JP4055312B2 - Fuel injection control device for supercharged diesel engine - Google Patents

Fuel injection control device for supercharged diesel engine Download PDF

Info

Publication number
JP4055312B2
JP4055312B2 JP34525799A JP34525799A JP4055312B2 JP 4055312 B2 JP4055312 B2 JP 4055312B2 JP 34525799 A JP34525799 A JP 34525799A JP 34525799 A JP34525799 A JP 34525799A JP 4055312 B2 JP4055312 B2 JP 4055312B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
amount
control
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34525799A
Other languages
Japanese (ja)
Other versions
JP2001159356A (en
Inventor
弘幸 佐野
徹 水城
信夫 青木
俊告 若松
武博 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP34525799A priority Critical patent/JP4055312B2/en
Publication of JP2001159356A publication Critical patent/JP2001159356A/en
Application granted granted Critical
Publication of JP4055312B2 publication Critical patent/JP4055312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過渡運転時の燃料噴射特性を改善し得る過給式ディーゼルエンジンの燃料噴射制御装置に関する。
【0002】
【従来の技術】
車両等に搭載される過給式ディーゼルエンジンにおいて、加速に代表されるエンジンの過渡運転時に、スモーク抑制と加速ショック低減とを図るため、いわゆる「なまし」制御を実行するものが知られている。これは図1(a),(c) に示すように、運転手が急激にアクセルを踏込んだときでも、燃料噴射量は(c) 図破線のように一気に増加させず、(c) 図実線のように徐々に増加させ、燃料過多によるスモークの発生及び加速ショックの発生を防止するものである。
【0003】
このとき、一定の制御時間Δt毎に所定噴射量ΔQずつ燃料噴射量Qを増量させ、燃料噴射量Qをエンジン運転状態(主にエンジン回転速度とアクセル開度)に応じて定まる基本噴射量QDES に向けて徐々に近付ける制御を行う。ΔQは今回と前回とのアクセル開度差及び過渡経過時間TACC とにより決定される。
【0004】
なお、図1(c) に示される燃料噴射量Qの増量の仕方は、図1(b) に実線で示される吸気圧(ブースト圧)の上昇に対して適正、即ちスモーク及び加速ショックのいずれも発生させず、加速レスポンスも満足させるものであるとする。図1(a),(b) から分かるように、ターボチャージャーを備えた過給式ディーゼルエンジンでは、アクセルの踏込みに対し吸気圧の上昇が遅れる傾向にある。
【0005】
【発明が解決しようとする課題】
ところで、スモークは、燃料噴射量がある一定の限界値を越えないと発生しない。従来のなまし制御は開始から終了まで常に少量ずつ燃料噴射量を増量する方法であったため、スモークに対する余裕があるにも拘らず少量の燃料噴射しか行っていない場合があり、このときなまし制御を終えるのに時間が掛かり、加速レスポンスが悪くなるという欠点がある。
【0006】
一方、従来のなまし制御には以下の問題もある。即ち、図1(c) に示すような増量の仕方に対し図1(b) 実線で示すような吸気圧の上昇なら問題ないが、図1(b) の破線A,Bで示されるような場合だと、Aの場合では燃料が少なすぎ、Bの場合では燃料過多となる。スモーク限界は吸気量に応じて定まり、吸気量の大小は吸気圧の大小に対応するので、Aの場合だと、吸気量が多くスモーク限界にまだ余裕があるにも拘らず燃料が少な過ぎ、Bの場合だと吸気量が少ないのに過剰の燃料を噴射していることになる。これだと、Aの場合では加速レスポンスが悪化し、Bの場合ではスモークが発生するという問題が生じる。
【0007】
つまり、従来は各回増量値ΔQがアクセル開度差と過渡経過時間TACC とにより決定されており、吸気量は全く考慮されていなかった。このため吸気量に対して燃料が不足気味となったり過剰となったりして加速レスポンスとスモークとの両立が難しかった。
【0008】
特に、加速時の吸気圧上昇の様子はエンジン運転状態や車両走行状態等に応じて変化し一定ではない。このため上記のように一定のアクセル踏込みを行っても吸気圧上昇の様子が異なるという事態は往々にして起こり得る。従ってこのような事態に対処しないとなまし制御を行う意味も半減してしまう。
【0009】
そこで、本発明の目的は、エンジンの過渡運転時にスモーク及び加速レスポンスの両立を図れる過給式ディーゼルエンジンの燃料噴射制御装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、エンジン過渡運転時に燃料噴射量を基本噴射量に向けて徐々に変化させるなまし制御を実行する過給式ディーゼルエンジンの燃料噴射制御装置において、燃料噴射量を上記基本噴射量に向けて徐々に変化させる際に、上記なまし制御の初回の燃料噴射量を、エンジン回転速度に応じた値である過渡運転時初期噴射量を用いて決定し、かつ上記なまし制御における2回目以降の燃料噴射量を決定する際に、スモークの発生を防止するために、2回目以降の各回ごとに、上記なまし制御における燃料噴射量の変化率を規定するなまし変化量を、各回のエンジン回転速度と、各回の吸気圧または吸気量とに基づき決定し、その決定した各回のなまし変化量を前回の燃料噴射量に加えたものを2回目以降の各回の燃料噴射量とものである。
【0011】
上記なまし制御の初回の燃料噴射量は、なまし制御実行直前の燃料噴射量と上記過渡運転時初期噴射量とのいずれか大きい方とするのが好ましい。
【0012】
上記過渡運転時初期噴射量は、エンジン中高回転域のときに比べ低回転域のときの方が多量であるのが好ましい。
【0013】
上記なまし変化量は、上記エンジン回転速度が大きいほど、また上記吸気圧が大きい或いは上記吸気量が多いほど、多量であるのが好ましい。
【0014】
上記過給式ディーゼルエンジンが車両に搭載されたものであり、上記エンジン過渡運転時が上記車両のアクセルペダルの踏み込みによる車両加速時であってもよい。
【0015】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳述する。
【0016】
図3に本実施形態に係る燃料噴射制御装置の構成を示す。図示するように、ディーゼルエンジン1にターボチャージャー2が設けられ、そのタービン3が排気通路4の途中に、コンプレッサ5が吸気通路12の途中に設けられる。エンジンの燃料噴射制御を司る電子制御ユニット(以下ECUという)6が設けられ、ECU6にはアクセル開度センサ7、エンジン回転速度センサ8、吸気圧(ブースト圧)センサ9及びインジェクタ10が接続される。インジェクタ10は燃料供給装置11から所定の噴射圧力の燃料を供給されると共に、ECU6によってON/OFFされて燃料噴射を実行・停止する。燃料供給装置11にはコモンレール式、噴射ポンプ式等様々なタイプのものが考えられるが、ここではコモンレール式を採用し、インジェクタ10のON/OFFにより燃料噴射の実行・停止を切り換えている。噴射ポンプ式を採用した場合は破線で示すようにECU6から燃料供給装置11の電子ガバナ等に制御信号を送出することになる。本装置はここでは車両に搭載される。
【0017】
次に、本装置による燃料噴射制御の内容を説明する。図1に示すように、本装置では、所定の制御時間Δt(=数10msec程度)毎にECU6による演算が実行され、燃料噴射量Qが算出されるというデジタル処理が実行される。以下の説明において各回の処理を添字-10 +1i-1 i i+1 のように表す。ここでは運転手がアクセルペダルを踏み込んでエンジンを加速させようとした状況を例示する。
【0018】
アクセルペダルの踏み込みにより、アクセル開度センサ7の出力(アクセル開度Accp )が時刻t0 で立ち上がったとする。するとECU6により過渡判定有と判断され、なまし制御が実行される。このとき本装置では(d) 図に示すように初回の燃料噴射量をQTRANSSとし、初回噴射量を一気に立ち上げ、従来((c) 図)よりも多量の燃料を噴射するようにしている。
【0019】
このQTRANSSは過渡運転時初期噴射量と称され、図示しない2次元マップから各エンジン回転速度毎に定められる値である。また同時に、いかなる吸気量であってもスモークを発生させないようなできるだけ大きな値である。このようなQTRANSSを初回に噴射するとスモークの発生を防止しつつ加速レスポンスを向上できる。
【0020】
こうして初回の噴射を終えたら、従来同様、燃料噴射量Qを基本噴射量QDES に向けて徐々に(所定の変化率で)増量させる制御を行う。このとき燃料は各回毎にDELQTRA ずつ増量される。基本噴射量QDES はエンジン運転状態、即ちエンジン回転速度NEとアクセル開度Accp とから主に定まり、図示しない3次元マップから与えられる。
【0021】
一方、DELQTRA はなまし変化量と称し、エンジン回転速度NEと、吸気状態を示す値(ここでは吸気圧PIM)とをパラメータとする図示しない3次元マップから与えられる値である。このようにここでは吸気状態を考慮して増量値ないし燃料噴射量の変化率を決めるようにしている。
【0022】
このような(d) 図に示す制御は、過渡判定直前の燃料噴射量QFIN -1がQTRANSSより小さい場合の制御である。これに対し運転状態によってはその直前の噴射量QFIN -1がQTRANSSより大きいときもある。これを示したのが(e) 図で、このときはその直前噴射量QFIN -1をそのまま初回の噴射量として加速レスポンスを向上すると共に、制御の容易化を図っている。
【0023】
以上が本発明の制御の概要である。以下、図2のフローチャートに従って本制御の詳細を説明する。
【0024】
まずECU6はステップ201で過渡判定の有無を判断する。即ち、今回のアクセル開度Accp i と前回のアクセル開度Accp i-1 との差(Accp i −Accp i-1 )を求め、これが予め定められた過渡判定しきい値ΔAccp より大きければ過渡判定有と判断する。図1の例では、時刻t0 で(Accp 0 −Accp -1)>ΔAccp が成立しており、エンジンの過渡運転が発生している。過渡判定有のときはステップ202に、過渡判定無しのときはステップ210に進む。
【0025】
過渡判定有のとき、ステップ202において、エンジン回転速度NEの値からマップに従って過渡運転時初期噴射量QTRANSSを求める。次に203において、このQTRANSSと前回の最終目標噴射量QFIN i-1 とを比較する。図1の時刻t0 の時点では前回の最終目標噴射量はQFIN -1である。QTRANSS≧QFIN i-1 のときはステップ204に進んでQTRANSSをそのまま今回のなまし噴射量QTRANS に置き換え、QTRANSS<QFIN i-1 のときはステップ205に進んでQFIN i-1 を今回のなまし噴射量QTRANS とする。これにより図1(d) 又は(e) に示すような初回噴射量の切換えを行うことができる。
【0026】
こうして今回のなまし噴射量QTRANS が求まったらステップ206に進んでQTRANS を今回の最終目標噴射量QFIN i とし、ステップ207でなまし制御実行フラグFlagをON(1)にし、ステップ217でQFIN i による燃料噴射を実行し、ステップ218で今回の最終目標噴射量QFIN i を前回の最終目標噴射量QFIN i-1 に置き換える。こうしてなまし制御初回の燃料噴射が終了したらステップ201に戻って2回目の燃料噴射のための演算を実行する。
【0027】
図1の時刻t+1の時点で示されるように、2回目の制御ではもはやアクセル開度差がなくなっているため、ステップ201で過渡判定無と判断される。このときはステップ210に進み、エンジン回転速度NEとアクセル開度Accp との値からマップに従って基本噴射量QDES を求める。次に、ステップ211でなまし制御実行フラグFlagがON(1)か否かを判断する。ここでは初回の制御で既にONとなっているのでステップ212に進む。
【0028】
ステップ212においては、エンジン回転速度NEと吸気圧PIMとの値からマップに従ってなまし変化量DELQTRA を求める。そして次にステップ213に進み、今回のなまし噴射量QTRANS を式QTRANS =QFIN i-1 +DELQTRA に従って算出する。なお時刻t+1の時点でQFIN i-1 は時刻t0 の時点での初回燃料噴射量を意味し、図1(d) の例ではQFIN i-1 =QTRANSS、図1(e) の例ではQFIN i-1 =QFIN -1である。
【0029】
こうしてQTRANS が求まったらステップ214に進み、QTRANS とQDES とを比較する。これはQTRANS が、アクセル開度Accp に基づく値であるQDES に到達したか否かを判断し、なまし制御を終了すべきか否かを判断するためである。図1(d),(e) に示されるように2回目の制御ではまだQTRANS <QDES である。よってこのときはステップ206以降へと進み、QTRANS を今回の最終目標噴射量QFIN i としてこれによる燃料噴射を実行する。
【0030】
以上のルートを繰り返すと各回毎にDELQTRA ずつ燃料噴射量が増量されていく。そしてやがてステップ214でQTRANS ≧QDES が成立したら、ステップ215に進み、なまし制御実行フラグFlagをOFF (0)にし、ステップ216で基本噴射量QDES を今回の最終目標噴射量QFIN i に置き換えてステップ217でこれによる燃料噴射を実行する。このようになまし噴射量QTRANS が基本噴射量QDES に到達した時点でなまし制御は終了する。
【0031】
以降、ステップ218、201、210というルートを経てステップ211に至る。ここでは既になまし制御実行フラグFlagがOFF となっているのでステップ216に進み、基本噴射量QDES を今回の最終目標噴射量QFIN i として通常の燃料噴射制御に戻る。これによりアクセル開度Accp に従った燃料噴射制御が実行されることになる。
【0032】
このように、本装置によれば、初回の燃料噴射量を、エンジン回転速度NEに応じて定まる過渡運転時初期噴射量QTRANSSを用いて決定するようにしたので、初回の噴射量を従来に比し適度に増量することができ、スモークの発生を防止しつつ加速レスポンスを向上することができる。また初回噴射量を増量した分、なまし制御に要する全体時間も短縮することができ、これによっても加速レスポンスを向上できる。
【0033】
一方、2回目以降の制御において、燃料噴射量の変化率を規定するなまし変化量DELQTRA を吸気状態、ここでは吸気圧Pに基づいて決定するようにしたため、図1(b) のように吸気状態の変化があった場合でもこれに追従して最適な増量を行える。これにより燃料過多によるスモーク発生や、燃料不足による加速レスポンスの悪化を防止することができる。
【0034】
なお、過剰な燃料噴射が防止される結果燃費が改善されると共に、白煙の発生も防止できる。なまし制御を行っているので当然加速ショックの心配はない。
【0035】
ここで、なまし変化量DELQTRA の算出マップにおいて、なまし変化量DELQTRA は吸気圧PIMが大きい程多量の値が入力されている。これは吸気圧PIMが大きい程吸気量も多く、多量の燃料噴射を行ってもスモークが発生しないからである。また当該算出マップにおいて、なまし変化量DELQTRA はエンジン回転速度NEが大きい程多量の値が入力されている。これは高回転程必要空気のリカバリーが早く、言い換えれば吸気圧の立上がりが早く、多量ずつ増量しても問題ないからである。
【0036】
一方、過渡運転時初期噴射量QTRANSSの算出マップにおいて、過渡運転時初期噴射量QTRANSSの値はエンジン回転速度が中高回転域の場合より低回転域の場合の方が多量の値が入力されている。これは、低回転域では発進のため高トルクが必要で燃料量も多く必要だからであり、中高回転域は車両を走行する上で常用領域となるためスモークを確実に防止しなければならないからである。
【0037】
本装置を実際に実施してみたところ、過渡運転時のPHSメータによるスモークは10%だったものが全回転域5%に改善できた。またスモークが減少した分燃費も向上した。
【0038】
以上、本発明の実施の形態は上述のものに限られない。例えば吸気圧PIMでなく吸気量を直接検出してこれによりなまし変化量DELQTRA を決定してもよい。ステップ201の過渡判定の有無はアクセル開度差のほか、燃料噴射量の今回値と前回値との差等によっても判断できる。本実施形態は加速の場合を示したが、減速の場合にも本発明は適用できるものである。
【0039】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0040】
(1) 過渡運転時においてスモークと加速レスポンスとを両立できる。
【0041】
(2) 燃費を改善でき、白煙の発生を防止できる。
【図面の簡単な説明】
【図1】実施形態に係る燃料噴射制御の内容を示すタイムチャートである。
【図2】同フローチャートである。
【図3】実施形態に係る過給式ディーゼルエンジンの燃料噴射制御装置の構成図である。
【符号の説明】
1 ディーゼルエンジン
2 ターボチャージャ
6 電子制御ユニット
7 アクセル開度センサ
8 エンジン回転速度センサ
9 吸気圧センサ
Accp アクセル開度
ΔAccp 過渡判定しきい値
NE エンジン回転速度
PIM 吸気圧
Q 燃料噴射量
QDES 基本噴射量
QFIN -1 なまし制御実行直前の燃料噴射量
QTRANSS 過渡運転時初期噴射量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for a supercharged diesel engine that can improve fuel injection characteristics during transient operation.
[0002]
[Prior art]
In a supercharged diesel engine mounted on a vehicle or the like, a so-called “smoothing” control is known to suppress smoke and reduce acceleration shock during transient operation of an engine represented by acceleration. . As shown in FIGS. 1 (a) and 1 (c), even when the driver suddenly steps on the accelerator, the fuel injection amount does not increase at a stretch as shown in the broken line (c). It gradually increases as shown by the solid line to prevent the occurrence of smoke and acceleration shock due to excessive fuel.
[0003]
At this time, the fuel injection amount Q is increased by a predetermined injection amount ΔQ every fixed control time Δt, and the fuel injection amount Q is determined according to the engine operating state (mainly engine speed and accelerator opening). The control which approaches gradually toward is performed. ΔQ is determined by the accelerator opening difference between the current time and the previous time and the transient elapsed time TACC.
[0004]
The method of increasing the fuel injection amount Q shown in FIG. 1 (c) is appropriate for the increase of the intake pressure (boost pressure) shown by the solid line in FIG. 1 (b). It is assumed that the acceleration response is also satisfied. As can be seen from FIGS. 1 (a) and 1 (b), in a supercharged diesel engine equipped with a turbocharger, the rise in intake pressure tends to be delayed with respect to the depression of the accelerator.
[0005]
[Problems to be solved by the invention]
By the way, smoke does not occur unless the fuel injection amount exceeds a certain limit value. The conventional smoothing control is a method that always increases the fuel injection amount by small amounts from the start to the end, so there are cases where only a small amount of fuel injection is performed even though there is room for smoke. It takes time to finish the process, and the acceleration response becomes worse.
[0006]
On the other hand, the conventional annealing control has the following problems. That is, there is no problem if the intake pressure rises as shown by the solid line in FIG. 1 (b) with respect to the way of increasing as shown in FIG. 1 (c), but as shown by the broken lines A and B in FIG. 1 (b). In the case of A, the amount of fuel is too small, and in the case of B, the amount of fuel is excessive. The smoke limit is determined according to the intake amount, and the magnitude of the intake amount corresponds to the magnitude of the intake pressure, so in the case of A, there is too little fuel even though the intake amount is large and there is still room for the smoke limit, In the case of B, an excessive amount of fuel is injected even though the intake air amount is small. In this case, in the case of A, the acceleration response deteriorates, and in the case of B, there arises a problem that smoke is generated.
[0007]
That is, conventionally, each increase value ΔQ is determined by the accelerator opening difference and the transient elapsed time TACC, and the intake amount is not considered at all. For this reason, the fuel becomes insufficient or excessive with respect to the intake air amount, making it difficult to achieve both acceleration response and smoke.
[0008]
In particular, the intake pressure rise during acceleration changes according to the engine operating state, the vehicle running state, and the like and is not constant. For this reason, even when a certain accelerator depression is performed as described above, the situation in which the intake pressure rises differently often occurs. Therefore, if the situation is not dealt with, the meaning of the spoofing control will be halved.
[0009]
Accordingly, an object of the present invention is to provide a fuel injection control device for a supercharged diesel engine capable of achieving both smoke and acceleration response during engine transient operation.
[0010]
[Means for Solving the Problems]
The present invention relates to a fuel injection control device for a supercharged diesel engine that performs smoothing control for gradually changing the fuel injection amount toward the basic injection amount during engine transient operation, in which the fuel injection amount is directed to the basic injection amount. gradually when changing the fuel injection amount for the first time the smoothing control was determined using the transient operation at the initial injection amount is a value corresponding to the engine rotational speed, and second and subsequent in the smoothing control Te In order to prevent the occurrence of smoke when determining the fuel injection amount of the engine, the smoothing change amount defining the rate of change of the fuel injection amount in the smoothing control is determined for each engine every time after the second time. those with rotational speed, determined on the basis of the each round of intake pressure or intake air quantity, shall be the thus determined each time of smoothing the variation of the second and subsequent each fuel injection quantity obtained by adding the fuel injection amount of the previous In .
[0011]
It is preferable that the initial fuel injection amount in the smoothing control is the larger of the fuel injection amount immediately before execution of the smoothing control and the initial injection amount in the transient operation.
[0012]
It is preferable that the initial injection amount during transient operation is larger in the low rotation range than in the middle and high rotation range of the engine.
[0013]
The amount of change in annealing is preferably larger as the engine speed is higher, the intake pressure is higher, or the intake amount is larger .
[0014]
The supercharged diesel engine may be mounted on a vehicle, and the engine transient operation may be during vehicle acceleration due to depression of an accelerator pedal of the vehicle .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0016]
FIG. 3 shows the configuration of the fuel injection control apparatus according to this embodiment. As shown in the figure, a turbocharger 2 is provided in the diesel engine 1, a turbine 3 is provided in the middle of the exhaust passage 4, and a compressor 5 is provided in the middle of the intake passage 12. An electronic control unit (hereinafter referred to as ECU) 6 that controls engine fuel injection control is provided, and an accelerator opening sensor 7, an engine rotation speed sensor 8, an intake pressure (boost pressure) sensor 9, and an injector 10 are connected to the ECU 6. . The injector 10 is supplied with fuel at a predetermined injection pressure from the fuel supply device 11 and is turned ON / OFF by the ECU 6 to execute and stop fuel injection. Although various types such as a common rail type and an injection pump type can be considered as the fuel supply device 11, a common rail type is adopted here, and execution / stop of fuel injection is switched by ON / OFF of the injector 10. When the injection pump type is adopted, a control signal is sent from the ECU 6 to the electronic governor or the like of the fuel supply device 11 as indicated by a broken line. This apparatus is mounted on a vehicle here.
[0017]
Next, the contents of the fuel injection control by this apparatus will be described. As shown in FIG. 1, in this apparatus, a digital process is performed in which the calculation by the ECU 6 is performed every predetermined control time Δt (= about several tens of msec) and the fuel injection amount Q is calculated. In the following description, each process is expressed as subscripts -1 , 0 , +1 ... I-1 , i , i + 1 . Here, a situation is illustrated in which the driver has depressed the accelerator pedal to accelerate the engine.
[0018]
It is assumed that the output of the accelerator opening sensor 7 (accelerator opening Accp) rises at time t 0 due to depression of the accelerator pedal. Then, the ECU 6 determines that there is a transient determination, and the smoothing control is executed. At this time, in this apparatus, as shown in FIG. 4D, the initial fuel injection amount is set to QTRANSS, the initial injection amount is raised at once, and a larger amount of fuel is injected than in the prior art (FIG. 2C).
[0019]
This QTRANSS is called an initial injection amount during transient operation, and is a value determined for each engine speed from a two-dimensional map (not shown). At the same time, it is as large as possible so as not to generate smoke at any intake air amount. When such QTRANSS is injected for the first time, the acceleration response can be improved while preventing the occurrence of smoke.
[0020]
When the first injection is thus completed, the control is performed to gradually increase the fuel injection amount Q toward the basic injection amount QDES (at a predetermined change rate) as in the conventional case. At this time, the fuel is increased by DELQTRA each time. The basic injection amount QDES is mainly determined from the engine operating state, that is, the engine speed NE and the accelerator opening degree Accp, and is given from a three-dimensional map (not shown).
[0021]
On the other hand, DELQTRA is referred to as an amount of change in smoothing, and is a value given from a three-dimensional map (not shown) that uses the engine speed NE and a value indicating the intake state (here, intake pressure PIM) as parameters. As described above, the increase value or the rate of change of the fuel injection amount is determined in consideration of the intake state.
[0022]
The control shown in FIG. 6D is control when the fuel injection amount QFIN −1 immediately before the transition determination is smaller than QTRANSS. On the other hand, depending on the operating condition, the injection quantity QFIN -1 immediately before that may be larger than QTRANSS. This is shown in FIG. 9 (e). In this case, the immediately preceding injection amount QFIN -1 is used as it is as the initial injection amount to improve the acceleration response and facilitate control.
[0023]
The above is the outline of the control of the present invention. Details of this control will be described below with reference to the flowchart of FIG.
[0024]
First, the ECU 6 determines whether or not there is a transient determination in step 201. That is, the difference (Accp i -Accp i-1 ) between the current accelerator opening degree Accp i and the previous accelerator opening degree Accp i-1 is obtained, and if this is greater than a predetermined transient judgment threshold value ΔAccp, a transient judgment is made. Judged to be present. In the example of FIG. 1, (Accc 0 −Accp −1 )> ΔAccp is established at time t 0 , and engine transient operation occurs. When the transient determination is present, the process proceeds to step 202, and when there is no transient determination, the process proceeds to step 210.
[0025]
When the transient determination is present, in step 202, the initial injection amount QTRANSS during transient operation is obtained from the value of the engine speed NE according to the map. Next, at 203, this QTRANSS is compared with the previous final target injection amount QFIN i-1 . At the time t 0 in FIG. 1, the previous final target injection amount is QFIN −1 . If QTRANSS ≧ QFIN i-1 , proceed to step 204 and replace QTRANSS with the current smoothing injection amount QTRANS as it is. If QTRANSS <QFIN i-1 , proceed to step 205 and smooth QFIN i-1 this time. The injection amount is QTRANS. As a result, the initial injection amount can be switched as shown in FIG. 1 (d) or (e).
[0026]
The thus QTRANS proceeds to step 206 When Motoma' is this smoothing injection quantity QTRANS the current final target injection amount QFIN i, the smoothing control execution flag Flag at step 207 to ON (1), by QFIN i in step 217 Fuel injection is executed, and in step 218, the current final target injection amount QFIN i is replaced with the previous final target injection amount QFIN i-1 . When the first fuel injection in the smoothing control is completed in this way, the process returns to step 201 to execute the calculation for the second fuel injection.
[0027]
As shown at the time t + 1 in FIG. 1, since there is no longer any difference in accelerator opening in the second control, it is determined in step 201 that there is no transient determination. At this time, the routine proceeds to step 210, where the basic injection amount QDES is determined according to the map from the values of the engine speed NE and the accelerator opening degree Accp. Next, in step 211, it is determined whether or not the annealing control execution flag Flag is ON (1). Here, since it is already ON in the first control, the process proceeds to step 212.
[0028]
In step 212, the smoothing change amount DELQTRA is obtained from the values of the engine speed NE and the intake pressure PIM according to the map. Next, the routine proceeds to step 213, where the current smoothing injection amount QTRANS is calculated according to the equation QTRANS = QFIN i-1 + DELQTRA. Note QFIN i-1 at time t +1 means first fuel injection amount at time t 0, Example QFIN i-1 = QTRANSS is in FIG. 1 (d), examples shown in FIG. 1 (e) Then, QFIN i-1 = QFIN -1 .
[0029]
When QTRANS is obtained in this way, the routine proceeds to step 214, where QTRANS and QDES are compared. This is to determine whether or not QTRANS has reached QDES, which is a value based on the accelerator opening degree Accp, and whether or not the smoothing control should be terminated. As shown in FIGS. 1D and 1E, QTRANS <QDES is still satisfied in the second control. Therefore, at this time, the routine proceeds to step 206 and subsequent steps, and fuel injection is executed with QTRANS as the final target injection amount QFIN i of this time.
[0030]
When the above route is repeated, the fuel injection amount is increased by DELQTRA each time. Then, when QTRANS ≧ QDES is established in step 214, the process proceeds to step 215, the smoothing control execution flag Flag is turned OFF (0), and in step 216, the basic injection amount QDES is replaced with the current final target injection amount QFIN i. At 217, the fuel injection is executed. Thus, the smoothing control ends when the smoothing injection amount QTRANS reaches the basic injection amount QDES.
[0031]
Thereafter, step 211 is reached via routes 218, 201, and 210. Here, since the smoothing control execution flag Flag is already OFF, the routine proceeds to step 216, where the basic injection amount QDES is set as the final target injection amount QFIN i this time, and the normal fuel injection control is returned. As a result, the fuel injection control according to the accelerator opening degree Accp is executed.
[0032]
As described above, according to the present apparatus, the initial fuel injection amount is determined using the transient operation initial injection amount QTRANSS determined according to the engine rotational speed NE. The amount can be increased moderately, and the acceleration response can be improved while preventing the occurrence of smoke. In addition, since the initial injection amount is increased, the total time required for the smoothing control can be shortened, and the acceleration response can be improved accordingly.
[0033]
On the other hand, in the second and subsequent controls, the smoothing change amount DELQTRA that regulates the rate of change of the fuel injection amount is determined based on the intake state, here, the intake pressure P. Therefore, as shown in FIG. Even if there is a change in the state, an optimal increase can be made following this. As a result, it is possible to prevent the occurrence of smoke due to excessive fuel and the deterioration of acceleration response due to insufficient fuel.
[0034]
In addition, as a result of preventing excessive fuel injection, fuel consumption is improved and generation of white smoke can also be prevented. Of course, there is no worry about acceleration shock because it is controlled.
[0035]
Here, in the calculation map of the smoothing change amount DELQTRA, the smoothing change amount DELQTRA is inputted with a larger value as the intake pressure PIM is larger. This is because the larger the intake pressure PIM, the larger the intake amount, and smoke does not occur even when a large amount of fuel is injected. In the calculation map, as the engine speed NE increases, a larger amount of the smoothing change amount DELQTRA is input. This is because the required air recovers faster as the engine rotates at a higher speed, in other words, the intake pressure rises faster, and there is no problem even if the amount is increased by a large amount.
[0036]
On the other hand, in the calculation map for the transient operation initial injection amount QTRANSS, the value of the transient operation initial injection amount QTRANSS is greater when the engine speed is in the low rotation range than in the middle and high rotation range. . This is because high torque is required and a large amount of fuel is required for starting in the low rotation range, and smoke is to be surely prevented because the medium and high rotation range is a normal use range when driving the vehicle. is there.
[0037]
When this device was actually implemented, the smoke by the PHS meter during transient operation was improved from 10% to 5% in the total rotation range. In addition, fuel consumption has been improved as smoke is reduced.
[0038]
As described above, the embodiment of the present invention is not limited to the above. For example, the intake air amount may be directly detected instead of the intake pressure PIM, and the smoothing change amount DELQTRA may be determined based on the detected intake air amount. The presence / absence of the transient determination in step 201 can be determined not only by the accelerator opening difference but also by the difference between the current value and the previous value of the fuel injection amount. Although the present embodiment shows the case of acceleration, the present invention can also be applied to the case of deceleration.
[0039]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0040]
(1) It is possible to achieve both smoke and acceleration response during transient operation.
[0041]
(2) The fuel consumption can be improved and the generation of white smoke can be prevented.
[Brief description of the drawings]
FIG. 1 is a time chart showing the contents of fuel injection control according to an embodiment.
FIG. 2 is a flowchart of the same.
FIG. 3 is a configuration diagram of a fuel injection control device for a supercharged diesel engine according to an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Turbocharger 6 Electronic control unit 7 Accelerator opening sensor 8 Engine speed sensor 9 Intake pressure sensor Accp Accelerator opening ΔAccp Transient judgment threshold
NE Engine speed PIM Intake pressure Q Fuel injection amount QDES Basic injection amount QFIN -1 Fuel injection amount immediately before execution of smoothing control QTRANSS Initial injection amount during transient operation

Claims (5)

エンジン過渡運転時に燃料噴射量を基本噴射量に向けて徐々に変化させるなまし制御を実行する過給式ディーゼルエンジンの燃料噴射制御装置において、
燃料噴射量を上記基本噴射量に向けて徐々に変化させる際に、
上記なまし制御の初回の燃料噴射量を、エンジン回転速度に応じた値である過渡運転時初期噴射量を用いて決定し、かつ
上記なまし制御における2回目以降の燃料噴射量を決定する際に、スモークの発生を防止するために、
2回目以降の各回ごとに、上記なまし制御における燃料噴射量の変化率を規定するなまし変化量を、各回のエンジン回転速度と、各回の吸気圧または吸気量とに基づき決定し、その決定した各回のなまし変化量を前回の燃料噴射量に加えたものを2回目以降の各回の燃料噴射量とることを特徴とする過給式ディーゼルエンジンの燃料噴射制御装置。
In a fuel injection control device for a supercharged diesel engine that performs smoothing control for gradually changing the fuel injection amount toward the basic injection amount during engine transient operation,
When gradually changing the fuel injection amount toward the basic injection amount,
The fuel injection amount for the first time the smoothing control was determined using the transient operation at the initial injection amount is a value corresponding to the engine rotational speed, and
In order to prevent the occurrence of smoke when determining the fuel injection amount for the second and subsequent times in the annealing control,
For each of the second and subsequent rounds, the amount of smoothing that defines the rate of change in the fuel injection amount in the smoothing control is determined based on the engine speed of each time and the intake pressure or amount of each time. were each round of averaging the variation of the previous ones plus the fuel injection amount, wherein the second and subsequent each fuel injection amount and to Turkey supercharged fuel injection control apparatus for a diesel engine.
上記なまし制御の初回の燃料噴射量を、なまし制御実行直前の燃料噴射量と上記過渡運転時初期噴射量とのいずれか大きい方とする請求項1記載の過給式ディーゼルエンジンの燃料噴射制御装置。  2. The fuel injection of a supercharged diesel engine according to claim 1, wherein the initial fuel injection amount of the smoothing control is set to a larger one of the fuel injection amount immediately before execution of the smoothing control and the initial injection amount during the transient operation. Control device. 上記過渡運転時初期噴射量は、エンジン中高回転域のときに比べ低回転域のときの方が多量である請求項1又は2記載の過給式ディーゼルエンジンの燃料噴射制御装置。  3. The fuel injection control device for a supercharged diesel engine according to claim 1, wherein the initial injection amount during transient operation is larger in the low rotation range than in the middle and high rotation range of the engine. 上記なまし変化量は、上記エンジン回転速度が大きいほど、また上記吸気圧が大きい或いは上記吸気量が多いほど、多量である請求項1から3いずれかに記載の過給式ディーゼルエンジンの燃料噴射制御装置。 The fuel injection of the supercharged diesel engine according to any one of claims 1 to 3 , wherein the amount of change in smoothing increases as the engine speed increases, and as the intake pressure increases or the intake amount increases. Control device. 上記過給式ディーゼルエンジンが車両に搭載されたものであり、上記エンジン過渡運転時が上記車両のアクセルペダルの踏み込みによる車両加速時である請求項1からいずれかに記載の過給式ディーゼルエンジンの燃料噴射制御装置。 The supercharged diesel engine according to any one of claims 1 to 4, wherein the supercharged diesel engine is mounted on a vehicle, and the engine transient operation is during vehicle acceleration due to depression of an accelerator pedal of the vehicle. Fuel injection control device.
JP34525799A 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine Expired - Fee Related JP4055312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34525799A JP4055312B2 (en) 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34525799A JP4055312B2 (en) 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine

Publications (2)

Publication Number Publication Date
JP2001159356A JP2001159356A (en) 2001-06-12
JP4055312B2 true JP4055312B2 (en) 2008-03-05

Family

ID=18375381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34525799A Expired - Fee Related JP4055312B2 (en) 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine

Country Status (1)

Country Link
JP (1) JP4055312B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652233B2 (en) 2002-01-14 2003-11-25 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6732521B2 (en) 2002-08-16 2004-05-11 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6883316B2 (en) 2003-06-23 2005-04-26 Toyota Uidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6837225B1 (en) 2003-07-29 2005-01-04 Toyota Jidosha Kabushiki Kaisha Fuel supply control device for a turbo-charged diesel aircraft engine
JP4701683B2 (en) * 2004-11-12 2011-06-15 トヨタ自動車株式会社 Vehicle torque control device
JP4692353B2 (en) * 2006-03-30 2011-06-01 トヨタ自動車株式会社 Torque control device for internal combustion engine
JP4981743B2 (en) 2008-05-08 2012-07-25 三菱重工業株式会社 Diesel engine fuel control system
US9745914B2 (en) 2014-10-27 2017-08-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP6332320B2 (en) 2016-04-11 2018-05-30 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2001159356A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US8122986B2 (en) Powertrain and method for controlling a powertrain in a vehicle
EP1333163A2 (en) Fuel injection control for diesel engine
JPH10331696A (en) Controller for internal combustion engine
JPH0363659B2 (en)
JP4055312B2 (en) Fuel injection control device for supercharged diesel engine
US7251930B2 (en) System for triggering the purging of NOx trap depollution means
US6725659B1 (en) Apparatus and method for limiting turbocharger speed
JPH1182090A (en) Internal combustion engine control system
JP2000120478A (en) Controller of internal combustion engine
US6308698B1 (en) Method and apparatus for controlling fuel injection in diesel engine
JP4196683B2 (en) Control device for internal combustion engine
US20040079329A1 (en) Method of controlling the rotational speed of a drive unit
JPH0692757B2 (en) Bypass air amount control method for internal combustion engine
JP4726968B2 (en) Electric supercharger control device
JP3361533B2 (en) Electronic control unit for internal combustion engine
WO2021245436A1 (en) Control method and control device for internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP4749281B2 (en) Electronic control device and engine control method
JP3562137B2 (en) Control device for internal combustion engine
JPH05133257A (en) Throttle controller for internal combustion engine
KR102394631B1 (en) Method for Reducing Vibration Control Based on Engine Torque Convergence and Vehicle thereof
WO2020100519A1 (en) Engine control device and engine control method
JP2902202B2 (en) Engine speed control method at start
JP3572965B2 (en) Negative pressure control device for in-vehicle internal combustion engine
JP2855005B2 (en) Fuel control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees