JPS6192756A - Continuous casting method of preventing surface cracking of ingot and casting mold - Google Patents

Continuous casting method of preventing surface cracking of ingot and casting mold

Info

Publication number
JPS6192756A
JPS6192756A JP21358884A JP21358884A JPS6192756A JP S6192756 A JPS6192756 A JP S6192756A JP 21358884 A JP21358884 A JP 21358884A JP 21358884 A JP21358884 A JP 21358884A JP S6192756 A JPS6192756 A JP S6192756A
Authority
JP
Japan
Prior art keywords
mold
casting
ingot
casting mold
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21358884A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
奥田 美夫
Morio Kawasaki
守夫 川崎
Takaharu Nakajima
中井 健
Masanori Nakamura
敬治 中島
Yoshio Okuda
中村 正宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21358884A priority Critical patent/JPS6192756A/en
Publication of JPS6192756A publication Critical patent/JPS6192756A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Abstract

PURPOSE:To cast continuously an ingot without surface cracking on the ingot by casting a molten middle-carbon steel into a casting mold formed with plural vertical grooves each having an adequate shape and size to the surface in the upper part in the casting mold and cooling slowly only the solidified shell in the upper part of the casting mold. CONSTITUTION:The plural vertical grooves 5 each having 250-750mum width, 60-300mum depth D and 20-90% area rate are provided only on the inside surface 2 of the casting mold made of copper within 300mm from the top end of the mold 1 in parallel with the casting direction in a method for executing continuous casting by casting a molten metal cong. 0.09-0.16% C via an immer sion nozzle 3 into the casting mold 1 and floating a flux consisting of molding powder 4 on the surface of the molten steel in the casting mold. Then air stagnates in the grooves 5 to suppress the inflow of the powder 4 and the molten steel. The molten steel contacts with the mold 1 only at projecting parts 6 and the solidified shell is slowly cooled only in the upper part of the mold 1, by which the surface cracking of the ingot is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造鋳片の製造方法およびそのための鋳
型、特に表面割れのみられない連続鋳造鋳片の製造方法
およびそのために使用する鋳型の構造に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing continuously cast slabs and a mold therefor, and particularly a method for producing continuously cast slabs free from surface cracks and a mold used therefor. Regarding structure.

(従来の技術) 鋼鋳片を連続鋳造法で製造する場合、/8箭中の炭素量
が0.09〜0.16%の範囲内にあるいわゆる中炭素
鋼では、鋳造時、鋳片に縦割れが発生しやすい。このよ
うな鋳片表面割れがみられると、圧延工程に送るに先立
って表面疵取り作業を必要とするため、今日そのすくれ
た熱経済性に着目されて適用が求められている直送加熱
(ホット・チャージ)あるいは直送圧延(ダイレクト・
チャージ)適用の阻害要因となっている。
(Prior art) When producing steel slabs by a continuous casting method, so-called medium carbon steel with a carbon content in the range of 0.09 to 0.16% has a high carbon content in the slab during casting. Vertical cracks are likely to occur. If such cracks are observed on the surface of a cast slab, it is necessary to remove the surface flaws before sending it to the rolling process. hot charging) or direct rolling (direct rolling)
charge) is an impediment to its application.

この表面割れ、つまり縦割れの発生機構については、こ
れまでにも種々研究がなされており、特に、Cが0.0
9〜0.16%の範囲は、包晶反応領域であり、凝固反
応が不均一に進む結果、凝固シェル厚さの不均一度が大
きく、それが原因で縦割れ等が発生しやすいことが知ら
れている。
Various studies have been conducted on the generation mechanism of surface cracks, that is, vertical cracks, and in particular
The range of 9% to 0.16% is the peritectic reaction region, and as a result of the solidification reaction proceeding non-uniformly, the non-uniformity of the solidified shell thickness is large, which is likely to cause vertical cracks etc. Are known.

したがって、従来、その機構は未だ完全には明らかにさ
れていないが、このような縦割れ発生機構は次のように
考えられている。すなわち、連続鋳造に際しては、/8
鋼が水冷8rl鋳型に注入され、凝固シェルが生成する
のであるが、その場合、鋳型による抜熱量が大きいため
、少しでも抜熱量にムラがあると凝固シェル厚さは不均
一となり、したがって凝固シェル厚さの薄い部分に収縮
による熱応力が作用する結果、縦割れが発生するという
ものである。
Therefore, although the mechanism has not yet been completely clarified, the mechanism by which such vertical cracks occur is thought to be as follows. In other words, in continuous casting, /8
Steel is injected into a water-cooled 8RL mold and a solidified shell is produced, but in this case, the amount of heat removed by the mold is large, so if there is even a slight unevenness in the amount of heat removed, the thickness of the solidified shell will be uneven, and therefore the solidified shell will Vertical cracks occur as a result of thermal stress due to shrinkage acting on thinner parts.

したがって、このような連続鋳造鋳片におLJる縦割れ
防止のためには、鋳型上部で生成するいわゆる初期凝固
シェルの厚さを均一化すれば良い訳である。
Therefore, in order to prevent longitudinal cracks in LJ in such continuously cast slabs, it is sufficient to make the thickness of the so-called initially solidified shell produced at the upper part of the mold uniform.

この点に関しては、すでに1958年発行のr 1(a
ndbuch des 5tranBicssens 
j叶、 Erhard Ilermann著^1umi
nium−Verlag Gmbll  (Dtfss
eldorf)において、AQを連続鋳造する場合、鋳
片の表面性状を改善するため、鋳型内面に凹凸を付与す
ることが記載されている。さらに、P、Permino
v et、alJsteel in EnglishJ
 1968年7号、560〜562頁にも、280 X
 280mmのビレット鋳造に関して、同様の記載が見
られる。これらは鋳型内面の溶鋼との接触部の面積率を
低下させ、全体として緩冷却を行い、一方接触部の単位
面積当たりの抜熱量は増加させることにより、その抜熱
量のムラをなくし、均一な冷却を行なおうとするもので
ある。
In this regard, r 1 (a
ndbuch des 5tranBicssens
J Kano, written by Erhard Ilermann ^1umi
nium-Verlag Gmbll (Dtfss
eldorf) describes that when AQ is continuously cast, irregularities are provided on the inner surface of the mold in order to improve the surface properties of the slab. Furthermore, P, Permino
v et, alJsteel in EnglishJ
7, 1968, pp. 560-562, 280
Similar statements can be found regarding 280 mm billet casting. These reduce the area ratio of the contact area with the molten steel on the inner surface of the mold, allowing for slow cooling as a whole, while increasing the amount of heat removed per unit area of the contact area, eliminating unevenness in the amount of heat removal and achieving uniform heat removal. The purpose is to perform cooling.

このような考え方は、特公昭57−11735号公報に
おいてもみられ、この場合、凹部の寸法は、直径もしく
は幅が2.5mm以下であり、かつ該凹部の総面積率が
20%以上、90%以下と規定さている。また凹部の深
さに関しては、0.3〜1.0mmが望ましいと、また
凹部と凹部との間隔は1〜3mm程度が望ましいと、□
それぞれ明記されている。
This idea is also seen in Japanese Patent Publication No. 57-11735, in which the dimensions of the recess are 2.5 mm or less in diameter or width, and the total area ratio of the recess is 20% or more, 90%. It is stipulated as follows. Regarding the depth of the recesses, it is desirable that the depth is 0.3 to 1.0 mm, and that the distance between the recesses is preferably about 1 to 3 mm.
Each is clearly stated.

なお、かかる凹凸部を付与する方法としては、機械切削
加工法、およびショツトブラスト法が挙げられている。
Note that mechanical cutting methods and shot blasting methods are listed as methods for providing such uneven portions.

(発明が解決すべき問題点) しかしながらこれらの従来の技術では、ただ単に鋳型内
表面に凹凸部を付与するだけであって、抜熱量を低減す
る緩冷却鋳型としての機能から考えると、以下に示すよ
うな問題点を含んでいる:(1)凝固シェルからの抜熱
量を低減する機構としては、従来考えられてきたのは、
接触部の面積率を減少させることである。そのため特公
昭57−11735号公報でも凹部の幅が2.5mm以
下、一般には1.0mmという範囲に限定しており、こ
れでは、・/8融パウダーが凹部内に流入してしまい、
抜熱量低減効果はほとんど期待されない。
(Problems to be Solved by the Invention) However, these conventional techniques simply provide unevenness to the inner surface of the mold, and considering the function of the mold as a slow cooling mold that reduces the amount of heat removed, the following points are considered: (1) The mechanism for reducing the amount of heat removed from the solidified shell has been conventionally thought to be as follows:
The purpose is to reduce the area ratio of the contact portion. Therefore, even in Japanese Patent Publication No. 57-11735, the width of the recess is limited to 2.5 mm or less, generally 1.0 mm, and this would cause the /8 molten powder to flow into the recess.
Almost no effect on reducing the amount of heat removed is expected.

(2)凹凸部を付与する範囲として、従来の公知文献で
は、鋳型内表面のほぼ全域にわたっていると解釈される
が、このように鋳型内金面にわたって、凹凸部を付与す
れば、鋳型出口付近でも緩冷却効果のためシェルの凝固
厚さが減少し、特に高速鋳型ではブレークアウトの発生
確率が大となる。
(2) The range to which the uneven portion is provided is interpreted to cover almost the entire inner surface of the mold in conventional known literature, but if the uneven portion is provided over the inner metal surface of the mold in this way, the area near the mold outlet However, due to the slow cooling effect, the solidified thickness of the shell decreases, and the probability of breakout occurrence increases, especially in high-speed molds.

以上のごとく、鋳型内表面に、ただ単に凹凸部を施すの
みでは緩冷却を実現するのは困難であり、したがって上
述のような技術は現在まで実用化はなされていなかった
As described above, it is difficult to achieve slow cooling simply by forming uneven portions on the inner surface of the mold, and therefore the above-mentioned technology has not been put to practical use until now.

(問題点を解決するための手段) 本発明者らは上述のような問題点を解決すべく、鋭意検
討を市ね゛たところ、四部にみられる空気の断熱効果を
利用することにより、目的が達成されることに着目して
、種々実験を試みたところ、縦溝に、パウダーが流入す
ると、空気による断熱効果が期待できないことが判明し
たので、本発明では、縦溝を設ける領域はモールド上端
から300mm以内とし、縦溝形状を、(i)幅が25
0〜750 μm、(ii)深さを60〜300 μm
1そして(iii )縦溝の面積率が20〜90%、好
ましくは40〜90%となるように限定することにより
パウダーの流入を防止する一方、空気の断熱効果を最大
限利用して所期のすくれた効果が得られることを見い出
して本発明を完成した。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive studies and found that the objective can be achieved by utilizing the heat insulation effect of air found in the four parts. As a result of conducting various experiments with a focus on achieving this, it was found that if powder flows into the vertical grooves, the insulation effect of air cannot be expected. Therefore, in the present invention, the area where the vertical grooves are provided is Within 300mm from the top edge, the vertical groove shape is (i) width is 25mm
0-750 μm, (ii) depth 60-300 μm
1 and (iii) By limiting the area ratio of the vertical grooves to 20 to 90%, preferably 40 to 90%, the inflow of powder is prevented, while the heat insulating effect of air is maximized to achieve the desired effect. The present invention was completed by discovering that a drooping effect can be obtained.

ここに、本発明の要旨とするところは(C)  :Q。Here, the gist of the present invention is (C):Q.

09〜0.16%を含有する溶鋼より鋳片を連続鋳造す
る方法において、鋳型上端から300mm以内の鋳型内
表面にのみ鋳込方向と平行に溝幅250〜750μm、
原さ60〜300 μm、そして縦溝の面積率20〜9
0%の複数の縦溝を施した鋳型に前記溶鋼を鋳込み、鋳
型自溶鋼の表面にフラックスを浮遊させて鋳型上部での
み凝固殻を緩冷却せしめることを特徴とした、鋳片の表
面割れのない連続鋳造法である。
In a method of continuously casting slabs from molten steel containing 0.09 to 0.16%, a groove width of 250 to 750 μm parallel to the casting direction is formed only on the inner surface of the mold within 300 mm from the upper end of the mold.
The roughness is 60-300 μm, and the vertical groove area ratio is 20-9.
0%, the molten steel is poured into a mold with a plurality of longitudinal grooves, and flux is suspended on the surface of the self-molten steel in the mold, so that the solidified shell is slowly cooled only in the upper part of the mold. There is no continuous casting method.

なお、鋳型上端から300mm以内の領域に縦溝を付与
したのは、それ以上に加工するとかえって緩冷却効果の
よめ凝固シェル厚さが薄くなり、前述のようなブレーク
アウトが生じるなど操業が不安定になるからである。
Note that the vertical grooves were provided within 300 mm from the top of the mold because if the grooves were processed further than that, the thickness of the solidified shell would become thinner due to the slow cooling effect, resulting in unstable operation such as breakouts as mentioned above. This is because it becomes

また、表面割れ発生の感受性が高い0.09〜0616
%炭素鋼を鋳込むのは、すでに述べたように、この炭素
領域では包晶反応であって、特に縦割れ発生が顕著であ
るからである。したがって、本発明はその他の鋼種に適
用しても同様にすぐれた効果がみられるのは云うまでも
ない。
In addition, 0.09 to 0616 is highly susceptible to surface cracking.
% carbon steel is cast because, as already mentioned, in this carbon region, the peritectic reaction occurs, and the occurrence of vertical cracks is particularly pronounced. Therefore, it goes without saying that the present invention can also be applied to other types of steel with similar excellent effects.

(作用) 次に、本発明において鋳型形状を上述の如く限定した理
由を説明する。
(Function) Next, the reason why the mold shape is limited as described above in the present invention will be explained.

第1図は本発明に係る鋳型1を示す斜視図であり、図中
、銅製鋳型内面2に、縦溝(図示せず)を加工しである
。浸漬ノズル3鋳型1に注入された溶鋼は上部をモール
ドパウダー4で覆われ、緩冷却が行われている。第2図
に鋳型内面の横断面図を示゛す。縦tT15は鋳型内面
2に長平方向に好ましくは規則的に設けられ、その断面
形状は前述のようにモールドパウダーの流入を阻止する
一方空気の流入を許す程度とする。図中、凸部6が/8
鋼との接触部を構成しこの部分を経てt友熱される。
FIG. 1 is a perspective view showing a mold 1 according to the present invention, in which vertical grooves (not shown) are machined on the inner surface 2 of the copper mold. The upper part of the molten steel injected into the immersion nozzle 3 mold 1 is covered with mold powder 4, and the molten steel is slowly cooled. Figure 2 shows a cross-sectional view of the inner surface of the mold. The longitudinal lengths tT15 are preferably provided regularly in the elongated direction on the inner surface of the mold 2, and their cross-sectional shape is such that, as described above, the inflow of mold powder is prevented while the inflow of air is allowed. In the figure, the convex portion 6 is /8
It forms the contact area with the steel and is heated through this area.

本発明にあっては、この縦溝を付与する範囲は、鋳型上
端から300mm以内の鋳型内表面領域で、また縦溝の
幅Wは250〜750μmで、溝の深さ■は60〜30
0μmであって、これらの縦溝の占める面積率が20〜
90%、好ましくは40〜90%となるように調整する
。なお、この面積率は11N溝の設けられている領域で
のそれで、鋳型内表面全体の領域に対するものではない
In the present invention, the range where the vertical grooves are provided is the inner surface area of the mold within 300 mm from the upper end of the mold, and the width W of the vertical grooves is 250 to 750 μm, and the depth of the grooves is 60 to 30 μm.
0μm, and the area ratio occupied by these vertical grooves is 20~
It is adjusted to 90%, preferably 40 to 90%. Note that this area ratio is for the area where the 11N groove is provided, and is not for the entire area of the inner surface of the mold.

(1)まず、縦溝加工範囲を鋳型上端から300mm以
内と限定した理由を説明する。
(1) First, the reason why the vertical groove machining range was limited to within 300 mm from the upper end of the mold will be explained.

第3図は、0.10%C鋼を引抜速度0.8m/min
で鋳込んだ時の鋳型出口におけるシェル凝固厚さを調査
した結果を示す。このシェル厚さは、S添加によるSプ
リントから測定した。第3図に示す結果から明らかなよ
うに、加工長さが300mmを超えるとシェル凝固厚は
減少しており、平均で1〜2mm薄くなり、操業的には
、シェル凝固厚さ減少によるブレークアウト発生の確率
も大となり、操業が不安定となる。
Figure 3 shows the drawing speed of 0.10% C steel at 0.8 m/min.
The results of an investigation of the shell solidification thickness at the mold outlet when casting is shown below. This shell thickness was measured from S prints with S addition. As is clear from the results shown in Figure 3, when the machining length exceeds 300 mm, the shell solidification thickness decreases, becoming thinner by 1 to 2 mm on average. The probability of this occurring increases, making operations unstable.

また、通常、メニスカス位置は鋳型上端から100mm
程度の位置にあるので、加工長さが短い場合は凝固シェ
ル厚さ均一化の効果が顕著にあられれにくく、ばらつき
が大となる。したがって、縦溝加工範囲は、鋳型上端か
ら200mm以上、300mm以内までが望ましい。す
なわち、緩冷却化による凝固シェル厚さの均一化が図れ
るのは、凝固シェルと鋳型内面が接触している範囲(メ
ニスカス位置から約150〜200mmまで、つまり鋳
型上端から250〜300mmまで)であって、それ以
上に凹凸を施すことは、シェルの成長から考えて、逆効
果である。
Also, the meniscus position is usually 100mm from the top of the mold.
Therefore, if the machining length is short, the effect of making the thickness of the solidified shell uniform is not noticeable, and the variation becomes large. Therefore, the range of vertical groove machining is preferably 200 mm or more and 300 mm or less from the upper end of the mold. In other words, the thickness of the solidified shell can be made uniform by slow cooling in the range where the solidified shell and the inner surface of the mold are in contact (approximately 150 to 200 mm from the meniscus position, that is, 250 to 300 mm from the upper end of the mold). Therefore, making the shell more uneven is counterproductive in terms of shell growth.

(2)溝幅を750〜250 μmと限定した理由は次
の通りである。
(2) The reason why the groove width was limited to 750 to 250 μm is as follows.

通常鋳型のメニスカス位置から150mm長さの範囲で
は、モールドパウダーは溶融状態となっており、そのた
め溶鋼に比べてモールドパウダーの表面張力は115以
下であるので容易にモールドパウダーは溝へ流入する。
Normally, the mold powder is in a molten state within a length of 150 mm from the meniscus position of the mold, and therefore, the surface tension of the mold powder is less than 115 compared to molten steel, so the mold powder easily flows into the groove.

従来の公知例である前記特公昭57−11735号公報
には、溝幅が2.51以下(一般には1mm)と記述さ
れているが、これらの例から明らかなように、従来は縦
溝への溶鋼の流入を抑制することに主眼が置かれている
。しかしながら、本発明は従来とは全く違った観点、す
なわちモールドパウダーの流入を抑制することに主眼を
置いており、実験上、理論上、溝幅が750μm以下で
あれば、モールドパウダーが流入しないことを始めて見
い出したことにもとずくものである。
The above-mentioned Japanese Patent Publication No. 57-11735, which is a conventionally known example, states that the groove width is 2.51 mm or less (generally 1 mm), but as is clear from these examples, conventionally the vertical groove The main focus is on suppressing the inflow of molten steel. However, the present invention focuses on suppressing the inflow of mold powder from a completely different viewpoint than the conventional one, and experimentally and theoretically, if the groove width is 750 μm or less, mold powder will not flow in. This is based on the fact that we discovered this for the first time.

すなわち、第4図に鋳型内のメニスカス位置付近におけ
るモールドパウダーの圧力と、モールドパウダー流入限
界の溝幅との関係を示している。通常、溶融パウダ一層
には、鋳型オシレーションにより圧力が付加され、lo
g/Cnt程度の圧力が鋳型と凝固シェル間に働く。第
4図に示す結果からLog/cnlのモールドパウダー
圧力がある場合、モールドパウダー流入のない溝幅は、
750μm以下となる。
That is, FIG. 4 shows the relationship between the mold powder pressure near the meniscus position in the mold and the groove width at the mold powder inflow limit. Normally, pressure is applied to one layer of molten powder by mold oscillation, and lo
A pressure on the order of g/Cnt acts between the mold and the solidified shell. From the results shown in Figure 4, when there is a mold powder pressure of Log/cnl, the groove width without mold powder inflow is:
It becomes 750 μm or less.

したがって、従来の公知例のごとく数mm以下という溝
幅ではモールドパウダー流入が生じやすく、モールドパ
ウダーによって溝が埋められると、熱流束の低下はほと
んど期待できないことがわかる。
Therefore, it can be seen that mold powder tends to flow in when the groove width is several mm or less as in the conventional known example, and when the groove is filled with mold powder, almost no decrease in heat flux can be expected.

なお、溝幅を250 μm以上とした理由は、これ以下
の溝幅では加工が困烈となるからである。
The reason why the groove width is set to 250 μm or more is that processing becomes difficult if the groove width is smaller than this.

(3)溝の深さは60〜300μmが適正範囲である。(3) The appropriate depth of the groove is 60 to 300 μm.

本発明においてm深さの下限を60μmとしたのは、溝
深さが60μm未満では、本発明で意図している空気に
よる断熱効果が充分でないためである。
The reason why the lower limit of m depth is set to 60 μm in the present invention is that if the groove depth is less than 60 μm, the heat insulating effect of air intended in the present invention is not sufficient.

ここに、第5図に鋳型内のメニスカス位置から20no
n下方の位置における熱流束を測定した結果を示す。
Here, 20 no. from the meniscus position in the mold is shown in Figure 5.
The results of measuring the heat flux at a position below n are shown.

通常、緩冷却化により凝固シェル厚さの均一化を図るた
め、熱流束を20%以上低下させる必要がある。
Normally, in order to make the thickness of the solidified shell uniform by slow cooling, it is necessary to reduce the heat flux by 20% or more.

第5図に示す結果から溝の深さは60μm以上が必要と
なることが分かる。一方、溝深さを300μm以下とし
たのは、それを超えても効果が殆ど変わらないためであ
る。
From the results shown in FIG. 5, it can be seen that the depth of the groove is required to be 60 μm or more. On the other hand, the reason why the groove depth is set to 300 μm or less is that the effect hardly changes even if the groove depth exceeds 300 μm.

以上のように、本発明にあっては縦溝の幅を250〜7
50 μm、深さが60〜300 μmとし、この加工
範囲を鋳型上端から300mm以内とした鋳型を使用す
ることにより、本発明が目的とする緩冷却の効果が得ら
れる。さらに、これらの縦溝による凹部面積率は、一般
には20〜90%、特に40〜90%が望ましい。面積
率が大きければそれだけ緩冷却効果は大きくなる。
As mentioned above, in the present invention, the width of the vertical groove is 250 to 7
By using a mold with a depth of 50 μm, a depth of 60 to 300 μm, and a processing range within 300 mm from the upper end of the mold, the effect of slow cooling aimed at by the present invention can be obtained. Furthermore, the area ratio of the recesses formed by these longitudinal grooves is generally 20 to 90%, preferably 40 to 90%. The larger the area ratio, the greater the gradual cooling effect.

次に、このような縦溝の加工方法について詳細を説明す
る。
Next, details of the method of machining such a vertical groove will be explained.

化ヱ旬エツチング この化学的エツチングはメッキ前に、鋳型を構成する銅
板に腐食溝をつけるか、メッキ後、メッキ層(通常はN
iメッキ層)にエツチング加工をするか、いずれかによ
って行うことができる。
Chemical etching This chemical etching process either creates corrosion grooves in the copper plate that makes up the mold before plating, or removes the plating layer (usually N) after plating.
This can be done either by etching the plating layer) or by etching the plating layer.

この化学的エツチングの工程は、まず前処理として有機
溶剤あるいはアルカリ溶液により表面を洗浄し、次いで
マスキングによりエツチング部以外を保護する。マスキ
ングの方法としては、スクリーン印刷による方法や、機
械的マスキング法がある。エツチングは加工物を腐食液
中へ浸漬するか、またはスプレーで吹きつける等の方法
を用いる。銅に対する腐食液としてはFeCn3、(N
H4) 2s204、CuC/22、CrO3、Fe’
C#3+HNO3があり、腐食速度としては、0.01
〜0.05mm/min程度を選ぶ。
In this chemical etching process, the surface is first cleaned with an organic solvent or an alkaline solution as a pretreatment, and then areas other than the etched area are protected by masking. Masking methods include a screen printing method and a mechanical masking method. For etching, methods such as immersing the workpiece in a corrosive solution or spraying the workpiece are used. As a corrosive liquid for copper, FeCn3, (N
H4) 2s204, CuC/22, CrO3, Fe'
There is C#3+HNO3, and the corrosion rate is 0.01
~0.05mm/min is selected.

照挨町皿工 機械的加工方法としては、通常の機械切削加工では困難
であり、このため特殊なハイドを使用した研削、フライ
ス盤による加工が通用できる。当業者には明らかなよう
に幅250〜750メty(−深さ60〜300μm程
度の切削加工は、コスト高となることは免れないが、今
日の精密切削加工によって容易に実現可能である。
As for the mechanical processing of the Terutocho plate, it is difficult to use ordinary mechanical cutting, so grinding using a special hide or processing using a milling machine can be used. As is clear to those skilled in the art, cutting with a width of about 250 to 750 m (-60 to 300 μm in depth) is inevitably expensive, but it can be easily realized with today's precision cutting.

レーザ加工 レーザ加工は、微細加工に適しており、このため例えば
銅板にNi厚メッキを施した後、レーザ加工をすれば良
い。慣用のレーザ加工法を利用できる。
Laser Processing Laser processing is suitable for fine processing, and therefore, for example, a copper plate may be plated with Ni thickly and then laser processing may be performed. Conventional laser processing methods can be used.

本発明では、このように■工・ノチング、■機械的加工
、■レーザ加工を挙げたが、いずれにしても微細な溝を
加工する方法が要求されるのであって、特定の手段に制
限されるものではない。
In the present invention, ``machining/notching'', ``mechanical processing,'' and ``laser processing are mentioned, but in any case, a method for machining fine grooves is required, and it is not limited to specific means. It's not something you can do.

かくして、本発明によれば、従来にない微細な縦溝を鋳
型内面に加工し、凝固シェル生成の初期Gこ熱流束を減
少させることにより、凝固シエ)し厚さの均一度を向上
させ、縦割れ等の表面疵を減少させることが可能となる
Thus, according to the present invention, unprecedentedly fine vertical grooves are machined on the inner surface of the mold to reduce the initial heat flux for solidification shell generation, thereby improving the uniformity of the solidification shell thickness. It becomes possible to reduce surface flaws such as vertical cracks.

次に実施例によって本発明をさらに詳述する。Next, the present invention will be explained in further detail with reference to Examples.

1施■ 12.5mRの弯曲型2ストランド型連続鋳造機により
、第1表に示す条件で連続鋳造鋳片(スラブ)を製造し
た。使用した鋳型の鋳型長さは700mmであり、鋳型
内表面には全体にNiメッキとNi+Pメッキをあわ・
Uて1 mml!Jとなるようにつけである。
Continuously cast slabs were manufactured using a 12.5 mR curved two-strand continuous casting machine under the conditions shown in Table 1. The length of the mold used was 700 mm, and the inner surface of the mold was coated with Ni plating and Ni+P plating.
1 mml! It is attached so that it becomes J.

このときの鋳型内面への溝加工条件および鋳造結果を第
2表にまとめて示す。比較のため溝加工をしなかった鋳
型を使った例も示す。
Table 2 summarizes the conditions for forming grooves on the inner surface of the mold and the casting results. For comparison, an example using a mold without grooves is also shown.

試験11hlは通常のCC鋳型であり溝加工は行なって
いない。同一2および3は、溝加工をしているが、縦溝
形状が本発明の範囲から外れたものである。試験N[L
4は、適正な縦溝を施してはいるが、鋳型全長にわたり
縦溝を加工したものである。
Test 11hl was a normal CC mold and no grooves were formed. Identical Nos. 2 and 3 are grooved, but the shape of the vertical grooves is outside the scope of the present invention. Test N[L
No. 4 has proper vertical grooves, but the vertical grooves are machined over the entire length of the mold.

第2表には、メニスカス位置から20mm下方の位置に
於ける銅板の熱流束減少率および縦割れ発生指数をも併
せて示している。試験隘1〜3の場合は、熱流束減少が
10%以下と不充分であり、縦割れ軽減はほとんど見ら
れない。一方、同11h4の全長縦溝加工鋳型は、ブレ
ークアウトが発生した。これらに対して、本発明例の場
合を示す試験隘5および6ては、縦割れが全く見られず
、また操業上の問題点は見られなかった。
Table 2 also shows the heat flux reduction rate and vertical crack occurrence index of the copper plate at a position 20 mm below the meniscus position. In the case of test numbers 1 to 3, the heat flux reduction was insufficient at 10% or less, and almost no reduction in longitudinal cracking was observed. On the other hand, a breakout occurred in the 11h4 full-length vertically grooved mold. On the other hand, in test cases 5 and 6, which represent the cases of the present invention, no vertical cracks were observed at all, and no operational problems were observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る鋳型の略式斜視M;第2図は、
鋳型内壁の一部横断面図; 第3図は、凝固シェル厚さと鋳型上端からの縦溝加工長
さとの関係を示すグラフ; 第4図は、縦溝幅とパウダー圧力との関係を示すグラフ
;および 第5図は、熱流束減少率と溝深さとの関係を示すグラフ
である。 1:鋳型       2:鋳型内面 3:浸漬ノズル    4:モールドパウダー出願人 
 住友金属工業株式会社 代理人  弁理士 広 瀬 童 −(他1名)第1図 第2図 第3図 鋳型を鳩J゛Ss鞭壜加工針(勧2 0     100     20o、     3o
FIG. 1 is a schematic perspective view M of a mold according to the present invention; FIG.
A partial cross-sectional view of the inner wall of the mold; Figure 3 is a graph showing the relationship between solidified shell thickness and length of vertical grooves from the upper end of the mold; Figure 4 is a graph showing the relationship between vertical groove width and powder pressure. and FIG. 5 is a graph showing the relationship between heat flux reduction rate and groove depth. 1: Mold 2: Mold inner surface 3: Immersion nozzle 4: Mold powder applicant
Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Dou Hirose - (1 other person) Figure 1 Figure 2 Figure 3 The mold is made into a pigeon J゛Ss whip bottle processing needle (recommendation 20 100 20o, 3o)
.

Claims (2)

【特許請求の範囲】[Claims] (1)〔C〕:0.09〜0.16%を含有する溶鋼よ
り鋳片を連続鋳造する方法において、鋳型上端から30
0mm以内の鋳型内表面にのみ鋳込方向と平行に溝幅2
50〜750μm、深さ60〜300μm、そして縦溝
の面積率20〜90%の複数の縦溝を施した鋳型に前記
溶鋼を鋳込み、鋳型内溶鋼の表面にフラックスを浮遊さ
せて鋳型上部でのみ凝固殻を緩冷却せしめることを特徴
とした、鋳片の表面割れのない連続鋳造法。
(1) [C]: In a method of continuously casting slabs from molten steel containing 0.09 to 0.16%,
Groove width 2 parallel to the casting direction only on the inner surface of the mold within 0 mm
The molten steel is poured into a mold having a plurality of vertical grooves of 50 to 750 μm, depth of 60 to 300 μm, and a vertical groove area ratio of 20 to 90%, and the flux is suspended on the surface of the molten steel in the mold, so that the flux is suspended only in the upper part of the mold. A continuous casting method characterized by slow cooling of the solidified shell, which does not cause surface cracks in the slab.
(2)鋳型上端から300mm以内の鋳型内表面にのみ
鋳込方向と平行に溝幅250〜750μm、深さ60〜
300μm、そして縦溝の面積率20〜90%の複数の
縦溝を施したことを特徴とする、鋳片の表面割れを防止
する連続鋳造用の鋳型。
(2) Groove width 250-750 μm, depth 60-750 μm parallel to the casting direction only on the inner surface of the mold within 300 mm from the upper end of the mold
A mold for continuous casting that prevents surface cracking of slabs, characterized by having a plurality of vertical grooves of 300 μm and an area ratio of 20 to 90%.
JP21358884A 1984-10-12 1984-10-12 Continuous casting method of preventing surface cracking of ingot and casting mold Pending JPS6192756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21358884A JPS6192756A (en) 1984-10-12 1984-10-12 Continuous casting method of preventing surface cracking of ingot and casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21358884A JPS6192756A (en) 1984-10-12 1984-10-12 Continuous casting method of preventing surface cracking of ingot and casting mold

Publications (1)

Publication Number Publication Date
JPS6192756A true JPS6192756A (en) 1986-05-10

Family

ID=16641685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21358884A Pending JPS6192756A (en) 1984-10-12 1984-10-12 Continuous casting method of preventing surface cracking of ingot and casting mold

Country Status (1)

Country Link
JP (1) JPS6192756A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104445A (en) * 1988-10-12 1990-04-17 Nkk Corp Mold for continuously casting steel and continuous casting method
FR2747059A1 (en) * 1996-04-05 1997-10-10 Ugine Savoie Sa CONTINUOUS CASTING PROCESS FOR METALS AND LINGOTIERE FOR ITS IMPLEMENTATION
JP2006247713A (en) * 2005-03-11 2006-09-21 Jfe Steel Kk Continuous casting method for steel
JP2008532767A (en) * 2005-03-10 2008-08-21 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for producing continuous casting mold and continuous casting mold
CN102310169A (en) * 2011-09-27 2012-01-11 中冶南方工程技术有限公司 Method for improving special-shaped blank continuous casting crystallizer cooling effect and crystallizer
JP2013501622A (en) * 2009-08-14 2013-01-17 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト template
CN105983666A (en) * 2015-02-28 2016-10-05 宝山钢铁股份有限公司 Slab crystallizer narrow-side cooper plate with curved surface profile consistent in shrinking

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104445A (en) * 1988-10-12 1990-04-17 Nkk Corp Mold for continuously casting steel and continuous casting method
FR2747059A1 (en) * 1996-04-05 1997-10-10 Ugine Savoie Sa CONTINUOUS CASTING PROCESS FOR METALS AND LINGOTIERE FOR ITS IMPLEMENTATION
WO1997037794A1 (en) * 1996-04-05 1997-10-16 Ugine Savoie Continuous casting method for metals and ingot mould for implementing same
JP2008532767A (en) * 2005-03-10 2008-08-21 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for producing continuous casting mold and continuous casting mold
JP2006247713A (en) * 2005-03-11 2006-09-21 Jfe Steel Kk Continuous casting method for steel
JP4609119B2 (en) * 2005-03-11 2011-01-12 Jfeスチール株式会社 Steel continuous casting method
JP2013501622A (en) * 2009-08-14 2013-01-17 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト template
CN102310169A (en) * 2011-09-27 2012-01-11 中冶南方工程技术有限公司 Method for improving special-shaped blank continuous casting crystallizer cooling effect and crystallizer
CN105983666A (en) * 2015-02-28 2016-10-05 宝山钢铁股份有限公司 Slab crystallizer narrow-side cooper plate with curved surface profile consistent in shrinking

Similar Documents

Publication Publication Date Title
WO2014002409A1 (en) Continuous casting mold and method for continuous casting of steel
JP4746398B2 (en) Steel continuous casting method
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
WO2016067578A1 (en) Mold for continuous casting and continuous casting method for steel
JPS6192756A (en) Continuous casting method of preventing surface cracking of ingot and casting mold
JP4337565B2 (en) Steel slab continuous casting method
JP2015107522A (en) Casting mold for continuous casting and continuous casting method of steel
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JP6787359B2 (en) Continuous steel casting method
JPH01289542A (en) Casting mold for continuous casting of steel
KR101195219B1 (en) Method for making surface of casting roll of strip casting process
JPS63160752A (en) Continuous casting method preventing surface crack on cast slab
JPS609553A (en) Stopping down type continuous casting machine
JPS61129257A (en) Manufacture of continuous casting mold
CA1233618A (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JP3336224B2 (en) Mold for continuous casting of molten steel
JP7155922B2 (en) Method for manufacturing cooling roll and method for manufacturing thin cast slab
KR102179558B1 (en) Mold, apparatus and method for casting
JP3388945B2 (en) Production method of continuous casting mold
JPH0994634A (en) Water cooling mold for continuous casting
JPH09271903A (en) Mold for continuously casing steel
JP3908902B2 (en) Cooling drum for continuous casting of thin-walled slab and continuous casting method of thin-walled slab
JPH07284896A (en) Method for continuously casting steel and mold for continuous casting
JP4303670B2 (en) Steel continuous casting method