。
図4はこの第2実施例の図2と同様な図で、環状部分全体的によって抽出される熱流(曲線24)がニッケル被覆の存在しない場合(曲線23)に比べて大幅に減少することを示している。
図5は本発明の別の実施例のインゴット鋳型の上側部分の一部の概念的投影図であり、図6の拡大図からわかるように、垂直方向の溝31が環状部分3の内側面32に形成されている。この溝31は例えば深さおよび幅を0.2mmにし、間隔を1.5mmにすることができる。
図7に示すように、この実施例では、溝31を伝導性の低い金属、例えばニッケル付着物33で充填することができる。この場合、溝は例えば幅を1mm、深さを0.5mmにし、間隔を2mmにすることができる。この溝内に形成されたニッケル付着物は鋳造鋼がこの溝の底に侵入するのを防ぐためのものである。この実施例で抽出される熱流の減少量は、伝導性の悪い金属で充填された溝が占める表面に比例する交換表面の減少によって得られる熱流と同じである。
設計を単純化するために、図5には不活性ガスの注入スリットは示されていないが、そのような注入装置をこのインゴット鋳型に優先的に用いることができることは明らかである。
本発明者が行った試験では、鋳造物の冶金学的観点から申し分のない結果が得られた。すなわち、50%以上の凝固開始領域で抽出される熱流の減少が観察され、特に、陥没またはクラック型の表面欠陥がない鋳造物がこのような欠陥に特に弱いグレードの0.1%の炭素鋼で得られた。
上記実施例は単なる例であって本発明はこれに限定されるものではない。特に、ニッケル以外の伝導性の悪い金属を使用することができる。維持費を抑えるためにはインゴット鋳型の壁を形成する下側部分から独立した上側部分の高さで抽出される熱流を減少させるのが好ましいが、金属壁の上側端縁から一定高さだけの金属壁に上記の各実施例を直接用いることもできる。
さらに、フレームの底部におけるパージガスが、鋳造物凝固工程でフレームの断熱材料で作られた壁に望ましくない局部的凝固が生じるのを抑える「治療」手段である場合には、この手段にフレームを加熱する「予防」手段をさらに加えてその作用を完全にすることができる。
すなわち、本発明では、図8および図9の概念図で示すように、電気抵抗発熱体、例えば黒鉛リボン71(PAPYER(登録商標)型またはSIGRAFLER(登録商標))の形の電気抵抗発熱体をフレーム7に組み込むことが有利である。この電気抵抗発熱体は破壊せずに曲げられるので鋳造金属2の通路の周りに巻き付けることができる(図9参照)。この発熱リボン21はフレームの断熱材料の内部に成形するか、好ましくは、フレーム内に形成された環状溝(72)の内部に配置することができる。この場合、フレームは例えば互いに上下に重ねられた2つの部分73、74で作られる。パージガスとして不活性ガス、例えばアルゴンを選択すれば、黒鉛発熱抵抗体の酸化の問題は起こらない。
The present invention relates to continuous casting of metals, particularly steel.
As is well known, the concept of continuous casting operation is to pour molten metal into an ingot mold that is basically composed of bottomless tubular elements that define the passage of the cast metal. The mold wall is made of copper, more commonly a copper alloy, and is forced to cool by circulating water. From the mold, a casting whose outside is solidified over several centimeters in thickness is continuously extracted. This solidification proceeds toward the center of the casting, and solidification is completed by the action of water spray in the so-called “secondary cooling” region while the casting descends downstream of the ingot mold. The resulting casting (bloom, billet or slab) is cut to a certain length and rolled before being transported to the customer or transformed into a bar, wire, profile, plate, sheet or the like.
Surface defects or subsurface defects in castings obtained by continuous casting of steel often cause defective products. This is because the defects cannot sufficiently withstand the rolling operation, or the defects are enlarged by rolling, and the metal properties of the rolled casting are lowered to an unacceptable level.
The molten metal is supplied to the ingot mold by a nozzle during casting, and forms a solid film in contact with the cooling wall of the ingot mold. This film is driven downward by the rhythmic movement of the ingot mold during vertical extraction, while the film thickness is increased by the extraction of heat that continues through the wall of the ingot mold.
Thus, a new film of solid metal occurs continuously at the level of the free surface of the metal in the ingot mold (called “meniscus”), which solidifies throughout the perimeter of the inner wall of the ingot mold, A solid ring is formed which tends to shrink due to the cooling it receives while descending in the ingot mold.
The degree of shrinkage of this ring increases as the amount of heat extraction increases, and further shrinks upon cooling, for example due to changes in the solid phase at the end of solidification, as in the case of 0.1% carbon steel or AISI 304 grade stainless steel. Increased by the inherent properties of the cast metal.
Due to the shrinkage of the peripheral edge, the solidified skin is easily separated from the wall of the ingot mold, and therefore, the contact between the skin and the cooling wall is reduced and the heat exchange efficiency is lowered. In general, this separation is not uniform around the periphery of the solidified skin and causes surface defects in the final casting.
In order to prevent or limit these defects, attempts have been made to reduce the heat flow extracted during skin formation and at the start of solidification.
That is, the heat flow can be reduced by using an ingot mold provided with an upper portion where the casting starts to solidify, and an insert that forms a heat shielding layer for preventing molten metal from directly contacting the cooling wall of the ingot mold. Tried. However, it has been found that the durability of such inserts is uncertain and the maintenance costs of such ingot molds are very high.
In addition, the ingot mold wall is given a surface finish, for example engraved on the wall to form embosses on the surface of the wall, or irregularly roughened by, for example, sand blasting, so that the cast metal directly contacts the cooling wall copper. Attempts have been made to reduce heat flow by reducing the area of the contact area. However, this method cannot greatly improve the quality of the casting surface. In fact, the turbulence caused by fluctuations in the free surface height of the cast metal is much more prevalent than the effect of mitigating the heat flow obtained by surface finishing the walls of the ingot mold, so that solidification heterogeneity remains. , Surface defects will not go away.
Attempts have also been made to form a vertical groove in the wall with the same purpose of reducing direct contact between the cast metal and the cold copper of the wall, but this groove is commonly used for coatings on the free surface of liquid metal. It was found that the slag quickly clogs and the expected thermal effect is weakened.
The object of the present invention is to solve the above-mentioned problems, effectively reduce the heat flow extracted during the formation of the solidified shell and at the start of growth, and to reduce the adverse effect of fluctuations in the height of the free surface of the liquid metal in the ingot mold. An object of the present invention is to provide a method capable of obtaining a casting which is prevented and has an extremely excellent surface quality.
The subject of the invention has a substantially vertically extending forced cooled metal wall defining a passage for the cast metal, extracting the heat flow of the cast metal over the entire height of the metal wall to cool the metal. Cooled in a method of continuously casting molten metal, especially steel in an ingot mold, which gradually solidifies and reduces the strength of the heat flow extracted at a height where the metal begins to solidify in contact with the wall. An insulating frame is placed on the upper side of the metal wall, and during casting, the height of the free surface of the cast metal is maintained inside the insulating frame, and the ingot is at least at the height of this lower edge at the height of the insulating frame. A method is characterized in that gas is injected into the mold and the injected gas is distributed over the inner peripheral edge of the passage in the form of a jet stream.
In the present invention, the free surface (meniscus) of the liquid metal bath is located in the frame. Since the frame is made of an insulating material, the solidified metal film begins to form uniformly only at the upper edge of the metal wall. For this purpose, a purge gas is sent to the bottom of the frame to accurately separate the desired uniform solidification in the cooled metal part from all the undesired local solidification that can occur in the part made of thermal insulation material. The solidification of the metal is started only at a certain distance from the meniscus. This solidification initiation region is almost completely horizontal and is not affected by the inevitable fluctuations and turbulence that agitate the free surface of the bath. The solid ring composed of the first solidified hull is geometrically perfectly uniform, the new ring that follows is also almost perfectly uniform, as is the solidified hull that grows gradually as the casting descends. It is.
Furthermore, since the solidification of the cast metal does not begin in the frame, the cast metal does not shrink at this height. The cast metal maintains contact with the wall of the frame and prevents slag from entering between the cast metal and the wall. As a result, the intrusion of slag between the outer shell that solidifies in contact with the wall and the metal wall of the ingot mold cannot be the case where the solidified outer shell tends to be separated from the wall due to the shrinkage of the solidification. In addition, the static pressure of the liquid metal iron produced by the liquid metal contained in the frame prevents this separation, thus maintaining contact with the metal wall surface of the skin, and the thickness and solidification of the skin is ingot. Since it is uniform at the inner periphery of the mold, it is maintained uniformly throughout the inner periphery of the ingot mold.
Therefore, the heat flow extraction performed at the upper part of the metal wall is also performed uniformly throughout the inner periphery of the casting due to the regularity at this inner periphery, and the local separation of the solid skin and the resulting thickness. Insufficiency is prevented and the strength of the heat flow extracted in the solidification initiation region is very uniform across the inner periphery of the passage defined by the metal wall.
The strength of the extracted heat flow is preferably lowered in a predetermined height region from the lower edge of the frame without greatly changing the overall characteristics of the heat extracted by the ingot mold. By limiting this height, the heat flow extracted in the region where the solid metal skin is generated can be reduced, and the shrinking action and separation of the metal skin observed in the conventional casting process can be prevented.
In the first embodiment of the present invention, a substantially constant heat flow is extracted at the entire height of the region. In this case, the reduction rate of the extracted heat flow can be high, but it is a narrow height range, for example, about 10 mm.
In the second embodiment of the present invention, the heat flow extraction capability increases from top to bottom in the above region. In this case, the decreasing rate of the extracted heat flow gradually decreases toward the bottom of the ingot mold in a region having a large height range. As a result, the reduction rate of the extracted heat flow can be increased compared to the above case in a large height range of this region, and the ingot mold that requires a frame with less heat flow to be extracted and the maximum heat flow extraction. It is possible to give a certain degree of gradual change to the change in the heat flow extracted between the cooled metal parts.
Another object of the present invention is a metal wall extending in a substantially vertical direction defining a passage of cast metal, a cooling means disposed inside the wall for forcibly cooling the wall over substantially the entire height of the metal wall, and a metal wall A continuous cast ingot mold having a means for reducing the strength of the heat flow through the inner surface of the wall produced by the cooling means provided on the upper side of the metal plate, the thermal insulation disposed on the upper extension of the metal wall on the upper side of the metal wall A frame made of material and an injection means for injecting the pressurized gas into the ingot mold in the form of a jet stream, the pressurized gas being at the height of the lower edge at least at the height of the frame. The ingot mold is distributed over the entire inner peripheral edge of the passage.
In the first embodiment of the present invention, the means for reducing the heat flow strength consists of a layer of metal having a lower thermal conductivity than the metal constituting the wall, for example nickel, which is applied to the copper or copper alloy of the wall of the ingot mold. It can be formed by an electrolysis method.
In a first embodiment of the invention, the layer is located on the metal wall, and thus between the metal wall and the insulating material constituting the frame, and its thickness can be, for example, about 1 mm.
In another embodiment of the invention, the layer extends along the inside surface of the cooled metal wall, which can be about a few centimeters high. The poorly conductive metal layer forms a thermal barrier layer between the solidified outer shell of the cast metal and the highly conductive metal of the ingot mold. The heat flow extracted at the entire height where this poorly conductive layer extends is greatly reduced compared with the case where the cast metal is in direct contact with the highly conductive metal on the metal wall (the reduction rate is 50% or less). Can be reached).
By forming a poorly conductive metal layer on both the upper side of the copper or copper alloy wall and the inner surface of the wall, the average value of the heat flow extracted in the upper part of the cooling wall is changed, and the upper end of the metal wall The heat flow can be distributed at the same time depending on the distance from the edge to the height at which the cast metal film begins to solidify, and this distribution is easily preconditioned by gradually decreasing the layer thickness from top to bottom. be able to.
In a second embodiment of the invention, the means for reducing the heat flow strength comprises a substantially vertically extending groove formed on the inner surface of the metal wall. The point where the cast metal is in direct contact with the copper or copper alloy of the cooling wall along the inner peripheral edge of the passage formed by the wall of the ingot mold in the region where the solidified film is formed by this groove, and the extraction amount of the heat flow corresponding to this groove is The decreasing points can be arranged alternately. Unlike the method described at the beginning of this specification, this grooved device can initiate solidification at a distance below the free surface of the metal bath, and thus in the absence of slag. It can be understood that slag cannot enter the slit and clog the slit during casting. In one embodiment of this configuration, at least a portion of the groove is filled with a material that is less conductive than the metal forming the metal wall.
Other features and advantages of the present invention will be better understood from the following description of the steel continuous casting ingot mold of the present invention and its implementation.
Refer to the attached drawing:
FIG. 1 is a longitudinal sectional view of an upper portion of an ingot mold conceptually showing a first embodiment of the present invention.
FIG. 2 is a graph showing the change in heat flow extracted during casting in an ingot mold as a function of the distance from the upper edge of the metal wall.
FIG. 3 is a view corresponding to FIG. 1 of the second embodiment of the ingot mold of the present invention.
FIG. 4 is a graph corresponding to FIG. 2 of the ingot mold of the second embodiment.
FIG. 5 is a conceptual diagram of the upper portion of the wall of the ingot mold of the second embodiment in which grooves are formed in the upper portion of the metal wall.
6 is an enlarged horizontal sectional view of an upper portion of the metal wall of FIG.
FIG. 7 is a view similar to FIG. 6 in which the groove is filled with a metal having poor conductivity.
FIG. 8 is a particularly advantageous design drawing of a frame having a resistance heating element.
9 is a reduced cross-sectional view of the ingot mold taken along line IX-IX in FIG.
The ingot mold shown in FIG. 1 forms a tubular body, has a metal wall 1 cooled with internal circulating water as is well known, and has a metal wall 1 that defines a vertical passage of cast steel 2. The upper part of the metal wall 1 is preferably made of an independent member from its lower part. This independent member is, for example, in the form of an annular part 3, made of the same copper or copper alloy and with its own cooling circuit, which is conceptually indicated by a water circulation conduit 4.
The annular part 3 can be replaced more easily and cheaply when the metal wall is formed of a single part over the entire height of the wall. An electrolytic nickel layer 6 having a thickness of, for example, 1.5 mm is applied to the upper side surface 5 of the annular portion 3.
The heat insulating frame 7 is made of a heat insulating material having a high insulating property, for example, an upper portion 8 having a height of, for example, 200 mm, and a heat insulating material that is less insulative than the upper portion 8 but has a superior strength, for example, It has a lower part 9 made of a material called SiAlON with a thickness of 20 mm, for example. The heat insulating frame 7 has a height of, for example, 40 mm and is disposed on the upper side of the annular portion 3.
A space formed between the nickel layer 6 and the SiAlON 9 forms a slit 10 having a low height, for example, a height of several 1/10 mm. The slit 10 opens to the inner surface of the ingot mold along the entire inner peripheral edge of the ingot mold and communicates with a pressurized inert gas source such as an argon source 110 conceptually shown in FIG.
The supply of the liquid metal to the ingot mold is achieved by a nozzle 11 opened at the height of the frame 7 made of a heat insulating material, for example, a lateral opening opened at a position approximately half the height of the upper portion 8 of the frame 7. This can be done with a well-known nozzle 11 having a part 12.
At the time of casting, molten steel accommodated in a tundish (not shown) to which the nozzle 11 is attached fills the ingot mold through the nozzle and its opening 12. The height of the liquid metal free surface 13 is maintained between the upper edge of the frame 7 and the opening 12, which is immersed in the liquid steel bath 2, and generally the free surface is a slag layer 13. Covered.
As can be seen from FIG. 1, the solid steel skin 21 begins to form at the height of the upper edge of the nickel layer 6 and gradually thickens towards the bottom due to the cooling caused by the metal walls of the ingot mold. Naturally, the outer shell moves, and in fact, continuously moves downward as the casting is extracted, and is continuously updated by solidification of the liquid metal in contact with the nickel layer 6.
Supplying pressurized argon from the slit 10 produces a gas jet flow that is substantially perpendicular to the inner surface of the wall of the ingot mold. Since this gas jet stream shears any initial solidification that may occur in contact with the lower part 9 of the frame, the outer skin 21 is located at the height of the upper edge 14 of the nickel layer 6 at the inner periphery of the same horizontal plane. Start to solidify reliably along the whole.
FIG. 2 shows the change in the extracted heat flow Φ as a function of the vertical distance d from the edge 14. The solid curve 22 shows the heat flow extracted when the ingot mold of the present invention shown in FIG. 1 is used, and the broken curve 23 shows the case where the nickel layer 6 is not present, ie, the outer skin 21 is the upper portion 3 for comparison. It shows the heat flow extracted when it begins to form in direct contact with copper.
In the vertical region corresponding to the thickness of the nickel layer, the extracted heat flow is reduced and this decrease in heat flow continues further several millimeters downward from the nickel layer, but in the entire heat flow extracted by the entire annular part 3. It can be understood that there is no significant effect.
FIG. 3 shows a second embodiment of the ingot mold. Members corresponding to those in FIG. 1 are given the same reference numerals. In this embodiment, an additional nickel layer 15 is applied on the inner lateral surface 16 of the annular part 3 and this annular part is pre-cut for a nickel adhesion layer and after this layer 15 is formed. The inner surface 17 of this layer is substantially flush with the extension of the inner surface of the lower portion of the ingot mold. The thickness of the nickel layer 15 is preferably gradually decreased from the top to the bottom in the height direction of the annular portion 3.
FIG. 4 is a view similar to FIG. 2 of this second embodiment, showing that the heat flow extracted by the entire annular portion (curve 24) is greatly reduced compared to the case where no nickel coating is present (curve 23). Show.
FIG. 5 is a conceptual projection of a portion of the upper portion of an ingot mold according to another embodiment of the present invention. As can be seen from the enlarged view of FIG. Is formed. For example, the depth and width of the groove 31 can be 0.2 mm, and the interval can be 1.5 mm.
As shown in FIG. 7, in this embodiment, the groove 31 can be filled with a metal having low conductivity, such as a nickel deposit 33. In this case, for example, the groove can have a width of 1 mm, a depth of 0.5 mm, and an interval of 2 mm. The nickel deposit formed in the groove is for preventing cast steel from entering the bottom of the groove. The amount of heat flow reduction extracted in this example is the same as the heat flow obtained by the reduction of the exchange surface proportional to the surface occupied by the groove filled with poorly conductive metal.
To simplify the design, an inert gas injection slit is not shown in FIG. 5, but it is clear that such an injection device can be used preferentially for this ingot mold.
Tests conducted by the inventor have yielded satisfactory results from the metallurgical point of view of the casting. That is, a decrease in heat flow extracted in the solidification initiation region of 50% or more is observed, and in particular, a casting having no depression or crack type surface defects is a grade of 0.1% carbon steel that is particularly vulnerable to such defects. Was obtained.
The above embodiment is merely an example, and the present invention is not limited to this. In particular, a metal with poor conductivity other than nickel can be used. In order to reduce maintenance costs, it is preferable to reduce the heat flow extracted at the height of the upper part independent of the lower part forming the wall of the ingot mold, but only a certain height from the upper edge of the metal wall. Each of the above embodiments can also be used directly on a metal wall.
In addition, if the purge gas at the bottom of the frame is a “treatment” means to prevent unwanted local solidification of the walls made of the frame's insulating material during the casting solidification process, it heats the frame to this means. Additional “prevent” measures can be added to complete its action.
That is, in the present invention, as shown in the conceptual diagrams of FIGS. 8 and 9, an electrical resistance heating element, for example, an electrical resistance heating element in the form of a graphite ribbon 71 (PAPYER (registered trademark) type or SIGRAFLER (registered trademark)) is provided. It is advantageous to incorporate it into the frame 7. Since this electric resistance heating element is bent without breaking, it can be wound around the passage of the cast metal 2 (see FIG. 9). The heat generating ribbon 21 can be molded inside the heat insulating material of the frame, or preferably placed inside an annular groove (72) formed in the frame. In this case, the frame is made up of, for example, two parts 73, 74 that are stacked one above the other. If an inert gas such as argon is selected as the purge gas, the problem of oxidation of the graphite heating resistor does not occur.

Claims (12)

鋳造金属の通路を規定する、ほぼ垂直方向へ延びた強制冷却された金属壁(1)を有し、この金属壁の高さ全体にわたって鋳造金属の熱流を抽出し、金属(2)を冷却して徐々に凝固させ、金属が上記壁に接触して凝固し始める高さの所で抽出される熱流の強度を低下させる、インゴット鋳型で溶融金属を連続鋳造する方法において、
冷却された金属壁の上側に断熱フレーム(7)を配置し、鋳造中は鋳造金属(2)の自由表面の高さを断熱フレーム(7)の内側に維持し、断熱フレーム(7)の高さの所の少なくともこの下側端縁の高さでインゴット鋳型にガスを注入し、注入したガスをジェット流の形で上記通路の内周縁部全体に分配させることを特徴とする方法。
A forcedly cooled metal wall (1) extending in a substantially vertical direction defining a passage for the cast metal, extracting a heat flow of the cast metal over the entire height of the metal wall, and cooling the metal (2) gradually solidified Te, metal reduces the strength of the heat flow to be extracted at the height begins to solidify in contact with the wall, in the method for continuously casting a molten metals in ingot mold,
An insulating frame (7) is placed above the cooled metal wall, and the height of the free surface of the cast metal (2) is maintained inside the insulating frame (7) during casting, and the height of the insulating frame (7) is maintained. A gas is injected into the ingot mold at least at the height of the lower edge, and the injected gas is distributed over the inner peripheral edge of the passage in the form of a jet stream.
フレームの下側端縁から所定高さまでの領域で、抽出される熱流の強度を低下させる請求項1に記載の方法。The method according to claim 1, wherein the strength of the extracted heat flow is reduced in a region from the lower edge of the frame to a predetermined height. 上記領域がその全高にわたってほぼ一定の熱流抽出能を有する請求項2に記載の方法。The method of claim 2, wherein the region has a substantially constant heat flow extraction capability over its entire height. 上記領域での熱流抽出能がその上から下に向かって増大する請求項2に記載の方法。The method according to claim 2, wherein the heat flow extraction capability in the region increases from top to bottom. 鋳造金属(2)の通路を規定するほぼ垂直方向へ延びる金属壁(1,3)と、この金属壁のほぼ全高にわたってその壁を強制冷却する壁の内側に配置された冷却手段と、金属壁の上側に設けられた、冷却手段によって生じる壁の内側表面を通る熱流の強度を低下させる手段(6,15,31)とを有する連続鋳造インゴット鋳型において、
金属壁の上側に金属壁の上方延長上に配置された断熱性材料で作られたフレーム(7)と、加圧ガスをジェット流の形でインゴット鋳型に注入する注入手段(10)とを有し、加圧ガスがフレームの高さの所の少なくともその下側端縁の高さで上記通路の内周縁部全体に分配されることを特徴とするインゴット鋳型。
A substantially vertically extending metal wall (1, 3) defining a passage for the cast metal (2), a cooling means disposed inside the wall for forcibly cooling the wall over substantially the entire height of the metal wall, and a metal wall A continuous cast ingot mold having means (6, 15, 31) for reducing the strength of the heat flow through the inner surface of the wall produced by the cooling means provided on the upper side of
There is a frame (7) made of a heat insulating material disposed on the upper extension of the metal wall on the upper side of the metal wall, and an injection means (10) for injecting the pressurized gas into the ingot mold in the form of a jet flow. The ingot mold is characterized in that the pressurized gas is distributed over the entire inner peripheral edge of the passage at least at the lower edge of the frame.
熱流強度を低下させる手段が、金属壁(1,3)を構成する金属に比べて熱伝導性が低い金属の層(6,15)から成る請求項5に記載のインゴット鋳型。6. The ingot mold according to claim 5, wherein the means for reducing the heat flow strength comprises a metal layer (6, 15) having a lower thermal conductivity than the metal constituting the metal wall (1, 3). 上記の層(6)が金属壁(3)の上側に位置している請求項6に記載のインゴット鋳型。The ingot mold according to claim 6, wherein the layer (6) is located above the metal wall (3). 上記の層(15)が金属壁(3)の内側面(16)に延びている請求項6または7に記載のインゴット鋳型。The ingot mold according to claim 6 or 7, wherein the layer (15) extends on the inner surface (16) of the metal wall (3). 上記の層(15)の厚さがその上から下へ向かって減少している請求項8に記載のインゴット鋳型。9. Ingot mold according to claim 8, wherein the thickness of the layer (15) decreases from top to bottom. 熱流強度を低下させる手段が、金属壁(3)の内側表面(32)に形成されたほぼ垂直方向に延びる溝(31)から成る請求項5に記載のインゴット鋳型。6. Ingot mold according to claim 5, wherein the means for reducing the heat flow strength comprises a substantially vertically extending groove (31) formed in the inner surface (32) of the metal wall (3). 上記の溝(31)の少なくとも一部が、金属壁を形成する金属に比べて熱伝導性の低い材料(33)で充填されている請求項10に記載のインゴット鋳型。The ingot mold according to claim 10, wherein at least a part of the groove (31) is filled with a material (33) having a lower thermal conductivity than the metal forming the metal wall. 電気抵抗発熱手段(71)がフレーム(7)に組み込まれている請求項5に記載のインゴット鋳型。The ingot mold according to claim 5, wherein the electric resistance heating means (71) is incorporated in the frame (7).
JP53590397A 1996-04-05 1997-04-03 Metal continuous casting method and ingot mold for carrying out the method Expired - Fee Related JP4058561B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR96/04302 1996-04-05
FR9604302A FR2747059B1 (en) 1996-04-05 1996-04-05 CONTINUOUS CASTING PROCESS FOR METALS AND LINGOTIERE FOR ITS IMPLEMENTATION
PCT/FR1997/000595 WO1997037794A1 (en) 1996-04-05 1997-04-03 Continuous casting method for metals and ingot mould for implementing same

Publications (2)

Publication Number Publication Date
JP2000508243A JP2000508243A (en) 2000-07-04
JP4058561B2 true JP4058561B2 (en) 2008-03-12

Family

ID=9490956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53590397A Expired - Fee Related JP4058561B2 (en) 1996-04-05 1997-04-03 Metal continuous casting method and ingot mold for carrying out the method

Country Status (14)

Country Link
EP (1) EP0891237B1 (en)
JP (1) JP4058561B2 (en)
KR (1) KR100447466B1 (en)
AT (1) ATE198285T1 (en)
AU (1) AU2392997A (en)
BR (1) BR9708509A (en)
CA (1) CA2250786C (en)
DE (1) DE69703793T2 (en)
DK (1) DK0891237T3 (en)
ES (1) ES2154900T3 (en)
FR (1) FR2747059B1 (en)
GR (1) GR3035596T3 (en)
PT (1) PT891237E (en)
WO (1) WO1997037794A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012626A3 (en) * 1999-04-23 2001-01-09 Ct De Rech S Metallurg Asbl Ve Device to produce flat products by means of vertical load continuouscasting of molten metal
US7000676B2 (en) * 2004-06-29 2006-02-21 Alcoa Inc. Controlled fluid flow mold and molten metal casting method for improved surface
CN106735000B (en) * 2016-11-14 2018-10-23 东北大学 A kind of semi-continuous casting device and method of three layers of cladding ingot casting

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758996A (en) * 1969-11-14 1971-04-30 Kabel Metallwerke Ghh CONTINUOUS CASTING LINGOTIER FOR CASTING A METAL, IN PARTICULAR STEEL
JPS5937140B2 (en) * 1980-03-26 1984-09-07 住友軽金属工業株式会社 Hot-top casting equipment
JPS6192756A (en) * 1984-10-12 1986-05-10 Sumitomo Metal Ind Ltd Continuous casting method of preventing surface cracking of ingot and casting mold
DE3528649A1 (en) * 1985-08-09 1987-02-19 Schloemann Siemag Ag VERTICAL OR ARCHED CASTING SYSTEM FOR STEEL
JPH01289542A (en) * 1987-12-29 1989-11-21 Nkk Corp Casting mold for continuous casting of steel
FR2703609B3 (en) * 1993-03-30 1995-02-10 Lorraine Laminage Continuous casting process in charge of metals and ingot mold for its implementation.
FR2704786B3 (en) * 1993-03-30 1995-03-10 Lorraine Laminage Continuous casting process in charge of metals, especially steel, and ingot mold for its implementation.

Also Published As

Publication number Publication date
CA2250786C (en) 2004-06-22
EP0891237A1 (en) 1999-01-20
EP0891237B1 (en) 2000-12-27
FR2747059A1 (en) 1997-10-10
KR100447466B1 (en) 2004-10-15
DE69703793T2 (en) 2001-07-12
FR2747059B1 (en) 1998-06-12
ES2154900T3 (en) 2001-04-16
AU2392997A (en) 1997-10-29
WO1997037794A1 (en) 1997-10-16
GR3035596T3 (en) 2001-06-29
DK0891237T3 (en) 2001-05-07
CA2250786A1 (en) 1997-10-16
KR20000005257A (en) 2000-01-25
JP2000508243A (en) 2000-07-04
BR9708509A (en) 1999-08-03
PT891237E (en) 2001-06-29
ATE198285T1 (en) 2001-01-15
DE69703793D1 (en) 2001-02-01

Similar Documents

Publication Publication Date Title
GB2132925A (en) A method of continuous casting
JP4099062B2 (en) Treatment of molten metal by moving electrical discharge
JP4303809B2 (en) Continuous casting mold
JP4058561B2 (en) Metal continuous casting method and ingot mold for carrying out the method
US4911226A (en) Method and apparatus for continuously casting strip steel
JPH09220645A (en) Method for lubricating wall of metallic mold for continuous casting and mold therefor
CN110116193B (en) Round billet crystallizer, continuous casting equipment and continuous casting round billet oscillation mark suppression method
KR910001176B1 (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
EP0040070B1 (en) Apparatus for strip casting
JPS609553A (en) Stopping down type continuous casting machine
KR910001175B1 (en) Method and apparatus for direct casting of crysalline strip in non-oxidizing atmoshphere
JP3237177B2 (en) Continuous casting method
EP0265164A2 (en) Method and apparatus for producing rapidly solidified metallic tapes
JPS60152349A (en) Casting method of terminal billet in continuous casting
US20050034840A1 (en) Method and apparatus for stirring and treating continuous and semi continuous metal casting
JP3018809B2 (en) Method of manufacturing thin sheet ingot by electromagnetic force
JPH03110043A (en) Vertical type continuous casting apparatus for metal
RU2245754C1 (en) Metal semi-continuous casting process
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JP2002153947A (en) Method for continuously casting molten steel
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JPH08132185A (en) Mold for continuous casting
JPH09206907A (en) Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section
JP2000210757A (en) Mold for vertical type semi-continuous casting of non- ferrous metal cast block

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees