JP4055838B2 - Improved foundation ground structure of existing structure - Google Patents

Improved foundation ground structure of existing structure Download PDF

Info

Publication number
JP4055838B2
JP4055838B2 JP34163399A JP34163399A JP4055838B2 JP 4055838 B2 JP4055838 B2 JP 4055838B2 JP 34163399 A JP34163399 A JP 34163399A JP 34163399 A JP34163399 A JP 34163399A JP 4055838 B2 JP4055838 B2 JP 4055838B2
Authority
JP
Japan
Prior art keywords
ground
improved
existing
storage tank
cylindrical storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34163399A
Other languages
Japanese (ja)
Other versions
JP2001159128A (en
Inventor
宏二 関口
邦彦 恩田
淳 松尾
仁 三浦
康年 大野
丈夫 那須
徹 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP34163399A priority Critical patent/JP4055838B2/en
Publication of JP2001159128A publication Critical patent/JP2001159128A/en
Application granted granted Critical
Publication of JP4055838B2 publication Critical patent/JP4055838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地震時に液状化の可能性のある砂質等の軟弱地盤上に設置されている既設構造物の基礎地盤構造に関する。
【0002】
【従来の技術】
既設構造物、例えば石油タンク等の既設円筒貯槽の基礎地盤については古くから地震時の液状化対策が種々検討されている。そして、液状化対策のための基礎地盤改良工法として、例えば、地下水位低下工法、ドレーン系の工法、鋼製リングによる工法等がある。
【0003】
地下水位低下工法とは、既設円筒貯槽の周囲を矢板等で囲み、内部の地下水をポンプによって汲み上げることにより地下水位を下げることにより、液状化が発生するのを防止しようとするものである。
しかしながら、地下水位低下工法によって改良された基礎地盤構造は地下水位低下のために全体の不等沈下が生じ易いという問題がある。また、いつ発生するか分からない地震のために常にポンプなどを稼働させておく必要があり、維持管理費用が高いという問題もある。
【0004】
また、ドレーン系の工法とは、既設円筒貯槽の周囲地盤に多数のパイプを挿入あるいは砕石の柱を造成して、地震時に既設円筒貯槽の下方地盤に生ずる圧力水を排出することによって、不等沈下を防止しようとするものである。
しかし、ドレーン系の工法では、施工機が比較的大きいため、石油タンクのようにタンク周辺に配管が密集するような場合には施工機を配置することができず、円筒貯槽に付随する既設配管の撤去が必要ともなる。したがって、既設円筒貯槽の密集した条件には適用できないという問題がある。
【0005】
また、鋼製リングによる工法とは、既設円筒貯槽を囲むように鋼矢板を打ち込み、地盤の側方への滑りを防止すると共に液状化も抑制するというものである。
しかし、この工法ではドレーン工法の場合と同様に、円筒貯槽に付随する既設配管の撤去が必要となること、大型タンクの場合には鋼矢板の継ぎ手強度が不足すること、対策効果が検証されていないこと等の種々の問題がある。
【0006】
以上例に挙げた従来工法はいずれも既設円筒貯槽に付属機器を用いて液状化を防ごうというものであり、共通する問題として付属機器の設置スペースが必要であり、円筒貯槽が密集するような箇所で実施できないという大きな問題がある。
【0007】
そこで、提案されたものが注入固化による地盤改良工法であり、図5はこの工法によって地盤改良した地盤の側面断面を示している。図において、1は既設円筒貯槽、2は砂質地盤、3は地下水位、4は改良地盤である。
この工法は、既設円筒貯槽1の下方の液状化槽(砂質地盤)2に複数のパイプを貫入し、このパイプを通してセメント系の固化材料を注入するものである。そして、注入された固化材料は、土粒子間隙の水と置き換わって固化し、既設タンク1の下方の基礎地盤全域にわたる改良地盤4を形成し、地盤の安定化を図るというものである。
【0008】
しかしながら、上述した注入固化による地盤改良工法による基礎地盤構造は、以下の問題がある。
注入固化による地盤改良工法では、一般に下記(1)式によって算出される改良地盤直径が必要である。
改良地盤直径=タンク直径+2×(2/3)×液状化層深さ … (1)
したがって、一般的な液状化槽の深さを考慮すると、改良地盤直径は、(1)式から少なくともタンク直径+10m以上となり、改良地盤の体積が大きく、改良に長時間を要すると共にコストが高価になる。
【0009】
そこで、このような問題を解決すべく提案されたのが、例えば特開平8−128054号公報に開示された部分地盤改良工法による基礎地盤構造である。
この部分地盤改良工法による基礎地盤構造は、図6に示すように、既設円筒貯槽1(公報では既設構造物)の底部外周部に構築された基礎部5の直下部分のみを非液状化層9に至るまで固化材によって円筒状の固化柱状体7を構築し、この固化柱状体7によって既設円筒貯槽1を支持するというものである。
そして、上記の部分地盤改良工法による基礎地盤構造にあっては、既設円筒貯槽1の接地部の一部の下方のみを固化して地盤改良すればよいので、従来のように既設円筒貯槽1の下方全域を地盤改良する必要がなく、材料費や施工時間を削減できるとしている。
【0010】
【発明が解決しようとする課題】
しかしながら、部分地盤改良工法による基礎地盤構造では、円筒状に構築された固化柱状体7の内側は液状化の可能性のある未改良部が残されるため、その部分が液状化時に沈下し、沈下しない若しくは沈下の小さい改良部との間で不等沈下が生じてしまう。そのため、既設円筒貯槽1の底板が沈下に追従していびつな変形を生じ、既設円筒貯槽1に有害な影響を与える可能性が大きい。
【0011】
また、既設円筒貯槽1直下の未改良部に液状化が起こった場合には過剰間隙水圧により円筒状に配置された固化柱状体7にフープ張力が発生する。そして、一般に固化材料により改良された固化柱状体7の引張強度は極めて小さいため、このフープ張力に対して引張破壊を生じてしまう。固化柱状体7が破壊すると、破壊された部分に局部滑りが生じ、既設円筒貯槽1が傾いてしまう可能性が大きい。
【0012】
このように、特開平8−128054号公報に開示された部分地盤改良工法には、コスト面及び施工時間の面でのメリットは認められるものの、本来の目的である地震時において既設円筒貯槽を安定的に支持するという点で不安を残すものであった。
【0013】
本発明は上記のような問題点を解決するためになされたもので、コスト及び作業時間を削減できると共に、地震時においても既設構造物を安定的に支持できる既設構造物の改良基礎地盤構造を得ることを目的としている。
【0014】
【課題を解決するための手段】
本発明に係る既設構造物の改良基礎地盤構造は、液状化しやすい砂質の軟弱地盤上に設置されている既設構造物の下方に、周辺地盤よりも液状化強度が高い筒状の改良地盤を、平面的に見たときに、前記既設構造物の下面外周縁部が、該改良地盤の筒の厚み部分の中に配置されるように構築する基礎地盤構造において、前記改良地盤を、非アルカリ珪酸ソーダ溶液を前記砂質の軟弱地盤に注入して形成するとともに、前記改良地盤の上端の位置を地下水位と同じ位置にして改良地盤を地下水位の下方に構築し、改良地盤の上端と前記砂質の軟弱地盤の表面との間に間隔を設けるようにしたものである。
【0015】
また、前記改良地盤は、円筒状にすることもできる
【0017】
【発明の実施の形態】
具体的な実施の形態を説明する前、本発明のコンセプトを説明する。
従来の注入固化による地盤改良は既設構造物の下方地盤を固化材料で固化して固い地盤にし、これで既設構造物を支持しようというものである。
しかしながら、このような方法では、従来例の既設円筒貯槽の例で説明したように、既設構造物を安定的に支持するには下方地盤全体の地盤改良をする必要がある。この点は、コストと時間を削減するために部分改良をした特開平8−128054号公報開示の方法が、既設円筒貯槽を安定的に支持するという本来の目的さえ達成できない可能性があることからも理解される。
【0018】
そこで、発明者等は既設構造物の下方を固い地盤に改良して、改良地盤の沈下を防止し、この改良地盤で既設構造物を支持するという従来の発想を転換して、既設構造物の安定的な支持に本質的な要素は沈下を防止する点ではなく、不等沈下を防止することであるという知見に基づき、沈下を防止するのではなく、不等沈下を防止する、換言すれば均等な沈下は許容するが不均等な沈下を防止することによって、既設構造物の安定支持を達成しようとするものである。
以下、具体的な実施の形態を既設構造物として既設円筒貯槽を例に挙げて説明する。
【0019】
実施の形態.
図1は本発明の一実施の形態の説明図であり、従来例を示した図5、図6と同一部分には同一の符号を付している。
図において、1は砂質地盤2の上に設置された既設円筒貯槽、11は既設円筒貯槽の下方に形成された円筒状の改良地盤である。
【0020】
改良地盤11は、非アルカリ珪酸ソーダ溶液を砂質地盤2に注入して地盤改良したものである。そして、改良地盤11はその液状化強度(たとえば、中空ねじり試験において、繰り返し回数N=20回で、両振幅ひずみが3%にいたるせん断応力と初期有効拘束圧の比)が、周辺の砂質地盤2の液状化強度よりも大きくなるように設定されている。
具体的には、砂質地盤2の液状化強度は、一般的には0.2〜0.4程度であるので、改良地盤11の液状化強度は、周辺地盤である砂質地盤2の液状化強度よりも高いことを前提として0.3〜2.0となるように設定されている。
【0021】
ここで、非アルカリ珪酸ソーダ溶液を砂質地盤2に注入するための注入工法について説明する。
液状化を起こすような軟弱土層の10-4cm/sec付近の透水係数の土層に対しては、浸透し易い低粘性の恒久薬液を注入する場合でも、従来工法では薬液が脈状になり平均的に浸透させることができない場合がある。
このような場合の対策としては、注入箇所を多数にすると共に、一箇所の注入孔からの時間当たりの注入量を従来工法の10分の1以下にすることが考えられる。
そして、これを実現できる工法として、例えば最近注目されている超多点注入工法がある。超多点注入工法とは、数十から数百という多数のノズルを地盤中に配置し、各ノズルから低吐出注入を行うことによって、同時的に注入できる工法である。この工法によれば、均一な改良地盤11を確実に形成することができ、かつ経済的にも優れている。
【0022】
次に、改良地盤11の配置関係について説明する。
改良地盤11は、平面的に見たときに既設円筒貯槽1の下面外周縁部が、改良地盤11の筒の厚み部分の中に配置されるように構築されている。
このように配置した理由は以下の通りである。
地震時においては、既設円筒貯槽1の下面周縁部分の下方地盤は、構造物の圧力がかかっている部分と、その外側周辺部との境界で、内側から外側に向けて局部滑りが発生しやすい。そして、局部滑りが発生すると、その部分が局部的に沈下することになり、不等沈下が発生する。そこで、かかる局部滑りを防止して、これに起因する不等沈下を防止するために既設円筒貯槽1の下面外周縁部の下方地盤を液状化強度が高くなるように改良したものである。
【0023】
また、改良地盤11は、既設円筒貯槽1の下方における地下水位3よりも下の部分に位置している。
このように配置した理由は以下の通りである。すなわち、液状化は地下水位よりも下の地盤で発生するものである。そして、本願特許は、地盤を固化した地盤により既設円筒貯槽1を支持するものでないので、地下水位3よりも上まで改良地盤を形成して、これによって既設円筒貯槽1を支持させる必要がないからである。このため、改良する範囲が少なくてよく、時間とコストをより削減できる。もっとも、地下水位よりも上方まで、改良してもよい。
【0024】
次に、上記のように構成された本実施の形態の作用を説明する。
地盤改良がされていない場合には、地震が発生すると、既設円筒貯槽1の下面外周縁部の下方地盤が外側に局部滑りを生じ、この部分が局部的に沈下することにより不等沈下が発生する。
しかし、本実施の形態の場合には、周辺の砂質地盤2よりも液状化強度の高い改良地盤11を形成しているので、既設円筒貯槽1の下面外周縁部の下方地盤に局部滑りが発生せず、従って不等沈下が生じない。
【0025】
また、円筒状の改良地盤11の内側の未改良部分には液状化が発生し、過剰間隙水圧が生じることがあるが、改良地盤11は非アルカリ珪酸ソーダ溶液を砂質地盤2に浸透注入して地盤改良したものであり、従来例のようにセメント系の固化材によって固化したものではなく、変形性能に優れるため、従来例のようなフープ張力が発生せず、改良地盤11にフープ引張破壊が生ずることがない。
したがって、従来例のように改良地盤11の破壊による不等沈下が発生することがない。
【0026】
このように、本実施の形態においては、既設円筒貯槽1の下面外周縁部の下方地盤に局部滑りが発生せず、また改良地盤11のフープ引張破壊もないので、既設円筒貯槽1の下方地盤には不等沈下が発生せず、既設円筒貯槽1を安定的に支持できるのである。
【0027】
【実施例】
次に、具体的な実施例について説明する。
図2は、既設円筒貯槽の下方地盤の解析モデル図であり、図1に示した各部に対応する部分には同一の符号が付してある。
1は仮想円筒貯槽であり、デメンジョンは直径16m、液深13.7m、容量3000klである。そして、液状化層がGL−10mまで存在する地盤において、図2に示すように、厚さ4mの領域を円筒状に改良した場合の例を紹介する。
【0028】
図3は、有効応力に基づく数値解析手法(プログラム名LIQCA:「地盤工学会:液状化メカニズム・予測法と設計法に関するシンポジウム、委員会報告・論文集、1999/5」参照)を用いて、1968年十勝沖地震における八戸波を最大加速度170GalでGL.−10m地点に入力した場合の既設円筒貯槽及び基礎地盤系の変形状態を示す図である。(変形は3倍で表示している。)。
図3に示すように、既設円筒貯槽1は若干沈下するものの、タンク基礎にとって問題となる大きな不等沈下はみられない。
【0029】
図4は、既設円筒貯槽1の基礎地盤の沈下量と地盤の水平変位量の関係を、無対策の場合(図4(a))と本実施の形態の場合(図4(b))とを比較して表わしたものである。
図4における横軸は既設円筒貯槽1の基礎地盤(図2におけるS点)の鉛直変位ρ(m)、縦軸は既設円筒貯槽の下面周縁下方の地盤(図2におけるP点)の水平変位をそれぞれ示している。
【0030】
図4から分かるように、無対策の場合(図4(a))には、既設円筒貯槽1の沈下量に対して、地盤内の水平変位量が大きく、地盤の局部破壊の可能性を示唆する結果となっている。
一方、本実施の形態の場合(図4(b))には、地盤内の水平変位量が無対策の場合の1/2程度に抑制されており、地震時に地盤が安定した変形をしつつ、既設円筒貯槽1の荷重を支えていることが示唆される。
【0031】
なお、上記の解析モデルは固体状にある場合を想定したものであり、完全に液状化した状態の解析を取り扱うには限界があり、完全に液状化した状態を考慮した場合にはさらに大きな水平変位が発生するとも考えられる。
したがって、実際には無対策のものと本実施の形態とでは上記モデル解析以上の差が発生しているとも考えられ、本実施の形態が不等沈下に対して有効であることが実証できたものと認められる。
【0032】
本実施の形態においては地盤改良のための注入材として水ガラス系のものを使用したので、改良地盤の液状化強度の調整が容易であり、作業効率がよい。もっとも、本発明においは、水ガラス系のものに限定するものではなく、セメント系のものであっても注入量等を制御することで液状化強度を調整できるので、これを使用することは可能である。
【0033】
また、上記の説明では、既設円筒貯槽の下部地盤を例に挙げて説明したが、本発明はこれに限定されるものではなく、液状化を生じやすい軟弱地盤上に設置された他の形状の既設構造物の改良基礎地盤構造としても有効である。
【0034】
【発明の効果】
本発明は以上のように構成されているので、以下に示すような効果が得られる。
【0035】
既設構造物の下方に周辺地盤よりも液状化強度が高い筒状の改良地盤を、平面的に見たときに、前記既設構造物の下面外周縁部が、該改良地盤の筒の厚み部分の中に配置されるように構築する基礎地盤構造において、前記改良地盤を、非アルカリ珪酸ソーダ溶液を前記砂質の軟弱地盤に注入して形成するとともに、前記改良地盤の上端の位置を地下水位と同じ位置にして改良地盤を地下水位の下方に構築し、改良地盤の上端と前記砂質の軟弱地盤の表面との間に間隔を設けるようにしたことにより、既設構造物の下面外周縁部の下方地盤に局部滑りが発生せず、また改良地盤のフープ引張破壊もないので、既設構造物の下方地盤には不等沈下が発生せず、既設構造物を安定的に支持できる。
【0036】
また、改良地盤は、非アルカリ珪酸ソーダ溶液を軟弱地盤に浸透注入して形成したものであり、改良地盤の液状化強度の調整が容易であり、作業効率がよい。
【0037】
さらに、改良地盤は、地下水位の下方に構築されているので、改良体積が小さく、コストと時間をさらに削減できる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態を示す断面図である。
【図2】 本発明の一実施の形態の解析モデル図である。
【図3】 有効応力に基づく数値解析手法による加振後の変形状態を示す図である。
【図4】 本実施の形態における既設円筒貯槽の基礎地盤の沈下量と地盤の水平変位量の関係を示すグラフである。
【図5】 従来の注入固化による地盤改良工法による基礎地盤構造の一例を示す断面図である。
【図6】 従来の部分地盤固化改良工法による基礎地盤構造の一例を示す断面図である。
【符号の説明】
1 既設円筒貯槽
2 砂質地盤
3 地下水位
11 改良地盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foundation ground structure of an existing structure that is installed on soft ground such as sand that may be liquefied during an earthquake.
[0002]
[Prior art]
Various measures for liquefaction during earthquakes have been studied for existing structures such as the foundation ground of existing cylindrical storage tanks such as oil tanks. And as a foundation ground improvement construction method for liquefaction measures, there are a groundwater level lowering construction method, a drain type construction method, a construction method using a steel ring, and the like.
[0003]
The groundwater level lowering method is intended to prevent liquefaction from occurring by lowering the groundwater level by surrounding the existing cylindrical storage tank with a sheet pile or the like and pumping up the internal groundwater by a pump.
However, there is a problem that the foundation ground structure improved by the groundwater level lowering method tends to cause uneven settlement due to the groundwater level drop. In addition, it is necessary to keep pumps operating for earthquakes that do not know when they occur, and there is a problem that maintenance costs are high.
[0004]
In addition, the drain method is unequal by inserting many pipes into the surrounding ground of the existing cylindrical storage tank or creating a crushed stone column and discharging the pressure water generated in the lower ground of the existing cylindrical storage tank during an earthquake. It is intended to prevent settlement.
However, in the drain type construction method, since the construction machine is relatively large, it is not possible to place the construction machine when the pipes are densely packed around the tank like an oil tank, and the existing pipes attached to the cylindrical storage tank. Need to be removed. Therefore, there is a problem that it cannot be applied to the dense conditions of the existing cylindrical storage tank.
[0005]
Moreover, the construction method using a steel ring is a method in which a steel sheet pile is driven so as to surround an existing cylindrical storage tank to prevent sliding to the side of the ground and to suppress liquefaction.
However, as in the case of the drain method, this method requires the removal of the existing pipes attached to the cylindrical storage tank, and in the case of a large tank, the joint strength of the steel sheet pile is insufficient, and the countermeasure effect has been verified. There are various problems such as absence.
[0006]
All the conventional methods mentioned in the above examples are to prevent liquefaction using the attached equipment in the existing cylindrical storage tank. As a common problem, installation space for the attached equipment is required, and the cylindrical storage tank is densely packed. There is a big problem that it can not be implemented in places.
[0007]
Therefore, what has been proposed is a ground improvement method by injection solidification, and FIG. 5 shows a side cross section of the ground improved by this method. In the figure, 1 is an existing cylindrical storage tank, 2 is sandy ground, 3 is groundwater level, and 4 is improved ground.
In this construction method, a plurality of pipes are inserted into a liquefaction tank (sandy ground) 2 below the existing cylindrical storage tank 1, and cement-based solidified material is injected through the pipes. Then, the injected solidified material is solidified by replacing the water in the gap between the soil particles to form the improved ground 4 over the entire foundation ground below the existing tank 1 to stabilize the ground.
[0008]
However, the foundation ground structure by the ground improvement method by the injection solidification mentioned above has the following problems.
In the ground improvement method by injection solidification, generally the improved ground diameter calculated by the following equation (1) is required.
Improved ground diameter = tank diameter + 2 x (2/3) x liquefaction layer depth (1)
Therefore, considering the depth of a general liquefaction tank, the improved ground diameter is at least the tank diameter +10 m or more from equation (1), the volume of the improved ground is large, the improvement takes a long time and the cost is high. Become.
[0009]
In view of this, a basic ground structure based on a partial ground improvement method disclosed in, for example, Japanese Patent Laid-Open No. 8-128054 has been proposed to solve such a problem.
As shown in FIG. 6, the basic ground structure by this partial ground improvement construction method is a non-liquefied layer 9 only in a portion immediately below the base portion 5 constructed on the bottom outer peripheral portion of the existing cylindrical storage tank 1 (existing structure in the publication). The cylindrical solidified columnar body 7 is constructed from the solidified material until the solid cylindrical material 7 is reached, and the existing cylindrical storage tank 1 is supported by the solidified columnar body 7.
And in the foundation ground structure by said partial ground improvement construction method, what is necessary is just to solidify only the lower part of the grounding part of the existing cylindrical storage tank 1, and to improve the ground. According to the report, it is not necessary to improve the ground in the entire area below, and material costs and construction time can be reduced.
[0010]
[Problems to be solved by the invention]
However, in the foundation ground structure by the partial ground improvement method, since the inside of the solidified columnar body 7 constructed in a cylindrical shape is left an unimproved portion that may be liquefied, the portion sinks when liquefaction occurs. Or non-uniform subsidence occurs between improved parts with small subsidence. For this reason, the bottom plate of the existing cylindrical storage tank 1 is subject to subsidence, causing a severe deformation, and is likely to have a harmful effect on the existing cylindrical storage tank 1.
[0011]
Further, when liquefaction occurs in the unimproved portion immediately below the existing cylindrical storage tank 1, hoop tension is generated in the solidified columnar body 7 arranged in a cylindrical shape due to excessive pore water pressure. And generally, since the tensile strength of the solidified columnar body 7 improved by the solidified material is extremely small, a tensile failure occurs with respect to this hoop tension. When the solidified columnar body 7 is broken, local slip occurs in the broken portion, and the existing cylindrical storage tank 1 is likely to be tilted.
[0012]
As described above, the partial ground improvement method disclosed in Japanese Patent Application Laid-Open No. 8-128054 has advantages in terms of cost and construction time, but stabilizes the existing cylindrical storage tank during an earthquake, which is the original purpose. I was worried about the point of support.
[0013]
The present invention has been made to solve the above-mentioned problems, and can provide an improved foundation structure for an existing structure that can reduce cost and work time and can stably support an existing structure even during an earthquake. The purpose is to get.
[0014]
[Means for Solving the Problems]
The improved foundation ground structure of the existing structure according to the present invention has a cylindrical improved ground having a liquefaction strength higher than that of the surrounding ground below the existing structure installed on a soft sandy soil that is easily liquefied. In the foundation ground structure constructed so that the outer peripheral edge of the lower surface of the existing structure is disposed in the thickness portion of the cylinder of the improved ground when viewed in plan, the improved ground is non-alkaline A sodium silicate solution is formed by injecting into the sandy soft ground, and the improved ground is constructed below the groundwater level with the top position of the improved ground being the same position as the groundwater level. A space is provided between the surface of the sandy soft ground.
[0015]
The improved ground may be cylindrical .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Before describing specific embodiments, the concept of the present invention will be described.
The conventional ground improvement by injection solidification is to solidify the lower ground of an existing structure with a solidifying material to form a solid ground, thereby supporting the existing structure.
However, in such a method, as described in the example of the existing cylindrical storage tank of the conventional example, it is necessary to improve the ground of the entire lower ground in order to stably support the existing structure. This is because the method disclosed in Japanese Patent Laid-Open No. 8-128054, which has been partially improved to reduce costs and time, may not achieve even the original purpose of stably supporting an existing cylindrical storage tank. Is also understood.
[0018]
Therefore, the inventors improved the lower part of the existing structure to a solid ground, prevented the subsidence of the improved ground, changed the conventional idea of supporting the existing structure on this improved ground, Based on the knowledge that the essential element of stable support is not to prevent subsidence but to prevent unequal subsidence, rather than to prevent subsidence, in other words to prevent unequal subsidence. It is intended to achieve stable support of existing structures by allowing for even subsidence but preventing uneven subsidence.
Hereinafter, a specific embodiment will be described by taking an existing cylindrical storage tank as an example of an existing structure.
[0019]
Embodiment.
FIG. 1 is an explanatory diagram of an embodiment of the present invention. The same reference numerals are given to the same parts as those in FIGS. 5 and 6 showing the conventional example.
In the figure, 1 is an existing cylindrical storage tank installed on the sandy ground 2, and 11 is a cylindrical improved ground formed below the existing cylindrical storage tank.
[0020]
The improved ground 11 is obtained by injecting a non-alkali silicate solution into the sandy ground 2 and improving the ground. The improved ground 11 has a liquefaction strength (for example, the ratio of the shear stress and the initial effective confining pressure at a repetition rate of N = 20 in the hollow torsion test, and both amplitude strains of 3%). It is set to be larger than the liquefaction strength of the ground 2.
Specifically, since the liquefaction strength of the sandy ground 2 is generally about 0.2 to 0.4, the liquefaction strength of the improved ground 11 is that of the sandy ground 2 that is the surrounding ground. It is set to be 0.3 to 2.0 on the assumption that it is higher than the control strength.
[0021]
Here, an injection method for injecting the non-alkali silicate solution into the sandy ground 2 will be described.
Even if a low-viscosity permanent chemical solution that easily permeates is injected into a soil layer with a permeability of around 10 -4 cm / sec in a soft soil layer that causes liquefaction, the chemical solution is pulsated in the conventional method. It may not be able to penetrate on average.
As a countermeasure in such a case, it is conceivable to increase the number of injection locations and to reduce the injection amount per hour from one injection hole to 1/10 or less of the conventional method.
And as a construction method that can realize this, for example, there is a super multi-point injection method that has been attracting attention recently. The super multi-point injection method is a method in which a large number of nozzles of several tens to several hundreds are arranged in the ground, and injection can be performed simultaneously by performing low discharge injection from each nozzle. According to this construction method, the uniform improved ground 11 can be reliably formed, and it is economically superior.
[0022]
Next, the arrangement relationship of the improved ground 11 will be described.
The improved ground 11 is constructed so that the outer peripheral edge of the lower surface of the existing cylindrical storage tank 1 is disposed in the thickness portion of the cylinder of the improved ground 11 when viewed in plan.
The reason for this arrangement is as follows.
In the event of an earthquake, the lower ground at the lower peripheral edge of the existing cylindrical storage tank 1 is likely to slip locally from the inside to the outside at the boundary between the part where the pressure is applied to the structure and the outer periphery. . And when a local slip occurs, the part will sink locally and an unequal settlement will generate | occur | produce. Therefore, in order to prevent such local slip and prevent uneven settlement due to this, the lower ground of the lower peripheral edge of the lower surface of the existing cylindrical storage tank 1 is improved so as to increase the liquefaction strength.
[0023]
The improved ground 11 is located below the groundwater level 3 below the existing cylindrical storage tank 1.
The reason for this arrangement is as follows. In other words, liquefaction occurs in the ground below the groundwater level. And since this patent does not support the existing cylindrical storage tank 1 by the ground which solidified the ground, it is not necessary to form the improved ground above the groundwater level 3 and thereby support the existing cylindrical storage tank 1. It is. For this reason, the range to improve may be small and time and cost can be reduced more. But you may improve to the upper part from a groundwater level.
[0024]
Next, the operation of the present embodiment configured as described above will be described.
If the ground has not been improved, if an earthquake occurs, the lower ground of the outer peripheral edge of the lower surface of the existing cylindrical storage tank 1 will cause local slip to the outside, and this part will sink locally, resulting in uneven settlement. To do.
However, in the case of the present embodiment, since the improved ground 11 having a higher liquefaction strength than the surrounding sandy ground 2 is formed, local slip occurs on the lower ground of the lower peripheral edge of the existing cylindrical storage tank 1. It does not occur and therefore unequal settlement does not occur.
[0025]
In addition, liquefaction may occur in the unimproved portion inside the cylindrical improved ground 11, and excessive pore water pressure may be generated. The improved ground 11 permeates and injects a non-alkali silicate solution into the sandy ground 2. The ground is improved and is not solidified by a cement-based solidifying material as in the conventional example, and is excellent in deformation performance. Therefore, the hoop tension does not occur as in the conventional example, and the improved ground 11 has a hoop tensile fracture. Will not occur.
Therefore, unlike the conventional example, unequal settlement due to the destruction of the improved ground 11 does not occur.
[0026]
Thus, in this Embodiment, since a local slip does not generate | occur | produce in the lower ground of the lower surface outer periphery part of the existing cylindrical storage tank 1, and there is no hoop tension fracture of the improved ground 11, the lower ground of the existing cylindrical storage tank 1 Therefore, the existing cylindrical storage tank 1 can be stably supported.
[0027]
【Example】
Next, specific examples will be described.
FIG. 2 is an analysis model diagram of the lower ground of the existing cylindrical storage tank, and portions corresponding to the respective portions shown in FIG. 1 are denoted by the same reference numerals.
Reference numeral 1 denotes a virtual cylindrical storage tank having a dimension of 16 m in diameter, a liquid depth of 13.7 m, and a capacity of 3000 kl. And in the ground where a liquefaction layer exists to GL-10m, as shown in FIG. 2, the example at the time of improving the area | region of thickness 4m into a cylindrical shape is introduced.
[0028]
Figure 3 shows the numerical analysis method based on effective stress (Program name: LIQCA: “Geotechnical Society: Symposium on liquefaction mechanism / prediction method and design method, committee report / paper collection, 1999/5”) The Hachinohe wave in the 1968 Tokachi-oki earthquake was GL. It is a figure which shows the deformation | transformation state of the existing cylindrical storage tank and foundation ground system at the time of inputting into a -10m point. (Deformation is shown in 3 times).
As shown in FIG. 3, although the existing cylindrical storage tank 1 sinks slightly, there is no large unequal settling that poses a problem for the tank foundation.
[0029]
FIG. 4 shows the relationship between the amount of subsidence of the foundation ground and the horizontal displacement of the ground of the existing cylindrical storage tank 1 in the case of no countermeasure (FIG. 4 (a)) and the case of the present embodiment (FIG. 4 (b)). Are shown in comparison.
4, the horizontal axis is the vertical displacement ρ (m) of the foundation ground (point S in FIG. 2) of the existing cylindrical storage tank 1, and the vertical axis is the horizontal displacement of the ground (point P in FIG. 2) below the lower peripheral edge of the existing cylindrical storage tank. Respectively.
[0030]
As can be seen from FIG. 4, when no countermeasure is taken (FIG. 4 (a)), the amount of horizontal displacement in the ground is larger than the amount of settlement of the existing cylindrical storage tank 1, suggesting the possibility of local destruction of the ground. It has become the result.
On the other hand, in the case of the present embodiment (FIG. 4B), the horizontal displacement amount in the ground is suppressed to about 1/2 of that in the case where no countermeasure is taken, and the ground is stably deformed during an earthquake. It is suggested that the load of the existing cylindrical storage tank 1 is supported.
[0031]
Note that the above analysis model is assumed to be in a solid state, and there is a limit in handling the analysis of a completely liquefied state. It is thought that displacement occurs.
Therefore, it can be considered that there is actually a difference more than the above model analysis between the non-measures and this embodiment, and it was proved that this embodiment is effective against uneven settlement. It is accepted.
[0032]
In the present embodiment, a water glass-based material is used as an injection material for ground improvement, so that the liquefaction strength of the improved ground can be easily adjusted and work efficiency is good. However, in the present invention, it is not limited to the water glass type, and even if it is a cement type, the liquefaction strength can be adjusted by controlling the injection amount, etc., so this can be used. It is.
[0033]
In the above description, the lower ground of the existing cylindrical storage tank is taken as an example, but the present invention is not limited to this, and other shapes installed on the soft ground that is liable to liquefy. It is also effective as an improved foundation ground structure for existing structures.
[0034]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0035]
When the cylindrical improved ground having a higher liquefaction strength than the surrounding ground is viewed in plan below the existing structure, the outer peripheral edge of the bottom surface of the existing structure is the thickness portion of the cylinder of the improved ground. In the foundation ground structure constructed so as to be disposed in, the improved ground is formed by injecting a non-alkali silicate solution into the sandy soft ground, and the position of the upper end of the improved ground is the groundwater level. By constructing the improved ground below the groundwater level at the same position and providing a gap between the upper end of the improved ground and the surface of the sandy soft ground, the outer periphery of the lower surface of the existing structure Since local slip does not occur in the lower ground, and there is no hoop tensile failure of the improved ground, uneven settlement does not occur in the lower ground of the existing structure, and the existing structure can be supported stably.
[0036]
Further, the improved ground is formed by infiltrating and injecting a non-alkali silicate solution into the soft ground, and it is easy to adjust the liquefaction strength of the improved ground, and the work efficiency is good.
[0037]
Furthermore, since the improved ground is constructed below the groundwater level, the improved volume is small and costs and time can be further reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is an analysis model diagram of one embodiment of the present invention.
FIG. 3 is a diagram showing a deformed state after vibration by a numerical analysis method based on effective stress.
FIG. 4 is a graph showing the relationship between the amount of settlement of the foundation ground and the amount of horizontal displacement of the ground of the existing cylindrical storage tank in the present embodiment.
FIG. 5 is a cross-sectional view showing an example of a basic ground structure by a ground improvement method by conventional injection solidification.
FIG. 6 is a sectional view showing an example of a basic ground structure by a conventional partial ground solidification improvement method.
[Explanation of symbols]
1 Existing cylindrical storage tank 2 Sandy ground 3 Groundwater level 11 Improved ground

Claims (2)

液状化しやすい砂質の軟弱地盤上に設置されている既設構造物の下方に、周辺地盤よりも液状化強度が高い筒状の改良地盤を、平面的に見たときに、前記既設構造物の下面外周縁部が、該改良地盤の筒の厚み部分の中に配置されるように構築する基礎地盤構造において、前記改良地盤を、非アルカリ珪酸ソーダ溶液を前記砂質の軟弱地盤に注入して形成するとともに、前記改良地盤の上端の位置を地下水位と同じ位置にして改良地盤を地下水位の下方に構築し、改良地盤の上端と前記砂質の軟弱地盤の表面との間に間隔を設けるようにしたことを特徴とする既設構造物の改良基礎地盤構造 。When the cylindrical improved ground having a higher liquefaction strength than the surrounding ground is seen below the existing structure installed on the soft sandy soil that is liable to liquefy, the existing structure In the foundation ground structure constructed so that the outer peripheral edge of the lower surface is disposed in the thickness portion of the cylinder of the improved ground, the improved ground is injected with a non-alkali silicate solution into the sandy soft ground. And forming the improved ground below the groundwater level with the top position of the improved ground being the same position as the groundwater level, and providing a gap between the top of the improved ground and the surface of the soft sandy ground Improved foundation ground structure of existing structures characterized by the fact that 前記改良地盤は、円筒状である請求項1に記載の既設構造物の改良基礎地盤構造 。  The improved foundation ground structure for an existing structure according to claim 1, wherein the improved ground is cylindrical.
JP34163399A 1999-12-01 1999-12-01 Improved foundation ground structure of existing structure Expired - Fee Related JP4055838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34163399A JP4055838B2 (en) 1999-12-01 1999-12-01 Improved foundation ground structure of existing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34163399A JP4055838B2 (en) 1999-12-01 1999-12-01 Improved foundation ground structure of existing structure

Publications (2)

Publication Number Publication Date
JP2001159128A JP2001159128A (en) 2001-06-12
JP4055838B2 true JP4055838B2 (en) 2008-03-05

Family

ID=18347612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34163399A Expired - Fee Related JP4055838B2 (en) 1999-12-01 1999-12-01 Improved foundation ground structure of existing structure

Country Status (1)

Country Link
JP (1) JP4055838B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022203B2 (en) * 2007-12-14 2012-09-12 鹿島建設株式会社 Tank ground improvement method
JP5093734B2 (en) * 2010-10-19 2012-12-12 公益財団法人鉄道総合技術研究所 Basic structure and construction method

Also Published As

Publication number Publication date
JP2001159128A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
JP4794390B2 (en) Pile foundation reinforcement structure and reinforcement method
KR101893408B1 (en) Track bearing pile structure for strengthening end bearing capacity to restrain subsidence of soft soil, and construction method for the same
JP5013948B2 (en) Building foundation construction method
JP3342000B2 (en) Liquefaction prevention method for sandy ground by injection method
JPH09158212A (en) Foundation reinforcing structure for structure group
JP5032012B2 (en) Sheet pile combined direct foundation and its construction method
JP4055838B2 (en) Improved foundation ground structure of existing structure
JP2005290869A (en) Reinforcing structure of structure on water
JP3515567B1 (en) Seismic reinforcement structure of structures
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP3648646B2 (en) Structure liquefaction countermeasure structure
JP2878273B1 (en) Seismic isolation method for structures and seismic isolation structure for structures
JP2008223348A (en) Earthquake resisting reinforcement structure of pile foundation
JP5022203B2 (en) Tank ground improvement method
CN108487303B (en) Combined retaining wall of supporting pile and counterfort retaining wall and construction method
JP2007032065A (en) Pile foundation reinforcing structure
JP2001172987A (en) Pile foundation structure and its construction method
JP2000336669A (en) Liquefaction countermeasure construction method
JPH01226921A (en) Earthquake-proof reinforced revetment construction
JP3671318B2 (en) Pile foundation reinforcement method for structures built near the revetment
JP2018071308A (en) Restoration method of existing foundation, and restoration structure of existing foundation
JP7359515B2 (en) Liquefaction countermeasure structure for underground structures
JP2876471B2 (en) Lateral flow countermeasure structure
JPS61146910A (en) Method of preventing liquefaction of sand ground
JPH1046619A (en) Foundation structure of construction in sand-layer ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees