JPH09206907A - Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section - Google Patents

Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section

Info

Publication number
JPH09206907A
JPH09206907A JP1390396A JP1390396A JPH09206907A JP H09206907 A JPH09206907 A JP H09206907A JP 1390396 A JP1390396 A JP 1390396A JP 1390396 A JP1390396 A JP 1390396A JP H09206907 A JPH09206907 A JP H09206907A
Authority
JP
Japan
Prior art keywords
ingot
rectangular
secondary cooling
angle
angle changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1390396A
Other languages
Japanese (ja)
Inventor
Hisaki Kameyama
央樹 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1390396A priority Critical patent/JPH09206907A/en
Publication of JPH09206907A publication Critical patent/JPH09206907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the producing yield of a rectangular cast block by automatically controlling a spouting angle of spouted cooling water corresponding to the shape of the rectangular cast ingot with an angle changing plate and cooling the cast block. SOLUTION: The cast block 6 is cooled with the secondary cooling water 4 spouted from the secondary cooling water outlet 22 at the lower part of inside of a water cooling mold 2. At this time, the spouting angle of the secondary cooling water 4 is automatically changed corresponding to the size and the shape of the surface 63 of the obtd. rectangular cast block 6 with the angle changing plate 71 in a spouting angle changing device 7 to cool the cast block, and the cross sectional shape of the cast block is corrected to a target rectangular shape as near as possible to obtain a prescribed cross section. The angle of the angle changing plate 71 can be made to change with a roller 72 for sensing the shape of the cross section of the cast block by contacting with the cast block surface 63 and a curving arm 73 and a straight arm 74. Further, the roller 72, curving arm 73, straight arm 74 and the angle changing plate 71 are connected with supporting points 76, 78, 79 and the curving arm 73 is supported to a supporting plate 8 at the lower part of the mold with a supporting point 77.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属特にAl、A
l合金、Cu、Cu合金等非鉄金属の圧延用断面矩形鋳
塊の縦型半連続鋳造において、その矩形鋳塊の断面形状
が出来るだけ矩形となるようにするための二次冷却方法
の改良に関するものである。
TECHNICAL FIELD The present invention relates to metals, particularly Al, A
In the vertical semi-continuous casting of rectangular ingots for rolling non-ferrous metals such as l alloy, Cu, Cu alloys, etc., the invention relates to an improvement of a secondary cooling method for making the rectangular ingots have a rectangular sectional shape as much as possible. It is a thing.

【0002】[0002]

【従来の技術】従来、金属例えばAl、Al合金、C
u、Cu合金等非鉄金属の圧延用断面矩形鋳塊の連続鋳
造方式としては、DC鋳造(ダイレクトチルキャステイ
ング)が広く行われている。このDC鋳造は、図6に示
す如く、底部が開放された矩形状の銅系、アルミ系等の
金属製水冷鋳型2に、溶湯樋1、溶湯注入筒11を経由
して、上方より溶融3を注入し、前記鋳型底部より受台
5を徐々に降下させて、その上の凝固金属鋳塊6を連続
的に取り出し、所定の長さの鋳塊6を得るもので半連続
鋳造として知られている。
2. Description of the Related Art Conventionally, metals such as Al, Al alloys, C
DC casting (direct chill casting) is widely used as a continuous casting method for a rectangular ingot for rolling non-ferrous metals such as u and Cu alloys. As shown in FIG. 6, the DC casting is performed by melting a molten copper from a copper-based, aluminum-based, or other metal water-cooled mold 2 of a rectangular shape through a molten metal gutter 1 and a molten metal injection cylinder 11 from above. Is poured in, the pedestal 5 is gradually lowered from the bottom of the mold, and the solidified metal ingot 6 is continuously taken out to obtain an ingot 6 of a predetermined length, which is known as semi-continuous casting. ing.

【0003】このDC鋳造の冷却は、まず鋳型内に注が
れた溶湯3が水冷鋳型2の内側壁で一次冷却されて鋳塊
表面に薄い凝固シェルを作る。更に鋳造が進むにつれ
て、鋳塊6は連続的に下方に引き抜かれ鋳型下部より噴
出する二次冷却水4で冷却され、鋳塊内部まで凝固が進
行する。図6の鋳塊6において61は溶湯液相であり、
62は固相、63は鋳塊表面である。このDC鋳造によ
って製造された圧延用の断面矩形鋳塊は、上下面を各々
5〜15mm面削し熱間圧延に供される。
In the cooling of this DC casting, first, the molten metal 3 poured into the mold is primarily cooled by the inner wall of the water-cooled mold 2 to form a thin solidified shell on the surface of the ingot. As the casting further progresses, the ingot 6 is continuously drawn downward and cooled by the secondary cooling water 4 ejected from the lower part of the mold, and solidification proceeds to the inside of the ingot. In the ingot 6 in FIG. 6, 61 is a molten metal liquid phase,
62 is a solid phase and 63 is the surface of the ingot. The rectangular ingot for rolling which is manufactured by this DC casting is subjected to hot rolling by chamfering the upper and lower surfaces by 5 to 15 mm.

【0004】しかしながら、DC鋳造によって製造され
る鋳塊の断面矩形状の形状は、鋳型の老朽化や一次冷却
条件の不均一等により、鋳塊の長手方向、断面方向にお
いて目標とする矩形(厚さ)にならないことが多い。特
に大型鋳塊の場合、例えば厚さ500mm×巾1500
mm×6000mmのAl合金鋳塊において、鋳塊の長
手方向と断面方向で、厚さ500mm±最大15mm程
度となる場合がある。そのため、熱間圧延加工前の鋳塊
表面の面削加工において、面削量を大きくとらねばなら
ず、面削歩留まりが悪くなるという問題がある。また、
このことと関連して鋳塊の表面層を削り残した場合は、
圧延工程で圧延板に表面欠陥が発生することとなる。
However, the shape of the ingot having a rectangular cross section, which is produced by DC casting, has a target rectangular shape (thickness) in the longitudinal and sectional directions of the ingot due to deterioration of the mold, uneven primary cooling conditions, and the like. It often doesn't. Particularly in the case of a large ingot, for example, thickness 500 mm x width 1500
In an Al alloy ingot of mm × 6000 mm, the thickness may be about 500 mm ± maximum 15 mm in the longitudinal direction and the cross-sectional direction of the ingot. Therefore, in the chamfering of the surface of the ingot before the hot rolling, the chamfering amount must be large, and there is a problem that the chamfering yield is deteriorated. Also,
In relation to this, when the surface layer of the ingot is left uncut,
Surface defects occur on the rolled plate during the rolling process.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、金属
特にAl、Al合金、Cu、Cu合金等非鉄金属の圧延
用断面矩形鋳塊の縦型半連続鋳造において、その矩形鋳
塊の断面形状が出来るだけ目標とする矩形(厚さ)とな
るようにするための改善した二次冷却方法を見出すこと
である。
DISCLOSURE OF THE INVENTION The object of the present invention is to provide a vertical semi-continuous casting of a cross-section rectangular ingot for rolling a metal, especially a non-ferrous metal such as Al, Al alloy, Cu, Cu alloy. The object is to find an improved secondary cooling method so that the shape can be a target rectangle (thickness) as much as possible.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の請求項1の発明は、底部が開放された矩形水冷鋳型に
上方より溶融金属を注入し、鋳型による一次冷却と鋳型
下部の噴出冷却水による二次冷却により溶湯金属を凝固
させ、鋳型底部より鋳塊を連続的に取り出す断面矩形鋳
塊用縦型半連続鋳造において、得られる矩形鋳塊の形状
に対応して、前記噴出冷却水の噴出角度を角度変更板
で、自動的に制御して鋳塊を冷却することを特徴とする
断面矩形鋳塊用縦型半連続鋳造における二次冷却方法で
あり、
In order to solve the above-mentioned problems, the invention of claim 1 injects molten metal from above into a rectangular water-cooled mold having an open bottom, and performs primary cooling by the mold and jet cooling of the lower part of the mold. The molten metal is solidified by secondary cooling with water, and the ingot is continuously taken out from the bottom of the mold. In vertical semi-continuous casting for rectangular ingot, corresponding to the shape of the rectangular ingot obtained, the jet cooling water Is a secondary cooling method in vertical semi-continuous casting for rectangular ingot with a cross section characterized by cooling the ingot by automatically controlling the ejection angle of the angle changing plate,

【0007】また請求項2の発明は、前記角度変更板
は、連続的に取り出される断面矩形鋳塊の側面に接して
鋳塊の形状を感知するローラとこのローラに連結された
湾曲アーム及び直線アームで角度が変えられるようにし
たことを特徴とする請求項1に記載の断面矩形鋳塊用縦
型半連続鋳造における二次冷却方法である。
According to a second aspect of the present invention, the angle changing plate is a roller that is in contact with a side surface of a rectangular ingot having a rectangular cross section that is continuously taken out and detects a shape of the ingot, a curved arm and a straight line connected to the roller. The secondary cooling method in vertical semi-continuous casting for rectangular ingots having a rectangular cross section according to claim 1, wherein the angle can be changed by the arm.

【0008】[0008]

【発明の実施の形態】本発明に係る縦型半連続鋳造の二
次冷却方法を図1〜図5にもとずいて説明する。図1
は、本発明に係る鋳型下部二次冷却水の噴出角度変更装
置の正面図であり、同装置と鋳塊表面との位置関係を示
している。図2は、 図1の噴出角度変更装置の左側面
図である。図3は、目標とする鋳塊厚の場合の噴出角度
変更装置と鋳塊表面の位置関係を示す説明図である。図
4は、鋳塊厚が薄い場合の噴出角度変更装置と鋳塊表面
の位置関係を示す説明図である。図5は、鋳塊厚が厚い
場合の噴出角度変更装置と鋳塊表面の位置関係を示す説
明図である。
BEST MODE FOR CARRYING OUT THE INVENTION A secondary cooling method for vertical semi-continuous casting according to the present invention will be described with reference to FIGS. FIG.
FIG. 4 is a front view of a device for changing the ejection angle of secondary cooling water for the lower part of the mold according to the present invention, showing the positional relationship between the device and the surface of the ingot. FIG. 2 is a left side view of the ejection angle changing device of FIG. FIG. 3 is an explanatory diagram showing the positional relationship between the ejection angle changing device and the surface of the ingot in the case of the target ingot thickness. FIG. 4 is an explanatory diagram showing the positional relationship between the ejection angle changing device and the ingot surface when the ingot thickness is thin. FIG. 5 is an explanatory view showing the positional relationship between the ejection angle changing device and the surface of the ingot when the thickness of the ingot is large.

【0009】本発明は、図1、図2に示すように、水冷
鋳型2の内側下部の二次冷却水出口22より噴出される
二次冷却水4で鋳塊6を冷却するが、その際二次冷却水
4の噴出角度を噴出角度変更装置7の角度変更板71
で、得られる矩形鋳塊6の表面63の寸法形状に対応し
て自動的に変更して冷却し、鋳塊の断面形状を出来るだ
け目標とする矩形(厚さ)に修正して所定の断面矩形を
得るものである。図1、図2は、噴出角度変更装置7の
角度変更板71で二次冷却水の噴出角度を変更する場
合、機械的方法で変更するもので本発明の一形態を示す
ものである。図1、図2において、角度変更板71が鋳
型下部に支点75で連結されて、この板の角度が変えら
れるようになっている。この角度変更板71の角度は、
鋳塊表面63に接して鋳塊断面の形状を感知するローラ
72、このローラに接続された湾曲アーム73、湾曲ア
ームに接続された直線アーム74で変更できるようにな
っている。なお、ローラ、湾曲アーム、直線アーム、角
度変更板は76、78、79の支点で接続されており、
湾曲アームは鋳型下部の支持板8に支点77で支持され
ている。
According to the present invention, as shown in FIGS. 1 and 2, the ingot 6 is cooled by the secondary cooling water 4 ejected from the secondary cooling water outlet 22 at the lower inside of the water cooling mold 2. An angle changing plate 71 of the ejection angle changing device 7 for changing the ejection angle of the secondary cooling water 4
Then, it is automatically changed in accordance with the size and shape of the surface 63 of the obtained rectangular ingot 6 and cooled, and the cross-sectional shape of the ingot is corrected to a target rectangle (thickness) as much as possible and a predetermined cross section To get a rectangle. FIG. 1 and FIG. 2 show a mode of the present invention in which the angle changing plate 71 of the jet angle changing device 7 changes the jet angle of the secondary cooling water by a mechanical method. In FIGS. 1 and 2, an angle changing plate 71 is connected to the lower part of the mold at a fulcrum 75 so that the angle of this plate can be changed. The angle of the angle changing plate 71 is
It can be changed by a roller 72 which is in contact with the ingot surface 63 and senses the shape of the ingot cross section, a curved arm 73 connected to this roller, and a linear arm 74 connected to the curved arm. The roller, the curved arm, the linear arm, and the angle changing plate are connected at the fulcrums 76, 78, 79,
The curved arm is supported by a fulcrum 77 on a support plate 8 below the mold.

【0010】図3は、鋳型での一次冷却で鋳塊の凝固収
縮が目標とするもので、従って目標とする鋳塊厚さが得
られる場合の角度変更装置7と二次冷却水4の噴出角度
及び鋳塊6の表面63の位置関係を示している。即ち、
二次冷却水4は角度変更板71に当たるが、この角度変
更板と同程度の角度に曲げられ、鋳塊6の表面63を冷
却する。角度変更装置7の設定は、必ずしも前記にかぎ
る必要はないが、本例の場合、この位置に角度変更装置
7を設定してある。
In FIG. 3, solidification shrinkage of the ingot is targeted by primary cooling in the mold. Therefore, when the target ingot thickness is obtained, the angle changing device 7 and the secondary cooling water 4 are jetted. The angle and the positional relationship of the surface 63 of the ingot 6 are shown. That is,
The secondary cooling water 4 hits the angle changing plate 71, but is bent at an angle similar to that of the angle changing plate 71 to cool the surface 63 of the ingot 6. The setting of the angle changing device 7 is not necessarily limited to the above, but in this example, the angle changing device 7 is set at this position.

【0011】図4は、鋳型での一次冷却で鋳塊の凝固収
縮が大きく、鋳塊の厚さが薄い場合の角度変更装置7と
二次冷却水4の噴出角度及び鋳塊6の表面63の位置関
係を示している。鋳塊の厚さが薄い場合、即ち鋳型での
一次冷却で凝固収縮が大きい場合は、鋳塊の厚さが薄く
なる。この状態の時にはローラ72が解放され二次冷却
水の圧力で角度変更板71が開くので、二次冷却水4が
鋳塊6の表面63の下方向に当たることとなる。冷却位
置が鋳型下面から下に離れるに従い鋳塊の凝固シェルの
厚さは厚く強固になるため、冷却位置が下方向になると
凝固収縮が起こりにくくなり、また鋳型下面付近は冷却
されないため凝固収縮は起こらず、その結果、鋳塊の厚
さは徐々に厚くなることになる。
In FIG. 4, the angle changing device 7 and the ejection angle of the secondary cooling water 4 and the surface 63 of the ingot 6 when the solidification shrinkage of the ingot is large due to the primary cooling in the mold and the thickness of the ingot is thin. Shows the positional relationship of. When the thickness of the ingot is thin, that is, when the solidification shrinkage is large due to the primary cooling in the mold, the thickness of the ingot becomes thin. In this state, the roller 72 is released and the angle changing plate 71 is opened by the pressure of the secondary cooling water, so that the secondary cooling water 4 hits the surface 63 of the ingot 6 downward. Since the thickness of the solidified shell of the ingot becomes thicker and stronger as the cooling position moves downward from the lower surface of the mold, solidification shrinkage is less likely to occur when the cooling position is in the downward direction, and solidification shrinkage occurs because the vicinity of the lower surface of the mold is not cooled. It does not happen, and as a result, the thickness of the ingot gradually increases.

【0012】一方、図5は、鋳型での一次冷却で鋳塊の
凝固収縮が小さく、鋳塊の厚さが厚い場合の角度変更装
置7と二次冷却水4の噴出角度及び鋳塊6の表面63の
位置関係を示している。鋳塊の厚さが厚い場合、即ち鋳
型での一次冷却で凝固収縮が小さい場合は、鋳塊の厚さ
が厚くなる。この状態の時にはローラ72が鋳塊6の表
面63により押し下げられるため角度変更板71が閉じ
て二次冷却水4の噴出角度を鋳塊6の上方向に変更する
こととなる。よって、凝固シェルの厚さの薄い鋳型下面
付近を冷却することとなるため凝固収縮が起こり、その
結果、鋳塊の厚さは薄くなる。
On the other hand, FIG. 5 shows the angle changing device 7 and the ejection angle of the secondary cooling water 4 and the ingot 6 when the solidification shrinkage of the ingot is small and the ingot is thick due to the primary cooling in the mold. The positional relationship of the surface 63 is shown. When the thickness of the ingot is large, that is, when the solidification shrinkage is small in the primary cooling in the mold, the thickness of the ingot becomes thick. In this state, since the roller 72 is pushed down by the surface 63 of the ingot 6, the angle changing plate 71 is closed and the ejection angle of the secondary cooling water 4 is changed upward in the ingot 6. Therefore, since the vicinity of the lower surface of the mold where the solidified shell is thin is cooled, solidification shrinkage occurs, and as a result, the thickness of the ingot is reduced.

【0013】以上は、二次冷却水の噴出角度を角度変更
板で変える方法として、機械的な方法を示したが、他の
方法たとえば、鋳塊表面との距離を距離計で計測し、こ
の信号を目標と比較して、その結果によってモーターを
駆動させて、角度変更板の角度を変えることもできる。
In the above, a mechanical method has been shown as a method of changing the jetting angle of the secondary cooling water with the angle changing plate. However, other methods, for example, the distance from the ingot surface is measured with a range finder, It is also possible to compare the signal with the target and drive the motor according to the result to change the angle of the angle changing plate.

【0014】前記のような角度変更装置7を、鋳型の周
方向に独立に多数取りつけることにより、鋳型周方向の
各領域および鋳塊の長手方向で二次冷却水の噴出角度が
自動制御され、鋳塊の周方向および長手方向の凝固収縮
が均一になるので、得られる鋳塊の断面形状を、目的と
する所定の矩形(厚さ)とすることができる。
By mounting a large number of the angle changing devices 7 independently in the circumferential direction of the mold, the jetting angle of the secondary cooling water is automatically controlled in each region in the circumferential direction of the mold and in the longitudinal direction of the ingot. Since the solidification shrinkage in the circumferential direction and the longitudinal direction of the ingot becomes uniform, the cross-sectional shape of the obtained ingot can be a desired predetermined rectangle (thickness).

【0015】[0015]

【実施例】以下本発明を、実施例にもとづいて説明す
る。図1に示す本発明に係る二次冷却方法で、Al合金
5182(Alー4.5wt%Mgー0.3wt%Mn
合金)の厚さ500mm×幅1820mm×長さ800
0mmの断面矩形の鋳塊を鋳造した。前記の如く鋳造し
て得た矩形鋳塊の厚さは、断面方向および長手方向で4
95〜505mmであり、厚い部分を基準として片面そ
れぞれ10mm面削しても鋳塊表面は残らなかった。
EXAMPLES The present invention will be described below based on examples. In the secondary cooling method according to the present invention shown in FIG. 1, the Al alloy 5182 (Al-4.5 wt% Mg-0.3 wt% Mn) is used.
Alloy) thickness 500 mm x width 1820 mm x length 800
An ingot having a rectangular section of 0 mm was cast. The thickness of the rectangular ingot obtained by casting as described above is 4 in the cross-sectional direction and the longitudinal direction.
It was 95 to 505 mm, and the surface of the ingot did not remain even after 10 mm was ground on each side based on the thick portion.

【0016】[0016]

【比較例】図6に示す従来のDC鋳造、前記実施例と
同様にAl合金5182の厚さ500mm×幅1820
mm×長さ8000mmの断面矩形の鋳塊を鋳造した。
前記の如く鋳造して得た矩形鋳塊の厚さは、断面方向お
よび長手方向で485〜515mmであり、厚い部分を
基準として片面それぞれ10mm面削したところ、鋳塊
表面が部分的に残った。従って鋳型表面が残らないよう
に面削するためには、片面それぞれ18mm程度面削す
る必要があった。
[Comparative Example] In the conventional DC casting shown in FIG. 6, the thickness of 500 mm × width of Al alloy 5182 as in the Example 1820
An ingot having a rectangular cross section of mm × length 8000 mm was cast.
The thickness of the rectangular ingot obtained by casting as described above was 485 to 515 mm in the cross-sectional direction and the longitudinal direction, and when 10 mm was chamfered on each side based on the thick portion, the ingot surface partially remained. . Therefore, in order to perform chamfering so that the mold surface does not remain, it was necessary to chamfer about 18 mm on each side.

【0017】前記本発明の実施例及び比較例から明らか
な如く、本発明方法を用いて製造した圧延用断面矩形鋳
塊は、面削量を少なくすることが出来、鋳塊の歩留りの
向上に大きく寄与することがわかる。
As is clear from the examples and comparative examples of the present invention, the rectangular ingot for rolling cross-section produced by the method of the present invention can reduce the amount of chamfering and improve the yield of the ingot. It turns out that it contributes greatly.

【0018】[0018]

【発明の効果】以上詳述した如く、本発明に係る断面矩
形鋳塊用縦型半連続鋳造の二次冷却方法は、その装置の
コストが安く、管理が容易であり、かつ目的とする断面
寸法の矩形とすることが出来るため、矩形鋳塊の製造歩
留りを著しく向上することができ、工業的に顕著な効果
を奏するものである。
As described in detail above, the secondary cooling method for vertical semi-continuous casting for rectangular ingots of the present invention has a low equipment cost, is easy to manage, and has a desired cross section. Since the rectangular ingot can be formed, the manufacturing yield of the rectangular ingot can be remarkably improved, and the industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る鋳型下部二次冷却水の噴出角度変
更装置の正面図であり、同装置と鋳塊表面との位置関係
を示している。
FIG. 1 is a front view of a device for changing a jet angle of secondary cooling water for a lower part of a mold according to the present invention, showing a positional relationship between the device and a surface of an ingot.

【図2】図1の噴出角度変更装置の左側面図である。2 is a left side view of the ejection angle changing device of FIG. 1. FIG.

【図3】鋳塊厚を目標の厚さとする場合の噴出角度変更
装置と鋳塊表面の位置関係を示す説明図である。
FIG. 3 is an explanatory view showing the positional relationship between the ejection angle changing device and the ingot surface when the ingot thickness is set to a target thickness.

【図4】鋳塊厚が薄い場合の噴出角度変更装置と鋳塊表
面の位置関係を示す説明図である。
FIG. 4 is an explanatory view showing the positional relationship between the ejection angle changing device and the ingot surface when the ingot thickness is thin.

【図5】鋳塊厚が厚い場合の噴出角度変更装置と鋳塊表
面の位置関係を示す説明図である。
FIG. 5 is an explanatory view showing the positional relationship between the ejection angle changing device and the surface of the ingot when the thickness of the ingot is large.

【図6】従来の断面矩形鋳塊製造用のDC鋳造の説明図
である。
FIG. 6 is an explanatory view of a conventional DC casting for producing a rectangular ingot having a cross section.

【符号の説明】[Explanation of symbols]

1 溶湯樋 11 溶湯注入筒 2 鋳型 21 一次冷却水通路 22 二次冷却水出口 3 溶湯 4 二次冷却水 5 鋳塊受台 6 鋳塊 61 溶湯液相 62 溶湯固相 63 鋳塊表面 7 二次冷却水の噴出角度変更装置 71 角度変更板 72 ローラ 73 湾曲アーム 74 直線アーム 75〜79 支点 8 噴出角度変更装置の取り付け板 1 Molten Gutter 11 Molten Injection Cylinder 2 Mold 21 Primary Cooling Water Passage 22 Secondary Cooling Water Outlet 3 Molten 4 Secondary Cooling Water 5 Ingot Cradle 6 Ingot 61 Liquid Molten Phase 62 Molten Solid Phase 63 Ingot Surface 7 Secondary Cooling water jetting angle changing device 71 Angle changing plate 72 Roller 73 Curved arm 74 Linear arm 75-79 Support point 8 Mounting plate for jetting angle changing device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】底部が開放された矩形水冷鋳型に上方より
溶融金属を注入し、鋳型による一次冷却と鋳型下部の噴
出冷却水による二次冷却により溶湯金属を凝固させ、鋳
型底部より鋳塊を連続的に取り出す断面矩形鋳塊用縦型
半連続鋳造において、得られる矩形鋳塊の形状に対応し
て、前記噴出冷却水の噴出角度を角度変更板で、自動的
に制御して鋳塊を冷却することを特徴とする断面矩形鋳
塊用縦型半連続鋳造における二次冷却方法。
1. A molten metal is solidified by injecting molten metal from above into a rectangular water-cooled mold having an open bottom and secondary cooling by jet cooling water at the bottom of the mold to solidify molten metal from the bottom of the mold. In vertical semi-continuous casting for rectangular ingots that are continuously taken out, in response to the shape of the rectangular ingot obtained, the jet angle of the jet cooling water is automatically controlled by an angle changing plate to form an ingot. A secondary cooling method in vertical semi-continuous casting for rectangular ingots having a rectangular cross section, characterized by cooling.
【請求項2】前記角度変更板は、連続的に取り出される
断面矩形鋳塊の側面に接して鋳塊の形状を感知するロー
ラとこのローラに連結された湾曲アーム及び直線アーム
で角度が変えられるようにしたことを特徴とする請求項
1に記載の断面矩形鋳塊用縦型半連続鋳造における二次
冷却方法。
2. The angle changing plate can be changed in angle by a roller for contacting a side surface of a rectangular ingot having a rectangular cross section continuously taken out to sense the shape of the ingot, and a curved arm and a linear arm connected to the roller. The secondary cooling method in vertical semi-continuous casting for rectangular ingots according to claim 1, wherein the secondary cooling method is used.
JP1390396A 1996-01-30 1996-01-30 Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section Pending JPH09206907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1390396A JPH09206907A (en) 1996-01-30 1996-01-30 Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1390396A JPH09206907A (en) 1996-01-30 1996-01-30 Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section

Publications (1)

Publication Number Publication Date
JPH09206907A true JPH09206907A (en) 1997-08-12

Family

ID=11846142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1390396A Pending JPH09206907A (en) 1996-01-30 1996-01-30 Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section

Country Status (1)

Country Link
JP (1) JPH09206907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844209A (en) * 2010-06-07 2010-09-29 苏州有色金属研究院有限公司 Cooling water angle adjustable crystallizer for aluminium alloy casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844209A (en) * 2010-06-07 2010-09-29 苏州有色金属研究院有限公司 Cooling water angle adjustable crystallizer for aluminium alloy casting

Similar Documents

Publication Publication Date Title
US20050098298A1 (en) Treating molten metals by moving electric arc
JPH09206907A (en) Secondary cooling method in vertical type semi-continuous casting for cast block having rectangular cross section
JPH06263B2 (en) Continuous casting method
CN114749616A (en) Ingot mould for large-scale high-length-diameter ratio steel ingot and blank forming method
JPH08279B2 (en) Manufacturing method of steel forgings
JPH11170014A (en) Horizontal continuous casting machine
JP3000371B2 (en) Continuous casting method
JP2560935B2 (en) Semi-continuous casting method for ingots with multiple extensions
JP2003311376A (en) Apparatus and method for casting metallic ingot
JP4058561B2 (en) Metal continuous casting method and ingot mold for carrying out the method
JPS5850167A (en) Prevention for clogging of sprue
JP4026792B2 (en) Billet continuous casting method
KR102426037B1 (en) Small diameter rod-typed aluminum alloy casting material and method of manufacturing the same
JP3018809B2 (en) Method of manufacturing thin sheet ingot by electromagnetic force
JPS5917475Y2 (en) Bottom metal for continuous casting
RU2288067C2 (en) Billet casting method
JP4076155B2 (en) Manufacturing method of iron alloy-based thixocasting material
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JP3281531B2 (en) Electromagnetic casting device for Al or Al alloy
JPS6153143B2 (en)
JPH03110043A (en) Vertical type continuous casting apparatus for metal
JP3344070B2 (en) Aluminum square ingot semi-continuous casting pedestal and method of manufacturing square ingot
JPH0767598B2 (en) Semi-continuous casting method for branched ingots
JPS63252644A (en) Electromagnetic mold
JPH0140703B2 (en)