JP4057828B2 - Optical path changer and optical module using the same - Google Patents

Optical path changer and optical module using the same

Info

Publication number
JP4057828B2
JP4057828B2 JP2002092553A JP2002092553A JP4057828B2 JP 4057828 B2 JP4057828 B2 JP 4057828B2 JP 2002092553 A JP2002092553 A JP 2002092553A JP 2002092553 A JP2002092553 A JP 2002092553A JP 4057828 B2 JP4057828 B2 JP 4057828B2
Authority
JP
Japan
Prior art keywords
optical path
optical
path changer
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092553A
Other languages
Japanese (ja)
Other versions
JP2003298166A (en
Inventor
重雄 青野
隆則 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002092553A priority Critical patent/JP4057828B2/en
Publication of JP2003298166A publication Critical patent/JP2003298166A/en
Application granted granted Critical
Publication of JP4057828B2 publication Critical patent/JP4057828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信及び光情報通信分野等において使用される光路変換体及びそれを用いた光モジュールに関する。
【0002】
【発明の背景】
表面実装型の光伝送モジュールにおいて、動作電流や温度特性に優れた面発光レーザー(Vertical Cavity Surface Emitting Laser、以下、VCSELともいう)の出射光を、所定形状の基体の反射面により光路を変えて、光ファイバ等の光素子に光学的接続を容易に行わせることが可能である。また、基体の反射面となる面に受光素子を搭載することで、VCSELの出力監視が容易になる。
【0003】
ところで、上述の光路変換体を、光伝送モジュールの基板として好適に用いられる単結晶シリコンで形成する場合、例えば特開平11−112014号に開示されているように、光路変換体の反射面は基板の異方性エッチングで形成することにより、高精度に平坦な反斜面を作製できる。
【0004】
しかし、基板を異方性エッチングにより高精度に平坦な反斜面を作製するには、不純物の少ない基板を選択しなければならず、そのための製法が限定されしかもコスト高となる。すなわち、例えばFZ(フローティング・ゾーン)法によって製作された、コストの高い単結晶シリコン基板が選ばれる。これは、例えばCZ(チョコラルスキー)法などの比較的安価な手法によって製作されたシリコン基板は、製法プロセス上、不純物が混入し、結晶中に欠陥を作りやすいためである。このような欠陥は異方性エッチングの際に、エッチング面にピットを形成し、平坦な反斜面が作製できない。
【0005】
また、上記FZ法で製作された単結晶シリコン基板を用いた場合でも、高精度に平坦な反斜面を作製するには、エッチング条件を最適化しなければならず、このような最適化は容易ではない。
【0006】
また、異方性エッチング技術を用いる場合、一般に使用されている単結晶シリコン基板と異なった基板の面方位とオフ角度に限定する必要があり、コスト高につながる。
【0007】
また、光路変換体の反射面を形成するためには、長時間の異方性エッチングを行い、深い溝に形成された広い傾斜面、つまり反射面でなければ、光路変換体の高さを精度良く設計・作製しないと光路変換体の機能が不十分となる。
【0008】
また、受光素子のような光半導体素子を上記のような光路変換体を利用して搭載する場合、異方性エッチングで形成された面に搭載することになり、この面は基板表面に対し傾斜しているので、多数の光半導体素子を精度良く搭載するのが困難であるという問題が生じる。
【0009】
また、光路変換体の実装基板への搭載時に、光路変換体を実装基板へマウントする際に加圧・密着させることになるため、光路変換体のエッジ部で、受光素子に接続する電極配線が断線する恐れがあるという問題があった。
【0010】
また、LD(レーザーダイオード)やPD(フォトダイオード)のサブキャリアよりも大きな光路変換体を実装基板へ搭載するために、従来のダイボンディング条件では実装基板との密着力が不十分となり、光路変換体が離脱する恐れがあるという問題があった。
【0011】
さらに、例えば特開平11−121863号に開示されている上面が突出した形の光路変換体は、平面を吸着して本体を操作するコレットでは操作性が悪く、実装基板への加圧・密着が困難である。
【0012】
そこで本発明では、上述の問題を解消し、光路変換体を容易にかつ迅速に提供でき、さらに、面発光素子と光伝送体との光接続を高効率にできる信頼性の高い光モジュールを提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の光路変換体は、面発光素子からの出射光を反射させるための光通信用の光路変換体であって、本体の設置面と該設置面の背面を略平行に形成して成るとともに、前記本体の一側面を前記設置面と133°〜137°の角度を成す素子配設面とし、前記素子配設面に前記面発光素子から出射光を受光してモニタするとともに、該出射光の一部を反射させる受光素子が配設され、前記素子配設面と前記本体の設置面との間に、オーミックコンタクト用の不純物拡散領域が形成されていることを特徴とする。特に、光反射面は研磨された平滑なシリコン単結晶表面とする。
【0014】
また特に、前記柱状をなす本体の上下面(本体の設置面と該設置面の背面)はダイシング加工で形成し、その表面粗さRa(算術平均粗さ)は1000Å〜5000Åとなる。
【0015】
また、本発明の光路変換体の製造方法は、単結晶ウエハの両主面上に交互に位置するV溝を複数条に形成することにより断面が平行四辺形状の柱状部を形成する工程を含み、柱状をなす本体の研磨された平滑な単結晶基板表面の一部を入射光を所定方向へ光路変換させるための光反射面または光半導体素子を設ける素子配設面とする。
【0016】
また、本発明の光モジュールは、高低差のある低位置面及び高位置面を形成した基板の低位置面に面発光素子及び該面発光素子の出射光を反射させる光路変換体を配設するとともに、前記高位置面に前記光路変換体からの反射光を入射させる光伝送体を配設したことを特徴とする。
【0018】
【発明の実施の形態】
以下に、本発明に係る実施形態の例について模式的に示した図面に基づき詳細に説明する。
【0019】
図1に本発明を説明するための光モジュールM1の断面図を示す。光モジュールM1は、高低差のある低位置面1a及び高位置面を形成した基板1の低位置面1aに、面発光素子3、及び面発光素子3の出射光L1を反射させる光路変換体2をそれぞれ配設し、高位置面に形成され光軸に直交する断面形状がV字状を成す搭載用溝1bに、光路変換体2からの反射光L2を先端4aに入射させる光ファイバやその他の光導波路体から成る光伝送体4を配設している。
【0020】
ここで、光路変換体2は上下の2主面が平行な柱状である。すなわち、本体の設置面(下面)2bと該設置面の背面(上面)2aを略平行に形成して成り、さらに本体の一側面を面発光素子3の光反射面(以下、傾斜面ともいう)2cとし、この傾斜面と下面2bとの成す角度αを133°〜137°としている。この本体の上下面2a,2bがダイシング加工で形成されている。また、側面の研磨された平滑なシリコン単結晶基板表面である傾斜面2cが、面発光素子3からの入射光L1を所定方向へ光路変換させるための光反射面または受光素子等の光半導体素子を配設するための素子配設面としている。
【0021】
この光路変換体2において、特に本体が単結晶シリコンから成り、傾斜面2cが単結晶基板表面から43°〜47°傾斜させた面(α=133°〜137°)であると、面発光素子3からのほぼ垂直な出射光を、光路変換体2の傾斜面2cで86°〜94°の角度で光路変換させて(略水平方向へ)水平に配設された光伝送体4へ入射させることができ、効率よく光接続できる。このように、光ファイバの開口比を考慮して、光反射面は入射光に対して90±4°の角度で光路変換させるように形成されているとよい。
【0022】
光路変換体2は、以下のようにして製造される。まず、図2に平面図、図3に図2のA−A’線断面図にて示すように、単結晶ウエハWの両主面10,14に対し、所定のフォトレジスト11により形成された線をマーカーとし、先端の角度が90°を有するV状の砥石を利用したダイシングによる機械加工を施すことにより、両主面10,14上に交互に位置するV溝12を所定方向に複数条に形成する。これにより、V溝12の両側に形成され断面が平行四辺形状となる柱状部13が形成される。
【0023】
なお、光路変換体2の傾斜面2cは光反射面とし、または光半導体素子を高精度に配設する面とするため、単結晶ウエハの一主面10は、MCP(メカノケミカルポリッシュ)により鏡面(算術平均粗さRaが100Å以下)に研磨されたものを用いる。
【0024】
次に、柱状部14の両側に示したラインDにおいてダイシングすることにより個々の柱状部14を分離する。なお、図3において、θは44.0°±1.0°あるいは46.0°±1.0°となる。先端が角度90°を有するV状の砥石を利用したダイシングでは、砥石の精度、機械の加工精度によりθは±1.0°の幅が発生するためである。また、θの中心値を44.0°あるいは46.0°とするのは、光ファイバの光学軸に対して光線が垂直に入射した場合、反射戻り光が入射光と同じ経路に発生し、その戻り光がVCSEL表面で反射して再び光ファイバに結合されるのを防ぐ目的としている。このような戻り光の光ファイバへの結合効率が高い場合、光モジュールの特性を大きく劣化させることになる。特に、伝送速度が高い場合は、このような反射光を十分に小さくする必要がある。
【0025】
このようにして得た、柱状をなす本体の研磨された平滑なシリコン単結晶基板表面の一部を、入射光を所定方向へ光路変換させるための光反射面、または光半導体素子を設ける素子配設面とする。
【0026】
面発光素子3は、例えばVCSELを用いるが、実装基板表面に対し法線方向に発光している形状であれば適用可能である。
【0027】
光伝送体4は、光ファイバのほかに各種形状の光導波路体や基板1に直接形成した光導波路であってもよい。
【0028】
かくして、異方性エッチング技術を用いた傾斜面を光反射用の斜面として用いず、片面研磨されたウエハの一主面を光反射面または光半導体素子の素子配設面とすることができ、平坦性の優れた光反射面(または素子配設面)を備えた優れた光路変換体を提供できる。
【0029】
また、光路変換体2の基板1と接する面2bは、ダイシング加工の結果、斜面の表面の算術平均粗さRaは約1000Å〜5000Åとなり、研磨された基板表面の算術平均粗さRaに比べ10倍以上大きい。そのため、半田膜に接する面積が広く、接着力が大きくなり信頼性の高い光モジュールが作製可能となる。
【0030】
また、光路変換体はウエハプロセスによる一括作製が可能なため、非常に低コストに作製可能である。
【0031】
また、ウエハ面方位により入射光に対して所定角度で光路変換させる光路変換体を提供できるため、任意の傾斜角を形成でき、面発光素子からの出射光を効率的に入射光学系へ入射する光学系を提供できる。
【0032】
さらに、光路変換体として単結晶シリコンを用いることにより、光半導体素子をシリコン基板上に直接形成したり、光半導体素子としてシリコンとは異なる化合物半導体材料を用いる場合、別の化合物半導体基板上に複数の光半導体素子を形成し、複数の光路変換体が形成されたシリコン基板表面へ、一括して貼り合わせる接着が可能なため、実装コストを削減した優れた受光素子付き光路変換体が実現される。
【0033】
次に、本発明に係る実施形態について説明する。
【0034】
図4に斜視図にて示すように、光路変換体2の研磨された平滑なシリコン単結晶基板表面である傾斜面(素子配設面)2cに、フォトダイオード等の受光素子である光半導体素子5を配設し、さらに、この光半導体素子5の電気信号線路,電流供給線路である電極パターン7,8を形成している。ここで、5aは受光部、5bは電極パッドであり、電極パッド5bと電極パターン8とがボンディングワイヤ9で接続されている。
【0035】
また、光路変換体2において、その本体の下面2bと傾斜面2cとの間、すなわち、傾斜面2cとエッチング面である下面2bとの境界部において、オーミックコンタクト用の不純物拡散領域が形成されている。
【0036】
このようにして構成した光路変換体2を用い、図5に断面図にて示すように、光モジュールM2は、高低差のある低位置面及び高位置面を形成した基板1の低位置面1aに、面発光素子3及びこれからの出射光を反射させる光路変換体2を配設するとともに、前記高位置面に光路変換体2からの反射光を入射させる光伝送体4を配設している。なお、光モジュールM2において、光路変換体2に光半導体素子5を配設すること以外の構成は、図1に示す光モジュールM1とほぼ同様であり、同一構成要素については同一符号を付し説明を省略する。
【0037】
かくして、光モジュールM2によれば、光モジュールM1と同様な効果を奏する上に、傾斜面と光路変換体の下面との間に所定以上(例えば1×1018cm-3以上)の不純物濃度が拡散されているため、金属薄膜等で形成される受光素子の電気信号線路、電流供給線路を2面に形成する必要が無くなり、電気配線が光路変換体のエッジで断線することがない。
【0038】
以上のように、本発明の光路変換体によれば、断面が平行四辺形状であるために、従来のボンディング装置のコレットで操作でき、精度良く実装基板にマウントすることが可能な光路変換体を提供できる。
【0039】
また、本発明の光路変換体によれば、基板の面方位に強く依存する異方性エッチング技術の代わりにダイシング加工を用いることにより、基板の面方位や加工方向さらにエッチング条件を最適化することなく傾斜面を形成することができ、非常に低コストの光路変換体が作製可能である。
【0040】
また、本発明の光路変換体によれば、光路を変換させる反射面に相当する傾斜面の角度を44.0°±1.0°あるいは46.0°±1.0°とし、ファイバ表面での反射戻り光の影響を抑えることにより特性の優れた光モジュールを提供することができる。
【0041】
また、本発明の光路変換体及びその製造方法によれば、ウエハプロセスによる一括作製が可能なため、非常に低コストの光路変換体が作製可能である。
【0042】
また、本発明の光路変換体によれば、機械加工を用いて作製した傾斜面の粗さを利用して実装基板との接着力を増すことが可能となり、信頼性の向上した光モジュールを提供できる。
【0043】
また、本発明の光路変換体によれば、ウエハ面方位により入射光に対して所定角度で光路変換させるようにできるため、面発光素子からの出射光を効率的に入射光学系へ効率的に光接続できる光モジュールを提供できる。
【0044】
また、本発明の光路変換体において、素子配設面に受光素子が配設させることにより、面発光素子の出射光を精度よくモニタすることができるとともに、受光素子からの反射光を効率的に光伝送体へ入射させることが可能な優れた光モジュールを提供できる。
【0045】
さらに、本発明の光路変換体の下面と素子配設面との間に、オーミックコンタクト用の不純物拡散領域が形成されているので、金属薄膜で光半導体素子の電極パターンを光路変換体の2面に形成する必要が無くなり、光路変換体のエッジで金属薄膜の断線がない信頼性に優れた光モジュールを提供できる。
【0046】
【実施例】
次に、本発明の光モジュールをより具体化した参考例および実施例について説明する。
参考例
図1に示す光モジュールM1において、単結晶シリコンから成り高低差のある基板1の低位置面1aに光路変換体2及び面発光レーザー3が配設され、基板1の高位置面に形成された断面V字形状の搭載溝1bに光ファイバ4が配設されたものとした。
【0047】
ここで、基板1は特に材質がCZ法で作製されたコストが安いことに特徴のあるシリコンを用い、段差は異方性エッチングにより形成した。また、光ファイバ4の搭載溝1bは異方性エッチングにより形成した。また、面発光レーザー3はGaAs系材料を用いた。
【0048】
また、光路変換体2は以下のようにして作製した。
【0049】
まず、図2に示すように、MCPにより鏡面に研磨された表面10が(100)面を有するウエハWを用い、表裏面において、フォトリソグラフィー技術により、[110]方向へ沿って直線状にフォトレジスト11を等間隔に被着形成し、このラインをマーカーとして、先端が角度90°を有するV状の砥石を利用したダイシングによる機械加工を施した。これにより、図3に示すように、単結晶基板表面(100)面に対してθは44.0°の傾斜を有する断面V字状の溝12が形成された。
【0050】
この時、シリコン基板表面の面方位は(100)以外であっても、断面V字状の溝の方向が[110]方向以外であっても、研削面端部のチッピングも大きな差異は認められない。その為、特定の基板面方位および溝方向は限定されることはない。
【0051】
また、44.0°斜面を有する光路変換体用柱状体13を形成するように、表面10と裏面14でフォトレジスト11の形成領域をずらした。
【0052】
次に、光路変換体用柱状体13の上下面10,14に光反射膜を形成するべく金属薄膜を形成した。ここで、金属薄膜の最上層には反射率の高いAuを用いた。また、この最上層金属膜をウエハWのシリコン基体上に有効に形成させるために、最上層金属薄膜とシリコン基体の間に下地金属膜としてCr層を用い、シリコン基体表面にシリコン酸化膜層を形成した。金属薄膜の合計膜厚は約1μmとした。
【0053】
そして、図3に示すラインDに沿って、ダイシングにより切断を行い、個々の光路変換体となるように切り分けて作製できた。
【0054】
次に、こうして作製された光路反射体2は、図1に示すように、実装基板である基板1上の位置合わせマーカー(不図示)を利用して、正確に位置決めし実装固定した。この際の固定材にはAuSu系の半田を用いた。この時、基板1と接する面は表面粗さが斜面の表面の算術平均粗さRaは約2000Åであり、研磨された基板表面の算術平均粗さRaに比べ10倍以上大きいものであった。そのため、半田膜に接する面積が広く、接着力が大きくなり信頼性の高い光モジュールを作製することができた。
【0055】
また、面発光レーザー3を加圧・密着させ、実装する基板1に形成された薄膜半田(不図示)を溶解・冷却し、基板1上に実装固定した。次いで、光ファイバ4を搭載用溝1b上に搭載し、例えば樹脂、或いはガラス板等の平板基板で押圧固定する等の方法で実装固定した。
【0056】
かくして、この参考例で得た光モジュールM1によれば、光反斜面はミラー加工された{100}面を利用するので、高精度に平坦化された反斜面を実現できる。また、光路反射体はシリコンウエハの両面からV溝形状のダイシングを行うことにより、断面が略平行四辺形で、光路変換体の上面が平坦になることから、光路変換体は従来のダイボンディング技術による高精度の実装も可能となった。
【0057】
<実施例>
次に、図4及び図5に示した実施例について説明する。
【0058】
光路変換体2の作製は参考例と同様にして行った。
【0059】
そして、図4に示すように、光路変換体2の斜面2cに、光半導体素子5を以下のようにして配設した。
【0060】
また、図5に示す光モジュールM2は、光路変換体2に光半導体素子5を配設し、その配線等を施した以外については、既に説明した光モジュールM1と同様に構成した。
【0061】
この実施例では、光路変換体2の光反射面である傾斜面2cと下面2bの境界部分にB(ボロン)をイオン注入し、その不純物濃度を1×1018cm-3以上とした。なおこの時、Alなど半導体の不純物であればB以外でも良い。
【0062】
次いで、光半導体素子5用の電気信号線路7、電流供給線路8を金属薄膜で形成した。この金属薄膜は上層/下層で、Au/Crとし、その厚みは合計で約1μmとした。このとき、各線路の一端は不純物拡散領域20,21まで配置した。
【0063】
そして、別の半導体基板、例えばn+型GaAs基板上に厚み1.0μm、不純物濃度1×1018cm-3のn型GaAs層、厚み4.0μm、不純物濃度1×1015cm-3のi型GaAs層、厚み0.5μm、不純物濃度1×1015cm-3のi型GaAs層を形成し、最上層のp型GaAs層の窓部からp型不純物のZnを約0.5μm拡散し、メサエッチ後、p,n電極を形成し、フォトダイオードである光半導体素子5を作製した。
【0064】
その後、光ファイバへの反射する所望の光強度を得るために、上記の光半導体素子5上へ高屈折材料、低屈折材料を用いた誘電体多層膜を真空蒸着により作製しても良い。ここで、光半導体素子5は、GaAs以外のInGaAs/InPなどの化合物半導体材料でも、また、PIN型フォトダイオード以外のアバランシェ・フォト・ダイオードなど、フォトダイオードの機能を有するものであれば良い。
【0065】
そして、光半導体素子5を形成したGaAs基板表面とガラス基板をWAXで固定した後、光半導体素子形成領域を残し、GaAs基板をエッチング除去した。
【0066】
さらに、ガラス基板に固定された光半導体素子を、シリコン基板表面の反射面に位置合わせし、水素結合により接触させ、WAXを除去し、300〜400℃の熱処理を行い、光半導体素子5を水素結合だけでなく、酸素を介しさらに強固に接着させた。同時に、受光素子の電気信号線路7、電流供給線路8と光路変換体2の不純物拡散領域20,21もアニールされ、オーミック接合された。
【0067】
また、接着部材6を用いる場合は、AuSi系、AuSu系、PbSn系、In系の半田等を用いても、実装強度や信頼性に優れた実装が行える。
【0068】
このようにして得た受光素子付き光路変換体2は、実装基板1上の位置合わせマーカー(不図示)を用いて、正確に位置決めし実装した。その後、光半導体素子が搭載された光路変換体と実装基板に対して300〜400℃の熱処理を行い、実装基板上の電気信号線路、電流供給線路と受光素子の不純物拡散領域をアニールすることによりオーミック接合された。
【0069】
かくして、光モジュールM2によれば、光モジュールM1の作用・効果に加えて、以下のような効果を奏する。すなわち、受光素子はダイシング・カット前のシリコン基板表面に基板同士の貼り合わせで一括接着させるために、従来、個々の受光素子をエッチングされた斜面に実装するのに比べて、実装時間の削減・高精度の実装が実現できた。
【0070】
さらに、受光素子を他の基板で作製したが、シリコン基板表面に固相拡散やイオン注入などの技術を用いて、シリコンのフォトダイオードを形成しても、実装時間の削減・高精度の実装が実現できた。
【0071】
また、受光素子付き光路変換体の端部に存在する高濃度の不純物領域を介して、実装基板と受光素子付き光路変換体の電極が結合される。その結果、受光素子付き光路変換体のエッジ部に電極が配線されていないことから断線することがなくなる。
【0072】
【発明の効果】
本発明の光路変換体によれば、例えば断面が平行四辺形状とすることができ、従来のボンディング装置のコレットで操作でき、精度良く実装基板にマウントすることが可能な光路変換体を提供できる。
【0073】
また、基板の面方位に強く依存する異方性エッチング技術の代わりにダイシング加工で本体の設置面と該設置面の背面を形成することにより、基板の面方位や加工方向さらにエッチング条件を最適化することなく傾斜面を形成することができ、非常に低コストの光路変換体が作製可能である。また、その表面粗さを利用して、実装基板との接着力を増すことが可能となり、信頼性の向上した光モジュールを提供できる。
【0074】
また、本発明の光路変換体は、例えば単結晶のウエハ面方位により入射光に対して所定角度で光路変換させるように作製できるため、面発光素子からの出射光を効率的に入射光学系へ効率的に光接続できる光モジュールを提供できる。
【0075】
また、素子配設面に受光素子が配設させることにより、面発光素子の出射光を精度よくモニタすることができるとともに、受光素子からの反射光を効率的に光伝送体へ入射させることが可能な優れた光モジュールを提供できる。
【0076】
さらに、本発明の光路変換体の下面と素子配設面との間に、例えばオーミックコンタクト用の不純物拡散領域を形成することにより、金属薄膜で光半導体素子の電極パターンを光路変換体の2面に形成する必要が無くなり、光路変換体のエッジで金属薄膜の断線がない信頼性に優れた光モジュールを提供できる。
【図面の簡単な説明】
【図1】 本発明を説明するための光路変換体及び光モジュールを模式的に説明する断面図である。
【図2】 本発明に係る光路変換体の製造方法を模式的に説明するための平面図である。
【図3】 図2におけるA−A’線断面図である。
【図4】 本発明に係る光路変換体を模式的に説明する斜視図である。
【図5】 本発明に係る光モジュールを模式的に説明する斜視図である。
【符号の説明】
1:基板
1a:基板1の低位置面
1b:搭載用溝
2:光路変換体
2a、2b:光路変換体の上下面
2c:光路変換体の傾斜面
3:面発光素子
4:光伝送体
4a:光伝送体の先端
5:光半導体素子(受光素子、フォトダイオード)
5a:受光部
5b:電極パッド
6:接着面
7:電気信号線路
8:電流供給線路
9:ボンディングワイヤ
10、14:単結晶ウエハWの両主面
11:フォトレジスト
12:V溝
13:光路変換体用柱状部
20,21:不純物拡散領域
M1,M2:光モジュール
L1,L2:出射光
W:単結晶ウエハ
α、θ:傾斜角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical path changer used in the fields of optical communication and optical information communication, and an optical module using the same.
[0002]
BACKGROUND OF THE INVENTION
In a surface mount type optical transmission module, the light emitted from a surface emitting laser (Vertical Cavity Surface Emitting Laser (hereinafter also referred to as VCSEL)) excellent in operating current and temperature characteristics is changed by the reflecting surface of a substrate having a predetermined shape. It is possible to easily make an optical connection to an optical element such as an optical fiber. In addition, by mounting the light receiving element on the surface to be the reflecting surface of the base, it becomes easy to monitor the output of the VCSEL.
[0003]
By the way, when the above-mentioned optical path changer is formed of single crystal silicon suitably used as a substrate of an optical transmission module, for example, as disclosed in JP-A-11-112014, the reflection surface of the optical path changer is a substrate. By forming by anisotropic etching, a flat anti-slope can be produced with high accuracy.
[0004]
However, in order to produce a flat anti-inclined surface with high accuracy by anisotropic etching, it is necessary to select a substrate with few impurities, which limits the manufacturing method and increases the cost. That is, for example, a high-cost single crystal silicon substrate manufactured by the FZ (floating zone) method is selected. This is because, for example, a silicon substrate manufactured by a relatively inexpensive method such as the CZ (Chocoral Ski) method is likely to have a defect in the crystal because impurities are mixed in the manufacturing process. Such defects form pits on the etched surface during anisotropic etching, and a flat anti-slope cannot be produced.
[0005]
Even when a single crystal silicon substrate manufactured by the FZ method is used, the etching conditions must be optimized in order to produce a flat anti-slope with high accuracy. Such optimization is not easy. Absent.
[0006]
In addition, when the anisotropic etching technique is used, it is necessary to limit the surface orientation and off-angle of a substrate different from a commonly used single crystal silicon substrate, which leads to high cost.
[0007]
In addition, in order to form the reflection surface of the optical path changer, anisotropic etching is performed for a long time, and the height of the optical path changer is accurately determined unless it is a wide inclined surface formed in a deep groove, that is, a reflection surface. If not designed and manufactured well, the function of the optical path changer will be insufficient.
[0008]
When an optical semiconductor element such as a light receiving element is mounted using the optical path changer as described above, it is mounted on a surface formed by anisotropic etching, and this surface is inclined with respect to the substrate surface. Therefore, there arises a problem that it is difficult to mount a large number of optical semiconductor elements with high accuracy.
[0009]
In addition, when the optical path changer is mounted on the mounting substrate, the optical path changer is pressed and adhered when mounted on the mounting substrate. Therefore, there is no electrode wiring connected to the light receiving element at the edge of the optical path changer. There was a problem that there was a risk of disconnection.
[0010]
Also, since an optical path changer that is larger than the subcarrier of LD (laser diode) or PD (photodiode) is mounted on the mounting substrate, the adhesive force with the mounting substrate becomes insufficient under conventional die bonding conditions, and the optical path conversion There was a problem that the body might be separated.
[0011]
Furthermore, for example, an optical path changer with a protruding upper surface disclosed in Japanese Patent Application Laid-Open No. 11-121863 has poor operability in a collet that adsorbs a flat surface and operates the main body, and pressure and adhesion to the mounting substrate are not good. Have difficulty.
[0012]
Accordingly, the present invention provides a highly reliable optical module that solves the above-described problems, can provide an optical path changer easily and quickly, and can make optical connection between a surface light emitting element and an optical transmitter highly efficient. The purpose is to do.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an optical path changer of the present invention is an optical path changer for optical communication for reflecting light emitted from a surface light emitting element, and includes an installation surface of a main body and a back surface of the installation surface. It is formed substantially in parallel, and one side surface of the main body is an element arrangement surface that forms an angle of 133 ° to 137 ° with the installation surface, and light emitted from the surface light emitting element is received on the element arrangement surface. And a light receiving element that reflects a part of the emitted light is disposed, and an impurity diffusion region for ohmic contact is formed between the element disposition surface and the installation surface of the main body. It is characterized by. In particular, the light reflecting surface is a polished smooth silicon single crystal surface.
[0014]
In particular, the upper and lower surfaces of the main body which forms the columnar (back of the installation surface and the installation surface of the body) is formed by a dicing process, a surface roughness Ra (arithmetic average roughness) is ing a 1000 Å to 5000 Å.
[0015]
In addition, the method for manufacturing an optical path changer of the present invention includes a step of forming a columnar portion having a parallelogram shape in cross section by forming a plurality of V-grooves alternately positioned on both main surfaces of a single crystal wafer. A part of the polished smooth single crystal substrate surface of the columnar body is used as a light reflecting surface or an element arrangement surface for providing an optical semiconductor element for changing the path of incident light in a predetermined direction.
[0016]
In the optical module of the present invention, a surface emitting element and an optical path changer for reflecting the light emitted from the surface emitting element are disposed on a low position surface having a height difference and a low position surface of the substrate on which the high position surface is formed. In addition, an optical transmission body for allowing the reflected light from the optical path changing body to be incident on the high position surface is provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment according to the present invention will be described in detail based on the drawings schematically shown.
[0019]
FIG. 1 is a sectional view of an optical module M1 for explaining the present invention. The optical module M1 includes a surface light emitting element 3 and an optical path changer 2 that reflects the emitted light L1 of the surface light emitting element 3 on a low position surface 1a having a height difference and a low position surface 1a of the substrate 1 on which the high position surface is formed. , And an optical fiber for allowing the reflected light L2 from the optical path changer 2 to be incident on the tip 4a into the mounting groove 1b formed in a high position plane and having a V-shaped cross section perpendicular to the optical axis, and the like. An optical transmission body 4 composed of the optical waveguide body is provided.
[0020]
Here, the optical path changer 2 has a columnar shape with two upper and lower main surfaces parallel to each other. In other words, the installation surface (lower surface) 2b of the main body and the back surface (upper surface) 2a of the installation surface are formed substantially parallel to each other, and one side surface of the main body is also referred to as a light reflecting surface (hereinafter also referred to as an inclined surface). ) 2c, and the angle α between the inclined surface and the lower surface 2b is 133 ° to 137 ° . The upper and lower surfaces 2a of this body, 2b are formed by dicing process. Further, an optical semiconductor element such as a light reflecting surface or a light receiving element, on which the inclined surface 2c, which is a smooth surface of the silicon single crystal substrate whose side surface is polished, changes the optical path of incident light L1 from the surface light emitting element 3 in a predetermined direction. It is used as an element disposition surface for disposing.
[0021]
In this optical path changer 2, in particular, the main body is made of single crystal silicon, and the inclined surface 2c is a surface (α = 133 ° to 137 °) inclined by 43 ° to 47 ° from the surface of the single crystal substrate. 3 is incident on the optical transmission body 4 disposed horizontally by changing the optical path at an angle of 86 ° to 94 ° on the inclined surface 2c of the optical path conversion body 2 (substantially in the horizontal direction). Can be optically connected efficiently. In this way, in consideration of the aperture ratio of the optical fiber, the light reflecting surface is preferably formed so as to change the optical path at an angle of 90 ± 4 ° with respect to the incident light.
[0022]
The optical path changer 2 is manufactured as follows. First, as shown in a plan view in FIG. 2 and a cross-sectional view along the line AA ′ in FIG. 2, both main surfaces 10 and 14 of the single crystal wafer W were formed with a predetermined photoresist 11. By using a line as a marker and machining by dicing using a V-shaped grindstone having a tip angle of 90 °, a plurality of V grooves 12 alternately positioned on both main surfaces 10 and 14 are formed in a predetermined direction. To form. Thereby, the columnar part 13 which is formed on both sides of the V-shaped groove 12 and has a parallelogram shape in cross section is formed.
[0023]
Since the inclined surface 2c of the optical path changer 2 is a light reflecting surface or a surface on which an optical semiconductor element is arranged with high accuracy, one main surface 10 of the single crystal wafer is mirror-finished by MCP (mechanochemical polishing). What was grind | polished to (arithmetic mean roughness Ra is 100 Å or less) is used.
[0024]
Next, the individual columnar portions 14 are separated by dicing along lines D shown on both sides of the columnar portion 14. In FIG. 3, θ is 44.0 ° ± 1.0 ° or 46.0 ° ± 1.0 °. This is because, in dicing using a V-shaped grindstone having a 90 ° tip, θ has a width of ± 1.0 ° depending on the accuracy of the grindstone and the processing accuracy of the machine. Also, the central value of θ is 44.0 ° or 46.0 ° because when the light beam is incident perpendicular to the optical axis of the optical fiber, the reflected return light is generated in the same path as the incident light, The purpose is to prevent the return light from being reflected on the VCSEL surface and coupled to the optical fiber again. When the coupling efficiency of such return light to the optical fiber is high, the characteristics of the optical module are greatly deteriorated. In particular, when the transmission speed is high, it is necessary to sufficiently reduce such reflected light.
[0025]
A part of the polished smooth silicon single crystal substrate surface of the columnar body obtained in this way is a light reflecting surface for changing the optical path of incident light in a predetermined direction, or an element arrangement for providing an optical semiconductor element. It will be the installation surface.
[0026]
For example, a VCSEL is used as the surface light emitting element 3, but any shape that emits light in the normal direction to the surface of the mounting substrate is applicable.
[0027]
In addition to the optical fiber, the optical transmission body 4 may be an optical waveguide body of various shapes or an optical waveguide formed directly on the substrate 1.
[0028]
Thus, an inclined surface using anisotropic etching technology is not used as an inclined surface for light reflection, and one main surface of the wafer polished on one side can be used as a light reflecting surface or an element arrangement surface of an optical semiconductor element. It is possible to provide an excellent optical path changer having a light reflecting surface (or element arrangement surface) with excellent flatness.
[0029]
Further, as a result of dicing, the surface 2b in contact with the substrate 1 of the optical path changer 2 has an arithmetic average roughness Ra of the surface of the inclined surface of about 1000 to 5000 mm, which is 10 compared with the arithmetic average roughness Ra of the polished substrate surface. More than double. As a result, the area in contact with the solder film is wide, the adhesive force is increased, and a highly reliable optical module can be manufactured.
[0030]
Further, the optical path changer can be manufactured at a very low cost because it can be collectively manufactured by a wafer process.
[0031]
Also, since an optical path changer that changes the optical path at a predetermined angle with respect to the incident light can be provided depending on the wafer surface orientation, an arbitrary inclination angle can be formed, and the outgoing light from the surface light emitting element is efficiently incident on the incident optical system. An optical system can be provided.
[0032]
Furthermore, by using single crystal silicon as the optical path changer, when an optical semiconductor element is formed directly on a silicon substrate, or when a compound semiconductor material different from silicon is used as the optical semiconductor element, a plurality of semiconductor elements are formed on another compound semiconductor substrate. Can be bonded to the silicon substrate surface on which a plurality of optical path changers are formed at once, so that an excellent optical path changer with a light receiving element can be realized with reduced mounting costs. .
[0033]
Next, a description will engage Ru implementation form the present invention.
[0034]
As shown in a perspective view in FIG. 4, an optical semiconductor element that is a light receiving element such as a photodiode is provided on an inclined surface (element arrangement surface) 2 c that is a polished smooth silicon single crystal substrate surface of the optical path changer 2. 5 and electrode patterns 7 and 8 which are electric signal lines and current supply lines of the optical semiconductor element 5 are formed. Here, 5 a is a light receiving portion, 5 b is an electrode pad, and the electrode pad 5 b and the electrode pattern 8 are connected by a bonding wire 9.
[0035]
Further, in the optical path changer 2, an impurity diffusion region for ohmic contact is formed between the lower surface 2b of the main body and the inclined surface 2c, that is, at the boundary between the inclined surface 2c and the lower surface 2b that is the etching surface. Yes.
[0036]
Using the optical path changer 2 configured as described above, as shown in a cross-sectional view in FIG. 5, the optical module M2 includes a low position surface 1a of the substrate 1 on which a low position surface and a high position surface having a height difference are formed. In addition, a surface light emitting element 3 and an optical path changer 2 that reflects light emitted from the surface light emitting element 3 are disposed, and an optical transmission member 4 that causes reflected light from the optical path changer 2 to enter the high position surface. . The optical module M2 has substantially the same configuration as that of the optical module M1 shown in FIG. 1 except that the optical semiconductor element 5 is disposed in the optical path changer 2, and the same components are denoted by the same reference numerals and described. Is omitted.
[0037]
Thus, according to the optical module M2, the same effect as that of the optical module M1 is achieved, and an impurity concentration of a predetermined value or more (for example, 1 × 10 18 cm −3 or more) is provided between the inclined surface and the lower surface of the optical path changer. Since it is diffused, it is not necessary to form the electric signal line and the current supply line of the light receiving element formed of a metal thin film or the like on two surfaces, and the electric wiring is not disconnected at the edge of the optical path changer.
[0038]
As described above, according to the optical path changer of the present invention, since the cross section is a parallelogram shape, an optical path changer that can be operated with a collet of a conventional bonding apparatus and can be mounted on a mounting substrate with high accuracy. Can be provided.
[0039]
Further, according to the optical path changer of the present invention, the dicing process is used instead of the anisotropic etching technique that strongly depends on the plane direction of the substrate, thereby optimizing the plane direction and the processing direction of the substrate and the etching conditions. An inclined surface can be formed without any problem, and a very low cost optical path changer can be produced.
[0040]
Further, according to the optical path changer of the present invention, the angle of the inclined surface corresponding to the reflection surface for converting the optical path is set to 44.0 ° ± 1.0 ° or 46.0 ° ± 1.0 °, By suppressing the influence of the reflected return light, an optical module having excellent characteristics can be provided.
[0041]
Further, according to the optical path changer and the manufacturing method thereof according to the present invention, since it is possible to make a batch process by a wafer process, it is possible to produce a very low cost optical path changer.
[0042]
In addition, according to the optical path changer of the present invention, it is possible to increase the adhesive force with the mounting substrate by using the roughness of the inclined surface produced by machining, thereby providing an optical module with improved reliability. it can.
[0043]
Further, according to the optical path changer of the present invention, the light path can be changed at a predetermined angle with respect to the incident light depending on the wafer surface orientation, so that the light emitted from the surface light emitting element can be efficiently transferred to the incident optical system. An optical module capable of optical connection can be provided.
[0044]
Further, in the optical path changer of the present invention, the light receiving element is disposed on the element disposition surface, so that the emitted light of the surface light emitting element can be accurately monitored and the reflected light from the light receiving element can be efficiently reflected. An excellent optical module that can be incident on the optical transmission body can be provided.
[0045]
Furthermore, since an impurity diffusion region for ohmic contact is formed between the lower surface of the optical path changer of the present invention and the element disposition surface, the electrode pattern of the optical semiconductor element is formed on the two surfaces of the optical path changer with a metal thin film. Therefore, it is possible to provide an optical module with excellent reliability in which there is no disconnection of the metal thin film at the edge of the optical path changer.
[0046]
【Example】
Next, reference examples and examples that further embody the optical module of the present invention will be described.
< Reference example >
In the optical module M1 shown in FIG. 1, the optical path changer 2 and the surface emitting laser 3 are disposed on the low position surface 1a of the substrate 1 made of single crystal silicon and having a height difference, and formed on the high position surface of the substrate 1. It is assumed that the optical fiber 4 is disposed in the mounting groove 1b having a V-shaped cross section.
[0047]
Here, the substrate 1 is made of silicon, which is particularly characterized in that the material is manufactured by the CZ method and the cost is low, and the step is formed by anisotropic etching. The mounting groove 1b of the optical fiber 4 was formed by anisotropic etching. The surface emitting laser 3 was made of a GaAs material.
[0048]
Moreover, the optical path changer 2 was produced as follows.
[0049]
First, as shown in FIG. 2, a wafer W having a (100) surface polished to a mirror surface by MCP is used, and the front and back surfaces are photolithographically linearly along the [110] direction by photolithography. Resist 11 was deposited and formed at equal intervals, and machining was performed by dicing using a V-shaped grindstone having a tip at an angle of 90 ° using this line as a marker. As a result, as shown in FIG. 3, a groove 12 having a V-shaped cross section having an inclination of 44.0 ° with respect to the single crystal substrate surface (100) plane was formed.
[0050]
At this time, even when the surface orientation of the silicon substrate surface is other than (100), and the direction of the groove having a V-shaped cross section is other than the [110] direction, the chipping at the edge of the grinding surface is greatly different. Absent. Therefore, the specific substrate surface orientation and groove direction are not limited.
[0051]
In addition, the formation region of the photoresist 11 was shifted between the front surface 10 and the back surface 14 so as to form the optical path changer columnar body 13 having a 44.0 ° slope.
[0052]
Next, a metal thin film was formed so as to form light reflecting films on the upper and lower surfaces 10 and 14 of the optical path changer columnar body 13. Here, Au having a high reflectance was used for the uppermost layer of the metal thin film. In order to effectively form the uppermost metal film on the silicon substrate of the wafer W, a Cr layer is used as a base metal film between the uppermost metal thin film and the silicon substrate, and a silicon oxide film layer is formed on the silicon substrate surface. Formed. The total film thickness of the metal thin film was about 1 μm.
[0053]
And it cut | disconnected by dicing along the line D shown in FIG. 3, and it cut and produced so that it might become each optical path change body.
[0054]
Next, as shown in FIG. 1, the optical path reflector 2 produced in this way was accurately positioned and mounted and fixed using an alignment marker (not shown) on the substrate 1 as a mounting substrate. In this case, AuSu solder was used as a fixing material. At this time, the surface in contact with the substrate 1 had a surface roughness of about 2000 mm, and the arithmetic average roughness Ra of the surface of the slope was about 10 times larger than the arithmetic average roughness Ra of the polished substrate surface. For this reason, an optical module having a large area in contact with the solder film, a large adhesive force, and high reliability can be manufactured.
[0055]
Further, the surface emitting laser 3 was pressed and adhered, and a thin film solder (not shown) formed on the substrate 1 to be mounted was melted and cooled, and mounted and fixed on the substrate 1. Next, the optical fiber 4 was mounted on the mounting groove 1b and mounted and fixed by a method such as pressing and fixing with a flat substrate such as a resin or a glass plate.
[0056]
Thus, according to the optical module M1 obtained in this reference example, the optically inclined surface uses the {100} plane mirrored, so that an anti-inclined surface flattened with high accuracy can be realized. In addition, the optical path reflector is formed by performing V-groove dicing from both sides of the silicon wafer so that the cross section is substantially parallelogram and the top surface of the optical path converter is flattened. High-accuracy mounting is also possible.
[0057]
<Example>
Next, a description will be given real施例shown in FIGS.
[0058]
The optical path changer 2 was produced in the same manner as in the reference example .
[0059]
And as shown in FIG. 4, the optical semiconductor element 5 was arrange | positioned on the slope 2c of the optical path changer 2 as follows.
[0060]
Further, the optical module M2 shown in FIG. 5 is configured in the same manner as the optical module M1 already described, except that the optical semiconductor element 5 is disposed on the optical path changer 2 and wiring is provided.
[0061]
In this embodiment, B (boron) is ion-implanted into the boundary portion between the inclined surface 2c and the lower surface 2b, which is the light reflecting surface of the optical path changer 2, and the impurity concentration is set to 1 × 10 18 cm −3 or more. At this time, other than B, as long as it is a semiconductor impurity such as Al.
[0062]
Next, the electric signal line 7 and the current supply line 8 for the optical semiconductor element 5 were formed of a metal thin film. This metal thin film was an upper layer / lower layer, made of Au / Cr, and the total thickness was about 1 μm. At this time, one end of each line was disposed up to the impurity diffusion regions 20 and 21.
[0063]
Then, on another semiconductor substrate, for example, an n + -type GaAs substrate, an n-type GaAs layer having a thickness of 1.0 μm and an impurity concentration of 1 × 10 18 cm −3 , a thickness of 4.0 μm and an impurity concentration of 1 × 10 15 cm −3 . An i-type GaAs layer having a thickness of 0.5 μm and an impurity concentration of 1 × 10 15 cm −3 is formed, and p-type impurity Zn is diffused by about 0.5 μm from the window of the uppermost p-type GaAs layer. After mesa etching, p and n electrodes were formed to produce an optical semiconductor element 5 that is a photodiode.
[0064]
Thereafter, in order to obtain a desired light intensity reflected to the optical fiber, a dielectric multilayer film using a high refractive material and a low refractive material may be formed on the optical semiconductor element 5 by vacuum deposition. Here, the optical semiconductor element 5 may be made of a compound semiconductor material such as InGaAs / InP other than GaAs, or may have a photodiode function such as an avalanche photodiode other than a PIN photodiode.
[0065]
Then, after fixing the surface of the GaAs substrate on which the optical semiconductor element 5 was formed and the glass substrate by WAX, the optical semiconductor element formation region was left and the GaAs substrate was removed by etching.
[0066]
Further, the optical semiconductor element fixed to the glass substrate is aligned with the reflective surface of the silicon substrate surface, brought into contact with hydrogen bonds, WAX is removed, heat treatment is performed at 300 to 400 ° C., and the optical semiconductor element 5 is hydrogenated. not only binds, further strongly adhered through an oxygen. At the same time, the electric signal line 7 of the light receiving element, the current supply line 8 and the impurity diffusion regions 20 and 21 of the optical path changer 2 were also annealed and ohmic joined.
[0067]
Further, when the adhesive member 6 is used, mounting with excellent mounting strength and reliability can be performed even when using AuSi, AuSu, PbSn, or In solder.
[0068]
The optical path changer 2 with the light receiving element thus obtained was accurately positioned and mounted using an alignment marker (not shown) on the mounting substrate 1. Thereafter, heat treatment is performed at 300 to 400 ° C. on the optical path changer and the mounting substrate on which the optical semiconductor element is mounted, and the electric signal line, the current supply line, and the impurity diffusion region of the light receiving element on the mounting substrate are annealed. Ohmic joined.
[0069]
Thus, according to the optical module M2, in addition to the functions and effects of the optical module M1, the following effects can be obtained. In other words, since the light receiving elements are collectively bonded to the surface of the silicon substrate before dicing and cutting, the mounting time is reduced compared to the conventional mounting of each light receiving element on an etched slope. High-precision mounting was realized.
[0070]
In addition, the light-receiving element was fabricated on another substrate, but even if silicon photodiodes were formed on the silicon substrate surface using techniques such as solid phase diffusion and ion implantation, mounting time was reduced and high-precision mounting was achieved. Realized.
[0071]
In addition, the mounting substrate and the electrode of the optical path changer with the light receiving element are coupled to each other through a high concentration impurity region present at the end of the optical path changer with the light receiving element. As a result, since the electrode is not wired at the edge portion of the optical path changer with the light receiving element, disconnection does not occur.
[0072]
【The invention's effect】
According to the optical path changer of the present invention, for example, it is possible to provide an optical path changer that can be formed into a parallelogram shape in cross section, can be operated with a collet of a conventional bonding apparatus, and can be mounted on a mounting substrate with high accuracy.
[0073]
Also, instead of anisotropic etching technology that strongly depends on the substrate orientation, dicing is used to form the main body installation surface and the back surface of the installation surface, thereby optimizing the substrate surface orientation, processing direction, and etching conditions. Therefore, the inclined surface can be formed without making an optical path changer at a very low cost. In addition, the surface roughness can be used to increase the adhesive force with the mounting substrate, and an optical module with improved reliability can be provided.
[0074]
In addition, since the optical path changer of the present invention can be fabricated so as to change the optical path at a predetermined angle with respect to the incident light by the single crystal wafer surface orientation, for example, the light emitted from the surface light emitting element is efficiently transferred to the incident optical system. An optical module that can be optically connected efficiently can be provided.
[0075]
In addition, by providing the light receiving element on the element mounting surface, it is possible to monitor the emitted light of the surface light emitting element with high accuracy and to efficiently cause the reflected light from the light receiving element to enter the optical transmission body. An excellent optical module that can be provided can be provided.
[0076]
Furthermore, by forming, for example, an impurity diffusion region for ohmic contact between the lower surface of the optical path changer of the present invention and the element disposition surface, the electrode pattern of the optical semiconductor element is formed on the two surfaces of the optical path changer with a metal thin film. Therefore, it is possible to provide an optical module with excellent reliability in which there is no disconnection of the metal thin film at the edge of the optical path changer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically illustrating an optical path changer and an optical module for explaining the present invention.
FIG. 2 is a plan view for schematically explaining the method of manufacturing the optical path changer according to the present invention.
FIG. 3 is a cross-sectional view taken along line AA ′ in FIG. 2;
The engagement Ru optical path converter to the present invention; FIG is a perspective view illustrating schematically.
The optical module engaging Ru in the present invention; FIG is a perspective view illustrating schematically.
[Explanation of symbols]
1: Substrate 1a: Low-position surface 1b of substrate 1: Mounting groove 2: Optical path changer 2a, 2b: Upper and lower surfaces 2c of the optical path changer 3: Inclined surface of the optical path changer 3: Surface light emitting element 4: Optical transmitter 4a : Tip 5 of optical transmission body 5: optical semiconductor element (light receiving element, photodiode)
5a: light receiving portion 5b: electrode pad 6: adhesive surface 7: electric signal line 8: current supply line 9: bonding wire 10, 14: both main surfaces 11 of single crystal wafer W 11: photoresist 12: V groove 13: optical path conversion Body columnar portions 20, 21: Impurity diffusion regions M1, M2: optical modules L1, L2: outgoing light W: single crystal wafer α, θ: inclination angle

Claims (3)

面発光素子からの出射光を反射させるための光通信用の光路変換体であって、本体の設置面と該設置面の背面を略平行に形成して成るとともに、前記本体の一側面を前記設置面と133°〜137°の角度を成す素子配設面とし、前記素子配設面に前記面発光素子から出射光を受光してモニタするとともに、該出射光の一部を反射させる受光素子が配設され、前記素子配設面と前記本体の設置面との間に、オーミックコンタクト用の不純物拡散領域が形成されていることを特徴とする光路変換体。An optical path converter for optical communication for reflecting light emitted from the surface emitting element, together with formed by substantially parallel with the back of the installation surface and the installation surface of the main body, the one side surface of said body A light receiving element having an element disposition surface that forms an angle of 133 ° to 137 ° with the installation surface, and receives and monitors the emitted light from the surface light emitting element on the element disposition surface and reflects a part of the emitted light. Is provided, and an impurity diffusion region for ohmic contact is formed between the element arrangement surface and the installation surface of the main body. 前記本体の設置面と該設置面の背面をダイシング加工により形成したことを特徴とする請求項1に記載の光路変換体。  The optical path changer according to claim 1, wherein the installation surface of the main body and the back surface of the installation surface are formed by dicing. 高低差のある高位置面及び低位置面を形成した基板の低位置面に、面発光素子及び該面発光素子の出射光を反射させる請求項1または2に記載の光路変換体を配設するとともに、前記高位置面に前記光路変換体からの反射光を入射させる光伝送体を配設したことを特徴とする光モジュール。  3. The surface light emitting element and the optical path changer according to claim 1 for reflecting the light emitted from the surface light emitting element on the low position surface of the substrate on which the high position surface and the low position surface having a height difference are formed. In addition, an optical module is provided, wherein an optical transmission body for allowing the reflected light from the optical path changing body to enter the high position surface.
JP2002092553A 2002-03-28 2002-03-28 Optical path changer and optical module using the same Expired - Fee Related JP4057828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092553A JP4057828B2 (en) 2002-03-28 2002-03-28 Optical path changer and optical module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092553A JP4057828B2 (en) 2002-03-28 2002-03-28 Optical path changer and optical module using the same

Publications (2)

Publication Number Publication Date
JP2003298166A JP2003298166A (en) 2003-10-17
JP4057828B2 true JP4057828B2 (en) 2008-03-05

Family

ID=29386671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092553A Expired - Fee Related JP4057828B2 (en) 2002-03-28 2002-03-28 Optical path changer and optical module using the same

Country Status (1)

Country Link
JP (1) JP4057828B2 (en)

Also Published As

Publication number Publication date
JP2003298166A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
US5875205A (en) Optoelectronic component and method for the manufacture thereof
US7653109B2 (en) Multi-channel laser pump source for optical amplifiers
US7148465B2 (en) Semiconductor photodetector with internal reflector
US5883988A (en) Optical module including a photoreception device
US5218223A (en) Opto-electronic semiconductor component
JP3058077B2 (en) Semiconductor light emitting and receiving device
KR100211985B1 (en) Micro mirror for hybrid optical integration circuit and manufacturing method thereof, micro mirror-optical detector assembly and hybrid optical integrating circuit assembly for optical receiving
US6028708A (en) Method for producing a beam splitter molded part and optoelectronic module using the beam splitter molded part
US6711186B2 (en) Optical module
JP2002031747A (en) Planar optical element mounted body, its manufacturing method, and device using it
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JP3764671B2 (en) Optical path changer, method for manufacturing the same, and optical module using the same
US20100061418A1 (en) Mounting surface-emitting devices
JP4057828B2 (en) Optical path changer and optical module using the same
US6392283B1 (en) Photodetecting device and method of manufacturing the same
JP3801922B2 (en) Optical module
JP4031806B2 (en) Optical module
JP2001007353A (en) Optical transmitter-receiver module and manufacture thereof
TWI782350B (en) Optical mode converter and method for manufacturing the same
FR3091932A1 (en) Photonic system and its manufacturing process
JP2009192816A (en) Bidirectional optical transmission/reception module and photodetector used for the same
KR100327106B1 (en) Semiconductor laser module
JP2003279804A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees