JP4055399B2 - Chip-type semiconductor device and manufacturing method thereof - Google Patents

Chip-type semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4055399B2
JP4055399B2 JP2001348438A JP2001348438A JP4055399B2 JP 4055399 B2 JP4055399 B2 JP 4055399B2 JP 2001348438 A JP2001348438 A JP 2001348438A JP 2001348438 A JP2001348438 A JP 2001348438A JP 4055399 B2 JP4055399 B2 JP 4055399B2
Authority
JP
Japan
Prior art keywords
film
alloy
layers
main electrode
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001348438A
Other languages
Japanese (ja)
Other versions
JP2003152175A (en
Inventor
景城 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001348438A priority Critical patent/JP4055399B2/en
Publication of JP2003152175A publication Critical patent/JP2003152175A/en
Application granted granted Critical
Publication of JP4055399B2 publication Critical patent/JP4055399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad

Description

【0001】
【発明の属する技術分野】
本発明は、チップ型半導体素子及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、この種のチップ型半導体素子は、リードフレームとのダイスボンディングやMoのような熱応力緩衝板を取り付ける際、高温はんだを用いている。この高温はんだはPbが90%以上含有しており、融点が約300℃である。しかし近年、たとえば2001年4月家電リサイクル法の施行や2008年「廃電子機器」に関する欧州議会指令が施行されるなど、地球環境保護推進を目的として環境負荷物質であるPbの使用削減や全廃が市場要求となっている。そのため、従来のはんだに変わるろう材を検討することが必要となり、そのろう材としてPbを含有しないPbフリーはんだやAu−Sn合金板やAl−Si合金板が提案されている。前記Pbフリーはんだは未だ実用には至っておらず、またAu−Sn合金板は高価であるため大量生産品には適さず、次にAl−Si合金板は融点が577℃と高温となるため素子特性の性能低下が憂慮される。
【0003】
このような状況の中で、Pbを含有しないPbフリーのチップ型半導体素子を製造するためには、AlとSiの共晶組成からなる合金板(ろう材)を用いたチップ型半導体素子の製造方法(特願2000−397699号)や、AlとSiの共晶組成の合金膜をスパッタリングにより形成し、この膜をろう材として用いる特願2001−030579号が挙げられる。
【0004】
特願2000−397699号によるチップ型半導体素子の構造断面図を図4に示す。これは「複数のN層とP層で構成され、その角部がパッシベーション膜15で被覆されてなる半導体素子本体10の、先ず片面にAlを蒸着して主電極12及びゲート電極11を形成し、次にもう一方の面にAlを蒸着して主電極13を形成した後、両方の主電極に、それぞれAlとSiからなる合金板20、21を介し、かつそれぞれMoからなる熱応力緩衝板30,31のそれぞれ片面にAlを蒸着して形成したAl層50,51を介して、580℃ないし630℃の温度範囲の不活性または還元性雰囲気中で、熱応力緩衝板を接着するチップ型半導体素子の製造方法」である。熱応力緩衝板30、31のAl層との反対側にはユーザーでの外部電極とのはんだ付けのために、Ni層3、4を蒸着により形成してある。
【0005】
特願2001−030579号によるチップ型半導体素子の構造断面図を図5に示す。これは「複数のN層とP層で構成され、その角部がパッシベーション膜15で被覆されてなる半導体素子本体10の、片面にAl−Si合金をスパッタリングしてAl−Si合金からなる主電極12及びゲート電極11を形成し、かつ反対面にAl−Si合金をスパッタリングしてAl−Si合金からなる主電極13を形成した後、前記両Al−Si合金主電極と緩衝板30、31が、その緩衝板の片面にAl−Siをスパッタリングして形成されたAl−Si合金膜50、51を介して、580℃ないし630℃の温度範囲の不活性または還元性雰囲気中で接着されることを特徴とするチップ型半導体素子の製造方法」である。熱応力緩衝板30、31のAl−Si合金層とは反対側にはユーザーでの外部電極とのはんだ付けのために、Ni層3、4を形成してある。
【0006】
【発明が解決しようとする課題】
このような特願2000−397699号や特願2001−030579号により製造したチップ型半導体素子は、主電極と接合されてある熱応力緩衝板をユーザーにおいて、Cuなどの外部電極と低温はんだにより接続し、またゲート電極にはAlワイヤーボンディングにより接続する。しかしながら、ユーザーでの生産効率の向上を目的とし、ゲート電極の接続も主電極と同様に低温はんだによる外部電極との接続したいという要望がでてきた。そのためゲート電極を構成する膜がAl膜だけでは低温はんだのぬれ性品質が不十分である。そこでまずオーミック接触として半導体素子上にAl等の金属膜を形成した上に、NiやAgなどのはんだに対してぬれ性のよい金属膜を形成する必要がある。
【0007】
一般に、半導体素子上に電子線蒸着またはスパッタリングにより形成したAl等の金属膜(電極)は、フォトリソグラフィー工程を経て、各種電極を形成したのち、シンター工程を通る。このシンター工程はSiと電極とのオーミック接触を形成するために行うものであり、Alの場合では通常450℃から550℃の温度範囲で行われている。
【0008】
しかしながら、特願2000−397699号や特願2001−030579号によるチップ型半導体素子及びその製造方法では、チップ型半導体素子と熱応力緩衝板の接合に対してAl−Si合金板もしくはスパッタリングにより形成するAl−Si合金膜を用いるため、その融点が約577℃である、そのため熱応力緩衝板を接着する際580℃ないし630℃という、シンター温度に比べ高温にする必要がある。
【0009】
そのために、ゲート電極の低温はんだのぬれ性を考慮して最終表面層にNiやAgのような金属膜を積層形成したとしても、その組合せが適切でないと、580℃から630℃の高温に曝されることによって積層膜が変質劣化し、ゲート電極のリードへの低温はんだ付け時に、はんだのぬれ性が悪くなるという問題が生じる。
【0010】
また、580℃から630℃の高温での処理であるため、ゲート電極各積層膜の熱膨張係数の差により、ゲート電極膜直下の半導体素子にクラックが生じる可能性がある。
【0011】
そこで、本発明が解決しようとする課題は、580℃から630℃の高温での熱緩衝板の接着処理後におけるゲート電極の低温はんだのぬれ性を改善し、ゲート電極直下のシリコン基板へのサーマルショックによるクラックを防止することのできるチップ型半導体素子及びその製造方法を提案することにある。
【0012】
【課題を解決するための手段】
この課題を解決するために本発明は、複数のN層とP層で構成され、その角部がパッシベーション膜で被覆されてなる半導体素子本体の片面にAl膜またはAl−Si合金膜からなる主電極およびゲート電極を形成し、かつ反対面にAl膜またはAl−Si合金膜からなる主電極を形成し、前記両主電極にAl膜またはAl−Si合金膜を介して熱緩衝板が接着されたチップ型半導体素子において、前記ゲート電極のAl膜またはAl−Si合金膜が2μm〜10μmの膜厚で形成され、その上に膜厚が2μm以上のMo膜が形成され、その上に膜厚が1μm以上のNi膜が形成されたものであり、580℃から630℃の高温での熱緩衝板の接着処理後におけるゲート電極の低温はんだのぬれ性を改善し、ゲート電極直下のシリコン基板へのサーマルショックによるクラックを防止することができる。
【0013】
さらに本発明は、複数のN層とP層で構成され、その角部がパッシベーション膜で被覆されてなる半導体素子本体の、片面に膜厚が2μm〜10μmのAl膜またはAl−Si合金膜と膜厚が2μm以上のMo膜と膜厚が1μm以上のNi膜の3層を連続して積層し、反対面にAl膜またはAl−Si合金膜を形成し、フォトリソグラフィ技術により、片面の主電極とゲート電極、反対面の主電極とをマスキングして、必要以外の箇所のAl膜またはAl−Si合金膜、Mo膜、Ni膜のエッチングを行うことで、片面にAl膜またはAl−Si合金膜とMo膜とNi膜の3層を積層してなる主電極とゲート電極を形成し、かつ反対面にはAl膜またはAl−Si合金膜からなる主電極を形成した後、次に片面のゲート電極のみをマスキングして片面のAl膜またはAl−Si合金膜とMo膜とNi膜の3層を積層してなる主電極のうちNi膜とMo膜をエッチングにより除去してAl膜またはAl−Si合金膜のみからなる主電極を形成し、前記両主電極にAlまたはAl−Si合金膜を介して熱緩衝板を接着するチップ型半導体装置の製造方法の製造方法であり、580℃から630℃の高温での接着処理後のゲート電極のはんだのぬれ性を改善し、ゲート電極直下のシリコン基板へのサーマルショックによるクラックを防止することができる。
【0014】
さらに本発明は、複数のN層とP層で構成され、その角部がパッシベーション膜で被覆されてなる半導体素子本体の、片面にAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層を、その厚みがそれぞれAl膜もしくはAl−Si合金膜2〜10μm、Mo膜2μm以上、Ni膜1μm以上となるように連続して積層し、反対面にAl膜もしくはAl−Si合金膜を、その厚みが2〜10μmとなるように形成し、フォトリソグラフィ技術により、片面の主電極とゲート電極、反対面の主電極とをマスキングして、必要以外の箇所のAl膜もしくはAl−Si合金膜、Mo膜、Ni膜のエッチングを行うことで、片面のAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層の厚みがAl膜もしくはAl−Si合金膜2〜10μm、Mo膜2μm以上、Ni膜1μm以上である主電極とゲート電極を形成し、次に片面のゲート電極のみをマスキングして片面のMo膜とNi膜をエッチングにより除去して、Al膜もしくはAl−Si合金膜の厚みが2〜10μmである主電極を形成したものであり、580℃から630℃の高温での接着処理後のゲート電極のはんだのぬれ性を改善し、ゲート電極直下のシリコン基板へのサーマルショックによるクラックを防止することができる。
【0015】
【発明の実施の形態】
以下に、一実施の形態について、図1を用いて詳しく説明する。
【0016】
(実施の形態1)
図1は、本発明の実施の形態におけるチップ型半導体素子に係るトライアック(3端子双方向性サイリスタ)の構造断面図である。
【0017】
図1において、10は複数のN層とP層で構成され、その角部がパッシベーション膜15で被覆されてなる半導体素子本体、11はAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層より積層してなるゲート電極、12はAl膜もしくはAl−Si合金膜からなる主電極、13は反対面のAl膜もしくはAl−Si合金膜からなる主電極である。
【0018】
図2は、本発明の実施の形態におけるチップ型半導体素子の製造方法の工程図である。
【0019】
図2において、製造過程を説明すると、
(1)まず、複数のN層とP層で構成され、その角部がパッシベーション膜で被覆されてなる半導体素子本体10の、片面にAl膜もしくはAl−Si合金膜とMo膜とNi膜をその厚みがそれぞれAl膜もしくはAl−Si合金膜2〜10μm、Mo膜2μm以上、Ni膜1μm以上となるよう順次電子線真空蒸着もしくはスパッタリングして積層する。以後この面をA面とする。
【0020】
(2)次に、反対面にAl膜もしくはAl−Si合金膜をその厚みが2〜10μmとなるよう電子線真空蒸着もしくはスパッタリングする。以後この面をB面とする。
【0021】
(3)フォトリソグラフィー技術によって、A面についてはゲート電極と主電極をマスキングし、B面については主電極をマスキングし、
(4)A面については、ゲート電極と主電極以外の箇所の、表面層からNi膜、Mo膜、Al膜もしくはAl−Si合金膜を除去する。B面ついては主電極以外の箇所のAl膜もしくはAl−Si合金膜を除去する。
【0022】
(5)これにより、B面のAl膜もしくはAl−Si合金膜からなる主電極13を形成し、
(6)A面の、Al膜もしくはAl−Si合金膜とMo膜とNi膜からなるゲート電極11と主電極を形成する。
【0023】
(7)次に、A面のゲート電極のみをマスキングし、A面の主電極の表面層からNi膜とMo膜をエッチングして除去する。
【0024】
(8)これにより、A面のAl膜もしくはAl−Si合金膜からなる主電極12を形成するというものである。
【0025】
本実施の形態では、Si半導体素子本体10のサイズが9.2mm角で厚さ360μm、Al膜もしくはAl−Si合金膜からなる電極12、13の厚みは2〜10μmである。
【0026】
また、AlとSiからなる合金の比率は88%Al−12%Siで、電子線真空蒸着もしくはスパッタリングにより形成する。Al膜もしくはAl−Si合金膜の厚みは2μm〜10μm、Mo膜の厚みは2μm以上、Ni膜の厚みは1μm以上である。
【0027】
Al膜もしくはAl−Si合金膜の厚みが2μm以下では、電極の絶対量としては不足で接着力が低くなることがある。
【0028】
またMo膜の厚みが2μm以下では、580℃から630℃での高温処理時、AlとNiが相互に拡散することによる反応を阻止することが出来ず、それによって形成される化合物のために、低温はんだのぬれ性が悪くなる。
【0029】
また表1にゲート電極の組合せによるはんだのぬれ性とSi基板へのクラックの有無を調べた結果を示す。▲1▼ははんだのぬれ性、クラックともに良好な組合せである。しかし▲2▼、▲3▼の場合はシリコン基板へのクラックは生じないが、はんだのぬれ性が悪く、▲4▼の場合はクラック、はんだのぬれ性ともに悪くなる組合せである。はんだのぬれ性が悪くなるのは、▲2▼の場合は第1層のAlと第3層のNiが反応するためであり、▲3▼の場合は第1層のAlと第3層のAgが第2層のTiの厚みが薄いために、これを介して反応するためであり、▲4▼の場合は第1層のAlと第2層のAgが反応するためである。AlとAgの相図によると588℃に2元共晶温度をもつため、580℃から630℃の高温処理において、AlとAgは相互に拡散し反応してしまう。またAlとNiは640℃に2元共晶温度を持ち、処理温度より高くAlとAgの場合に比べると反応は抑えられるが、やはり相互の拡散は少なからずおこる。このようにして形成されたAlとNiまたはAlとAgの化合物は純粋のNiもしくはAgに比べ、はんだのぬれ性に劣るものである。
【0030】
【表1】

Figure 0004055399
【0031】
なお、以上の説明ではチップ型半導体素子本体にトライアックで構成したものを示したが、図3に示したようなサイリスタについても同様に実施可能である。
【0032】
【発明の効果】
以上のように本発明のチップ型半導体素子は、半導体素子片側面にAl膜もしくはAl−Si合金膜の主電極およびAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層を積層してなるゲート電極、反対面にAl膜もしくはAl−Si合金膜の主電極が形成された構造であって、また本発明のチップ型半導体素子の製造方法は、片面にAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層を、その厚みがそれぞれ2〜10μm、2μm以上、1μm以上となるように連続して電子線真空蒸着もしくはスパッタリングして積層し、反対面にAl膜もしくはAl−Si合金膜を、その厚みが2〜10μmとなるように電子線真空蒸着もしくはスパッタリングして形成し、フォトリソグラフィ技術により、片面の主電極とゲート電極、反対面の主電極とをマスキングして、必要以外の箇所のAl膜もしくはAl−Si合金膜、Mo膜、Ni膜のエッチングを行うことで、片面のAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層の厚みが2〜10μm、2μm以上、1μm以上である積層してなる主電極とゲート電極を形成し、かつ反対面にはAl膜もしくはAl−Si合金膜の厚みが2〜10μmである主電極を形成した後、次に片面のゲート電極のみをマスキングして片面のAl膜もしくはAl−Si合金膜とMo膜とNi膜の3層を積層してなる主電極のうちNi膜とMo膜をエッチングにより除去して、Al膜もしくはAl−Si合金膜の厚みが2〜10μmである主電極を形成する製造方法であるため、Al−Si合金板を用いたこのチップ型半導体素子とAl蒸着した緩衝板(Mo板)との接合における580℃から630℃の熱処理によって、ゲート電極表面のNiが変質することなく、ユーザー側でのはんだのぬれ性が改善される。また、580℃から630℃の熱処理によってSiへのクラックを防止することもできる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるチップ型半導体素子に係るトライアック(3端子双方向性サイリスタ)の構造断面図
【図2】同チップ型半導体素子の製造方法の工程図
【図3】本発明の他実施の形態におけるチップ型半導体素子に係わるサイリスタ(3端子一方向性サイリスタ)の構造断面図
【図4】既に提案されたチップ型半導体素子に係わるトライアックの構造断面図
【図5】既に提案されたチップ型半導体素子に係わるトライアックの構造断面図
【符号の説明】
3、4 Ni膜
10 半導体素子本体
12 Al膜からなる主電極
11 Al膜からなるゲート電極
13 Al膜からなる主電極
15 パッシベーション膜
20、21 Al−Si合金板
30、31 緩衝板
50、51 Al膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip type semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, this type of chip-type semiconductor element uses high-temperature solder when die bonding with a lead frame or a thermal stress buffer plate such as Mo is attached. This high temperature solder contains 90% or more of Pb and has a melting point of about 300 ° C. However, in recent years, for example, the enforcement of the Home Appliance Recycling Law in April 2001 and the European Parliament Directive on “Waste Electronic Equipment” in 2008 have been implemented. It is a market demand. For this reason, it is necessary to examine a brazing material that replaces the conventional solder, and Pb-free solder, Au—Sn alloy plate, and Al—Si alloy plate not containing Pb have been proposed as the brazing material. The Pb-free solder has not yet been put to practical use, and the Au—Sn alloy plate is expensive and therefore not suitable for mass production. Next, the Al—Si alloy plate has a high melting point of 577 ° C. There is concern about performance degradation.
[0003]
In such a situation, in order to manufacture a Pb-free chip type semiconductor element that does not contain Pb, manufacture of a chip type semiconductor element using an alloy plate (brazing material) made of an eutectic composition of Al and Si. And Japanese Patent Application No. 2001-030579 using a method (Japanese Patent Application No. 2000-377699) and an alloy film having an eutectic composition of Al and Si by sputtering and using this film as a brazing material.
[0004]
FIG. 4 shows a sectional view of the structure of a chip type semiconductor device according to Japanese Patent Application No. 2000-377699. This is because “a main body 12 and a gate electrode 11 are formed by first depositing Al on one side of a semiconductor element body 10 composed of a plurality of N layers and P layers, and having corners covered with a passivation film 15. Then, after vapor-depositing Al on the other surface to form the main electrode 13, the thermal stress buffer plates made of Mo and Mo are respectively connected to both the main electrodes through the alloy plates 20 and 21 made of Al and Si, respectively. Chip type for adhering a thermal stress buffer plate in an inert or reducing atmosphere in a temperature range of 580 ° C. to 630 ° C. through Al layers 50 and 51 formed by depositing Al on one side of each of 30 and 31 Semiconductor device manufacturing method ". On the opposite side of the thermal stress buffer plates 30 and 31 from the Al layer, Ni layers 3 and 4 are formed by vapor deposition for soldering with external electrodes by the user.
[0005]
FIG. 5 shows a sectional view of the structure of a chip type semiconductor device according to Japanese Patent Application No. 2001-030579. This is “a main electrode made of an Al—Si alloy by sputtering an Al—Si alloy on one side of a semiconductor element body 10 composed of a plurality of N layers and P layers and having corners covered with a passivation film 15. 12 and the gate electrode 11 are formed, and an Al—Si alloy is sputtered on the opposite surface to form a main electrode 13 made of an Al—Si alloy, and then both the Al—Si alloy main electrode and the buffer plates 30 and 31 are formed. Bonding is performed in an inert or reducing atmosphere in a temperature range of 580 ° C. to 630 ° C. through Al—Si alloy films 50 and 51 formed by sputtering Al—Si on one surface of the buffer plate. A manufacturing method of a chip-type semiconductor element characterized by On the opposite side of the thermal stress buffer plates 30 and 31 from the Al—Si alloy layer, Ni layers 3 and 4 are formed for soldering with external electrodes by the user.
[0006]
[Problems to be solved by the invention]
In the chip type semiconductor device manufactured according to Japanese Patent Application Nos. 2000-377699 and 2001-030579, a thermal stress buffer plate joined to a main electrode is connected to an external electrode such as Cu by a low-temperature solder. The gate electrode is connected by Al wire bonding. However, for the purpose of improving the production efficiency for users, there has been a demand for connecting the gate electrode to an external electrode using low-temperature solder in the same manner as the main electrode. Therefore, the wettability quality of the low-temperature solder is insufficient if the film constituting the gate electrode is only an Al film. Therefore, it is necessary to first form a metal film such as Al on the semiconductor element as an ohmic contact, and then form a metal film having good wettability with respect to solder such as Ni or Ag.
[0007]
Generally, a metal film (electrode) such as Al formed on a semiconductor element by electron beam evaporation or sputtering passes through a sintering process after forming various electrodes through a photolithography process. This sintering process is performed to form an ohmic contact between Si and the electrode. In the case of Al, the sintering process is usually performed in a temperature range of 450 ° C. to 550 ° C.
[0008]
However, in the chip-type semiconductor element and the manufacturing method thereof according to Japanese Patent Application Nos. 2000-377699 and 2001-030579, the chip-type semiconductor element and the thermal stress buffer plate are joined by an Al-Si alloy plate or sputtering. Since the Al—Si alloy film is used, its melting point is about 577 ° C. Therefore, when bonding the thermal stress buffer plate, it is necessary to increase the temperature from 580 ° C. to 630 ° C. compared to the sintering temperature.
[0009]
Therefore, even if a metal film such as Ni or Ag is laminated on the final surface layer in consideration of the wettability of the low-temperature solder of the gate electrode, it is exposed to a high temperature of 580 ° C. to 630 ° C. if the combination is not appropriate. As a result, the laminated film is deteriorated and deteriorated, and there is a problem that the wettability of the solder deteriorates at the time of low-temperature soldering to the lead of the gate electrode.
[0010]
Further, since the treatment is performed at a high temperature of 580 ° C. to 630 ° C., a crack may occur in the semiconductor element immediately below the gate electrode film due to a difference in thermal expansion coefficient between the stacked films of the gate electrode.
[0011]
Therefore, the problem to be solved by the present invention is to improve the wettability of the low-temperature solder of the gate electrode after the thermal buffer plate bonding process at a high temperature of 580 ° C. to 630 ° C. The object is to propose a chip-type semiconductor element capable of preventing cracks due to shock and a method of manufacturing the same.
[0012]
[Means for Solving the Problems]
In order to solve this problem, the present invention is mainly composed of an Al film or an Al-Si alloy film on one side of a semiconductor element body, which is composed of a plurality of N layers and P layers, and whose corners are covered with a passivation film. An electrode and a gate electrode are formed, and a main electrode made of an Al film or an Al-Si alloy film is formed on the opposite surface, and a heat buffer plate is bonded to both the main electrodes via the Al film or the Al-Si alloy film. In the chip type semiconductor device, the Al film or Al-Si alloy film of the gate electrode is formed with a film thickness of 2 μm to 10 μm, and a Mo film with a film thickness of 2 μm or more is formed thereon, and the film thickness is formed thereon. Has a Ni film with a thickness of 1 μm or more, improves the wettability of the low-temperature solder of the gate electrode after bonding the thermal buffer plate at a high temperature of 580 ° C. to 630 ° C., and transfers it to the silicon substrate directly under the gate electrode of It is possible to prevent cracks due to over circle shock.
[0013]
Furthermore, the present invention provides an Al film or Al-Si alloy film having a film thickness of 2 μm to 10 μm on one side of a semiconductor element body comprising a plurality of N layers and P layers, the corners of which are covered with a passivation film. Three layers of a Mo film with a film thickness of 2 μm or more and a Ni film with a film thickness of 1 μm or more are laminated successively, and an Al film or an Al—Si alloy film is formed on the opposite surface. Masking the electrode and the gate electrode, the main electrode on the opposite surface, and etching the Al film or Al—Si alloy film , Mo film, and Ni film at other locations than necessary, so that the Al film or Al—Si is formed on one side. After forming the main electrode and gate electrode formed by laminating three layers of alloy film , Mo film and Ni film, and forming the main electrode made of Al film or Al-Si alloy film on the opposite surface, then one side Mask only the gate electrode of Consisting only of Al film or Al-Si alloy film of Ni film and Mo film of the main electrode formed by laminating three layers of one side of the Al film or Al-Si alloy film and the Mo film and the Ni film is removed by etching A manufacturing method of a chip type semiconductor device manufacturing method in which a main electrode is formed and a thermal buffer plate is bonded to both the main electrodes through an Al or Al-Si alloy film, and bonding at a high temperature of 580 ° C to 630 ° C The solder wettability of the gate electrode after processing can be improved, and cracks due to thermal shock to the silicon substrate directly under the gate electrode can be prevented.
[0014]
Furthermore, the present invention provides a semiconductor element body composed of a plurality of N layers and P layers, the corners of which are covered with a passivation film, and an Al film or an Al-Si alloy film, a Mo film, and a Ni film on one side. The layers are successively laminated so that the thicknesses thereof are Al film or Al—Si alloy film 2 to 10 μm, Mo film 2 μm or more, and Ni film 1 μm or more, and an Al film or Al—Si alloy film is formed on the opposite surface. The film is formed so as to have a thickness of 2 to 10 μm, and the main electrode on one side and the gate electrode, and the main electrode on the opposite side are masked by photolithography, and an Al film or an Al—Si alloy at a place other than necessary By etching the film, the Mo film, and the Ni film, the thickness of the three layers of the Al film or the Al—Si alloy film, the Mo film, and the Ni film on one side is Al film or the Al—Si alloy film of 2 to 10 μm, and the Mo film. A main electrode and a gate electrode having a thickness of 2 μm or more and a Ni film of 1 μm or more are formed, and then only one side of the gate electrode is masked and the one side of the Mo film and Ni film is removed by etching to obtain an Al film or an Al—Si alloy. A main electrode having a film thickness of 2 to 10 μm is formed, which improves solder wettability of the gate electrode after bonding at a high temperature of 580 ° C. to 630 ° C., and is applied to the silicon substrate directly under the gate electrode. Cracks due to thermal shock can be prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment will be described in detail with reference to FIG.
[0016]
(Embodiment 1)
FIG. 1 is a structural cross-sectional view of a triac (three-terminal bidirectional thyristor) according to a chip-type semiconductor element in an embodiment of the present invention.
[0017]
In FIG. 1, a semiconductor element body 10 is composed of a plurality of N layers and P layers, and corners thereof are covered with a passivation film 15, and 11 is an Al film or an Al—Si alloy film, a Mo film, and a Ni film. A gate electrode composed of three layers, 12 is a main electrode made of an Al film or an Al—Si alloy film, and 13 is a main electrode made of an Al film or an Al—Si alloy film on the opposite surface.
[0018]
FIG. 2 is a process diagram of a method for manufacturing a chip-type semiconductor element in the embodiment of the present invention.
[0019]
In FIG. 2, the manufacturing process will be described.
(1) First, an Al film or an Al-Si alloy film, a Mo film, and a Ni film are formed on one side of a semiconductor element body 10 that is composed of a plurality of N layers and P layers and whose corners are covered with a passivation film. The layers are laminated by sequential electron beam vacuum deposition or sputtering so that the thicknesses thereof are Al film or Al-Si alloy film 2 to 10 μm, Mo film 2 μm or more, and Ni film 1 μm or more, respectively. This surface is hereinafter referred to as A surface.
[0020]
(2) Next, an Al film or an Al—Si alloy film is deposited on the opposite surface by electron beam vacuum deposition or sputtering so as to have a thickness of 2 to 10 μm. This surface is hereinafter referred to as B surface.
[0021]
(3) The gate electrode and the main electrode are masked with respect to the A surface by the photolithography technique, and the main electrode is masked with respect to the B surface.
(4) For the A surface, the Ni film, the Mo film, the Al film, or the Al—Si alloy film is removed from the surface layer at portions other than the gate electrode and the main electrode. For the B surface, the Al film or the Al—Si alloy film other than the main electrode is removed.
[0022]
(5) Thereby, the main electrode 13 made of an Al film or an Al—Si alloy film on the B surface is formed,
(6) The gate electrode 11 and the main electrode are formed of the Al film or the Al-Si alloy film, the Mo film, and the Ni film on the A surface.
[0023]
(7) Next, only the gate electrode on the A surface is masked, and the Ni film and the Mo film are removed from the surface layer of the main electrode on the A surface by etching.
[0024]
(8) Thereby, the main electrode 12 made of the Al film or the Al—Si alloy film on the A surface is formed.
[0025]
In the present embodiment, the Si semiconductor element body 10 has a size of 9.2 mm square and a thickness of 360 μm, and the electrodes 12 and 13 made of an Al film or an Al—Si alloy film have a thickness of 2 to 10 μm.
[0026]
The ratio of the alloy consisting of Al and Si is 88% Al-12% Si, and is formed by electron beam vacuum deposition or sputtering. The thickness of the Al film or Al—Si alloy film is 2 μm to 10 μm, the thickness of the Mo film is 2 μm or more, and the thickness of the Ni film is 1 μm or more.
[0027]
When the thickness of the Al film or the Al—Si alloy film is 2 μm or less, the absolute amount of the electrode may be insufficient and the adhesive force may be lowered.
[0028]
In addition, when the thickness of the Mo film is 2 μm or less, during the high-temperature treatment at 580 ° C. to 630 ° C., the reaction caused by mutual diffusion of Al and Ni cannot be prevented, and for the compound formed thereby, The wettability of low-temperature solder becomes worse.
[0029]
Table 1 shows the results of examining the wettability of solder by the combination of gate electrodes and the presence or absence of cracks in the Si substrate. (1) is a good combination of both solder wettability and cracks. However, in cases (2) and (3), the silicon substrate does not crack, but the solder wettability is poor, and in case (4), the crack and solder wettability are both poor. In the case of (2), the wettability of the solder deteriorates because Al of the first layer reacts with Ni of the third layer, and in the case of (3), the first layer of Al and the third layer of Ni react. This is because Ag reacts through the thin Ti of the second layer, and in the case of (4), Al in the first layer and Ag in the second layer react. According to the phase diagram of Al and Ag, since there is a binary eutectic temperature at 588 ° C., Al and Ag diffuse and react with each other in the high temperature treatment from 580 ° C. to 630 ° C. Al and Ni have a binary eutectic temperature at 640 ° C., which is higher than the processing temperature, and the reaction can be suppressed as compared with the case of Al and Ag, but mutual diffusion occurs not a little. The compound of Al and Ni or Al and Ag formed in this way is inferior to the wettability of the solder compared to pure Ni or Ag.
[0030]
[Table 1]
Figure 0004055399
[0031]
In the above description, the chip-type semiconductor element body is configured with a triac. However, the present invention can be similarly applied to a thyristor as shown in FIG.
[0032]
【The invention's effect】
As described above, the chip-type semiconductor element of the present invention has a main electrode of an Al film or an Al-Si alloy film and three layers of an Al film or an Al-Si alloy film, a Mo film, and a Ni film laminated on one side of the semiconductor element. A main electrode of an Al film or an Al-Si alloy film formed on the opposite surface, and the method for manufacturing a chip-type semiconductor device of the present invention comprises an Al film or an Al-Si alloy on one side. Three layers of a film, a Mo film, and a Ni film are laminated by electron beam vacuum deposition or sputtering continuously so that the thicknesses are 2 to 10 μm, 2 μm or more, and 1 μm or more, respectively, and an Al film or Al film is formed on the opposite surface. -Si alloy film is formed by electron beam vacuum deposition or sputtering so that the thickness is 2 to 10 μm, and the main electrode and gate electrode on one side, opposite surface by photolithography technology By masking the main electrode and etching the Al film or Al-Si alloy film, Mo film, and Ni film at other locations than necessary, the single-sided Al film or Al-Si alloy film, the Mo film, and the Ni film The main electrode and the gate electrode are formed so that the thickness of the three layers is 2 to 10 μm, 2 μm or more, and 1 μm or more, and the thickness of the Al film or Al—Si alloy film is 2 to 10 μm on the opposite surface After forming a certain main electrode, only the gate electrode on one side is masked, and the Ni film among the main electrodes formed by laminating three layers of a single-sided Al film or Al-Si alloy film, Mo film and Ni film, Since this is a manufacturing method in which the Mo film is removed by etching to form a main electrode having an Al film or Al—Si alloy film thickness of 2 to 10 μm, this chip type semiconductor element using an Al—Si alloy plate and Al deposition By heat treatment 630 ° C. from 580 ° C. at the junction between the buffer plate (Mo plate), without Ni gate electrode surface is deteriorated, the wettability of the solder in the user side is improved. Moreover, the crack to Si can also be prevented by the heat processing of 580 to 630 degreeC.
[Brief description of the drawings]
1 is a structural cross-sectional view of a triac (three-terminal bidirectional thyristor) according to a chip-type semiconductor element in an embodiment of the present invention. FIG. 2 is a process diagram of a manufacturing method of the chip-type semiconductor element. FIG. 4 is a structural cross-sectional view of a thyristor (3-terminal unidirectional thyristor) related to a chip-type semiconductor element according to another embodiment of the invention. Cross-sectional view of the triac structure for the proposed chip-type semiconductor device [Explanation of symbols]
3, 4 Ni film 10 Semiconductor element body 12 Main electrode 11 made of Al film Gate electrode 13 made of Al film 13 Main electrode 15 made of Al film Passivation film 20, 21 Al-Si alloy plate 30, 31 Buffer plate 50, 51 Al film

Claims (3)

複数のN層とP層で構成され、その角部がパッシベーション膜で被覆されてなる半導体素子本体の片面にAl膜またはAl−Si合金膜からなる主電極およびゲート電極を形成し、かつ反対面にAl膜またはAl−Si合金膜からなる主電極を形成し、前記両主電極にAl膜またはAl−Si合金膜を介して熱緩衝板が接着されたチップ型半導体素子において、前記ゲート電極のAl膜またはAl−Si合金膜が2μm〜10μmの膜厚で形成され、その上に膜厚が2μm以上のMo膜が形成され、その上に膜厚が1μm以上のNi膜が形成されていることを特徴とするチップ型半導体素子。 A main electrode and a gate electrode made of an Al film or an Al-Si alloy film are formed on one side of a semiconductor element body composed of a plurality of N layers and P layers, the corners of which are covered with a passivation film, and the opposite side In a chip type semiconductor device in which a main electrode made of an Al film or an Al-Si alloy film is formed, and a heat buffer plate is bonded to both the main electrodes through an Al film or an Al-Si alloy film, the gate electrode An Al film or an Al—Si alloy film is formed with a thickness of 2 μm to 10 μm, a Mo film with a thickness of 2 μm or more is formed thereon, and a Ni film with a thickness of 1 μm or more is formed thereon. A chip-type semiconductor element characterized by the above. 複数のN層とP層で構成され、その角部がパッシベーション膜で被覆されてなる半導体素子本体の、片面に膜厚が2μm〜10μmのAl膜またはAl−Si合金膜と膜厚が2μm以上のMo膜と膜厚が1μm以上のNi膜の3層を連続して積層し、反対面にAl膜またはAl−Si合金膜を形成し、フォトリソグラフィ技術により、片面の主電極とゲート電極、反対面の主電極とをマスキングして、必要以外の箇所のAl膜またはAl−Si合金膜、Mo膜、Ni膜のエッチングを行うことで、片面にAl膜またはAl−Si合金膜とMo膜とNi膜の3層を積層してなる主電極とゲート電極を形成し、かつ反対面にはAl膜またはAl−Si合金膜からなる主電極を形成した後、次に片面のゲート電極のみをマスキングして片面のAl膜またはAl−Si合金膜とMo膜とNi膜の3層を積層してなる主電極のうちNi膜とMo膜をエッチングにより除去してAl膜またはAl−Si合金膜のみからなる主電極を形成し、前記両主電極にAlまたはAl−Si合金膜を介して熱緩衝板を接着するチップ型半導体装置の製造方法。A semiconductor element body composed of a plurality of N layers and P layers, the corners of which are covered with a passivation film, and an Al film or Al-Si alloy film with a film thickness of 2 to 10 μm on one side and a film thickness of 2 μm or more 3 layers of a Mo film and a Ni film having a thickness of 1 μm or more are continuously laminated , an Al film or an Al—Si alloy film is formed on the opposite surface, and a main electrode and a gate electrode on one side are formed by photolithography. The main electrode on the opposite surface is masked, and the Al film, Al-Si alloy film , Mo film, and Ni film are etched at places other than necessary, so that the Al film or Al-Si alloy film and the Mo film are formed on one surface. After forming a main electrode and a gate electrode formed by laminating three layers of Ni and Ni, and forming a main electrode made of an Al film or an Al-Si alloy film on the opposite surface, then only the gate electrode on one side is formed. one side of the Al Makuma and masking Forming a main electrode composed of only Al film or Al-Si alloy film of Ni film and Mo film is removed by etching of the main electrode formed by laminating three layers of Al-Si alloy film and the Mo film and the Ni film A method of manufacturing a chip-type semiconductor device, wherein a heat buffer plate is bonded to both the main electrodes via an Al or Al-Si alloy film . 前記チップ型半導体素子の電極膜を、電子線真空蒸着もしくは、スパッタリングにより形成したことを特徴とする請求項2記載のチップ型半導体素子の製造方法。3. The method of manufacturing a chip type semiconductor element according to claim 2, wherein the electrode film of the chip type semiconductor element is formed by electron beam vacuum vapor deposition or sputtering.
JP2001348438A 2001-11-14 2001-11-14 Chip-type semiconductor device and manufacturing method thereof Expired - Fee Related JP4055399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001348438A JP4055399B2 (en) 2001-11-14 2001-11-14 Chip-type semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001348438A JP4055399B2 (en) 2001-11-14 2001-11-14 Chip-type semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003152175A JP2003152175A (en) 2003-05-23
JP4055399B2 true JP4055399B2 (en) 2008-03-05

Family

ID=19161260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001348438A Expired - Fee Related JP4055399B2 (en) 2001-11-14 2001-11-14 Chip-type semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4055399B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073876B2 (en) * 2004-01-14 2008-04-09 三菱電機株式会社 Semiconductor device
CN117174747B (en) * 2023-11-03 2024-03-08 江苏捷捷微电子股份有限公司 Gate and anode coplanar bidirectional silicon controlled rectifier chip and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003152175A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
JP2984068B2 (en) Method for manufacturing semiconductor device
US6309965B1 (en) Method of producing a semiconductor body with metallization on the back side that includes a titanium nitride layer to reduce warping
JP4822155B2 (en) Submount and manufacturing method thereof
JP4055399B2 (en) Chip-type semiconductor device and manufacturing method thereof
JPH05226527A (en) Heat sink and semiconductor module using the same
JP4000877B2 (en) Chip-type semiconductor device and manufacturing method thereof
JP3937860B2 (en) Chip-type semiconductor device and manufacturing method thereof
JPH08102570A (en) Ceramic circuit board
JPH04295065A (en) Manufacture of ceramic-metal joined body
JP2001036084A (en) Back metal drain terminal with low stress and heat resistance
JP4123717B2 (en) Manufacturing method of chip type semiconductor device
KR0146356B1 (en) Brazing material for forming a bond between a semiconductor wafer and a metal contact
JPH0472764A (en) Rear electrode of semiconductor device
JP2950285B2 (en) Semiconductor element and method for forming electrode thereof
JPH0518477B2 (en)
JPS63289956A (en) Manufacture of schottky barrier diode
JP4085579B2 (en) Chip-type semiconductor device, manufacturing method thereof, and bonding jig assembly structure
JP2809799B2 (en) Semiconductor device
JP2715686B2 (en) Method for manufacturing ceramic-metal joined body
JPS61111580A (en) Lamination-adhesion method for thin film
JPH01209730A (en) Electrode structure of semiconductor device
JPS6337497B2 (en)
JPH05160288A (en) Manufacture of semiconductor device mounting substrate
JPH01223737A (en) Semiconductor substrate
JPS63161631A (en) Silicon semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees