JP2001159356A - Fuel injection control device for supercharged diesel engine - Google Patents

Fuel injection control device for supercharged diesel engine

Info

Publication number
JP2001159356A
JP2001159356A JP34525799A JP34525799A JP2001159356A JP 2001159356 A JP2001159356 A JP 2001159356A JP 34525799 A JP34525799 A JP 34525799A JP 34525799 A JP34525799 A JP 34525799A JP 2001159356 A JP2001159356 A JP 2001159356A
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
engine
control
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34525799A
Other languages
Japanese (ja)
Other versions
JP4055312B2 (en
Inventor
Hiroyuki Sano
弘幸 佐野
Toru Mizushiro
徹 水城
Nobuo Aoki
信夫 青木
Toshitsugu Wakamatsu
俊告 若松
Takehiro Nagura
武博 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP34525799A priority Critical patent/JP4055312B2/en
Publication of JP2001159356A publication Critical patent/JP2001159356A/en
Application granted granted Critical
Publication of JP4055312B2 publication Critical patent/JP4055312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reconcile the prevention of smoke and the improvement of accelerating response in the transient operation of an engine. SOLUTION: This fuel injection control device for a supercharged diesel engine executes moderating control for gradually changing the fuel injection quantity Q toward the basic injection quantity QDES in the transient operation of the engine. The first fuel injection quantity in moderating control is determined using transient operation time initial injection quantity QTRANSS which is the value corresponding to engine speed. Since the value as large as possible to prevent the generation of smoke is set as the first fuel injection quantity, accelerating response can be improved while preventing smoke. It is preferable to set the larger one of the fuel injection quantity QFIN-1 immediately before the execution of moderating control and the transient operation time initial injection quantity QTRANSS as the first fuel injection quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過渡運転時の燃料
噴射特性を改善し得る過給式ディーゼルエンジンの燃料
噴射制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for a supercharged diesel engine capable of improving fuel injection characteristics during transient operation.

【0002】[0002]

【従来の技術】車両等に搭載される過給式ディーゼルエ
ンジンにおいて、加速に代表されるエンジンの過渡運転
時に、スモーク抑制と加速ショック低減とを図るため、
いわゆる「なまし」制御を実行するものが知られてい
る。これは図1(a),(c) に示すように、運転手が急激に
アクセルを踏込んだときでも、燃料噴射量は(c) 図破線
のように一気に増加させず、(c) 図実線のように徐々に
増加させ、燃料過多によるスモークの発生及び加速ショ
ックの発生を防止するものである。
2. Description of the Related Art In a supercharged diesel engine mounted on a vehicle or the like, in order to suppress smoke and reduce acceleration shock during transient operation of the engine represented by acceleration,
A device that performs so-called "smoothing" control is known. This is because, as shown in FIGS. 1 (a) and 1 (c), even when the driver suddenly steps on the accelerator, the fuel injection amount does not increase at a stretch as shown by the broken line in FIG. This is to gradually increase as shown by the solid line to prevent generation of smoke and generation of acceleration shock due to excessive fuel.

【0003】このとき、一定の制御時間Δt毎に所定噴
射量ΔQずつ燃料噴射量Qを増量させ、燃料噴射量Qを
エンジン運転状態(主にエンジン回転速度とアクセル開
度)に応じて定まる基本噴射量QDES に向けて徐々に近
付ける制御を行う。ΔQは今回と前回とのアクセル開度
差及び過渡経過時間TACC とにより決定される。
At this time, the fuel injection amount Q is increased by a predetermined injection amount ΔQ at every constant control time Δt, and the fuel injection amount Q is determined according to the engine operating state (mainly the engine speed and the accelerator opening). Control to gradually approach the injection amount QDES is performed. ΔQ is determined by the difference between the accelerator opening degree between the current time and the previous time and the transient elapsed time TACC.

【0004】なお、図1(c) に示される燃料噴射量Qの
増量の仕方は、図1(b) に実線で示される吸気圧(ブー
スト圧)の上昇に対して適正、即ちスモーク及び加速シ
ョックのいずれも発生させず、加速レスポンスも満足さ
せるものであるとする。図1(a),(b) から分かるよう
に、ターボチャージャーを備えた過給式ディーゼルエン
ジンでは、アクセルの踏込みに対し吸気圧の上昇が遅れ
る傾向にある。
The manner of increasing the fuel injection amount Q shown in FIG. 1C is appropriate for the rise of the intake pressure (boost pressure) shown by the solid line in FIG. It is assumed that no shock occurs and the acceleration response is satisfied. As can be seen from FIGS. 1 (a) and 1 (b), in a supercharged diesel engine equipped with a turbocharger, a rise in intake pressure tends to be delayed with respect to depression of an accelerator.

【0005】[0005]

【発明が解決しようとする課題】ところで、スモーク
は、燃料噴射量がある一定の限界値を越えないと発生し
ない。従来のなまし制御は開始から終了まで常に少量ず
つ燃料噴射量を増量する方法であったため、スモークに
対する余裕があるにも拘らず少量の燃料噴射しか行って
いない場合があり、このときなまし制御を終えるのに時
間が掛かり、加速レスポンスが悪くなるという欠点があ
る。
Incidentally, smoke does not occur unless the fuel injection amount exceeds a certain limit value. The conventional smoothing control is a method that always increases the fuel injection amount by a small amount from the start to the end.Therefore, there is a case where only a small amount of fuel injection is performed despite the margin for smoke. There is a disadvantage that it takes time to finish the acceleration and the acceleration response is deteriorated.

【0006】一方、従来のなまし制御には以下の問題も
ある。即ち、図1(c) に示すような増量の仕方に対し図
1(b) 実線で示すような吸気圧の上昇なら問題ないが、
図1(b) の破線A,Bで示されるような場合だと、Aの
場合では燃料が少なすぎ、Bの場合では燃料過多とな
る。スモーク限界は吸気量に応じて定まり、吸気量の大
小は吸気圧の大小に対応するので、Aの場合だと、吸気
量が多くスモーク限界にまだ余裕があるにも拘らず燃料
が少な過ぎ、Bの場合だと吸気量が少ないのに過剰の燃
料を噴射していることになる。これだと、Aの場合では
加速レスポンスが悪化し、Bの場合ではスモークが発生
するという問題が生じる。
On the other hand, the conventional smoothing control has the following problems. That is, there is no problem if the intake pressure is increased as shown by the solid line in FIG. 1 (b) with respect to the way of increasing the amount as shown in FIG. 1 (c).
In the case shown by broken lines A and B in FIG. 1B, the amount of fuel is too small in the case of A, and the amount of fuel is excessive in the case of B. The smoke limit is determined according to the intake air volume, and the magnitude of the intake air volume corresponds to the magnitude of the intake pressure, so in the case of A, although the intake air volume is large and there is still room for the smoke limit, the fuel is too small, In the case of B, it means that excessive fuel is injected though the intake amount is small. In this case, there is a problem that the acceleration response is deteriorated in the case of A and smoke is generated in the case of B.

【0007】つまり、従来は各回増量値ΔQがアクセル
開度差と過渡経過時間TACC とにより決定されており、
吸気量は全く考慮されていなかった。このため吸気量に
対して燃料が不足気味となったり過剰となったりして加
速レスポンスとスモークとの両立が難しかった。
That is, conventionally, each increment value ΔQ is determined by the accelerator opening difference and the transient elapsed time TACC.
The intake volume was not considered at all. For this reason, the amount of fuel became insufficient or excessive with respect to the intake air amount, and it was difficult to achieve both the acceleration response and the smoke.

【0008】特に、加速時の吸気圧上昇の様子はエンジ
ン運転状態や車両走行状態等に応じて変化し一定ではな
い。このため上記のように一定のアクセル踏込みを行っ
ても吸気圧上昇の様子が異なるという事態は往々にして
起こり得る。従ってこのような事態に対処しないとなま
し制御を行う意味も半減してしまう。
In particular, the manner in which the intake pressure rises during acceleration changes according to the engine operating state and the vehicle running state and is not constant. For this reason, the situation where the intake pressure rises differently even when the accelerator pedal is depressed as described above can often occur. Therefore, unless such a situation is dealt with, the meaning of performing the smoothing control is halved.

【0009】そこで、本発明の目的は、エンジンの過渡
運転時にスモーク及び加速レスポンスの両立を図れる過
給式ディーゼルエンジンの燃料噴射制御装置を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuel injection control apparatus for a supercharged diesel engine capable of achieving both smoke and acceleration response during transient operation of the engine.

【0010】[0010]

【課題を解決するための手段】本発明は、エンジン過渡
運転時に燃料噴射量を基本噴射量に向けて徐々に変化さ
せるなまし制御を実行する過給式ディーゼルエンジンの
燃料噴射制御装置において、上記なまし制御の初回の燃
料噴射量を、エンジン回転速度に応じた値である過渡運
転時初期噴射量を用いて決定するようにしたものであ
る。
According to the present invention, there is provided a fuel injection control apparatus for a supercharged diesel engine which executes smoothing control for gradually changing the fuel injection amount toward a basic injection amount during transient engine operation. The initial fuel injection amount of the smoothing control is determined by using the transient operation initial injection amount that is a value corresponding to the engine rotation speed.

【0011】上記なまし制御の初回の燃料噴射量は、な
まし制御実行直前の燃料噴射量と上記過渡運転時初期噴
射量とのいずれか大きい方とするのが好ましい。
It is preferable that the initial fuel injection amount of the smoothing control be the larger of the fuel injection amount immediately before the execution of the smoothing control and the initial injection amount during the transient operation.

【0012】上記過渡運転時初期噴射量は、エンジン中
高回転域のときに比べ低回転域のときの方が多量である
のが好ましい。
It is preferable that the initial injection amount during the transient operation is larger in the low engine speed range than in the middle and high engine speed range.

【0013】上記なまし制御における燃料噴射量の変化
率は、エンジン吸気状態に基づき決定するのが好まし
い。
It is preferable that the rate of change of the fuel injection amount in the smoothing control be determined based on the intake state of the engine.

【0014】上記エンジン吸気状態は吸気圧であっても
よい。
The engine intake state may be an intake pressure.

【0015】[0015]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳述する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】図3に本実施形態に係る燃料噴射制御装置
の構成を示す。図示するように、ディーゼルエンジン1
にターボチャージャー2が設けられ、そのタービン3が
排気通路4の途中に、コンプレッサ5が吸気通路12の
途中に設けられる。エンジンの燃料噴射制御を司る電子
制御ユニット(以下ECUという)6が設けられ、EC
U6にはアクセル開度センサ7、エンジン回転速度セン
サ8、吸気圧(ブースト圧)センサ9及びインジェクタ
10が接続される。インジェクタ10は燃料供給装置1
1から所定の噴射圧力の燃料を供給されると共に、EC
U6によってON/OFFされて燃料噴射を実行・停止する。
燃料供給装置11にはコモンレール式、噴射ポンプ式等
様々なタイプのものが考えられるが、ここではコモンレ
ール式を採用し、インジェクタ10のON/OFFにより燃料
噴射の実行・停止を切り換えている。噴射ポンプ式を採
用した場合は破線で示すようにECU6から燃料供給装
置11の電子ガバナ等に制御信号を送出することにな
る。本装置はここでは車両に搭載される。
FIG. 3 shows the configuration of the fuel injection control device according to this embodiment. As shown, the diesel engine 1
A turbocharger 2 is provided, a turbine 3 is provided in the exhaust passage 4, and a compressor 5 is provided in the intake passage 12. An electronic control unit (hereinafter referred to as ECU) 6 for controlling fuel injection of the engine is provided.
An accelerator opening sensor 7, an engine rotation speed sensor 8, an intake pressure (boost pressure) sensor 9, and an injector 10 are connected to U6. The injector 10 is a fuel supply device 1
1 is supplied with fuel at a predetermined injection pressure, and EC
Turned on / off by U6 to execute / stop fuel injection.
Various types of fuel supply devices 11 such as a common rail type and an injection pump type are conceivable. Here, a common rail type is adopted, and execution / stop of fuel injection is switched by turning on / off the injector 10. When the injection pump type is adopted, a control signal is transmitted from the ECU 6 to the electronic governor of the fuel supply device 11 as shown by a broken line. The device is mounted on a vehicle here.

【0017】次に、本装置による燃料噴射制御の内容を
説明する。図1に示すように、本装置では、所定の制御
時間Δt(=数10msec程度)毎にECU6による演算が
実行され、燃料噴射量Qが算出されるというデジタル処
理が実行される。以下の説明において各回の処理を添字
-10 +1i-1 i i+1 のように表す。ここでは運
転手がアクセルペダルを踏み込んでエンジンを加速させ
ようとした状況を例示する。
Next, the details of the fuel injection control by the present device will be described. As shown in FIG. 1, in the present apparatus, a digital process is performed in which the ECU 6 performs a calculation every predetermined control time Δt (= about several tens msec) and calculates the fuel injection amount Q. In the following description, each processing is subscripted
-1 , 0 , +1 ... i-1 , i , i + 1 . Here, a situation in which a driver tries to accelerate an engine by depressing an accelerator pedal is illustrated.

【0018】アクセルペダルの踏み込みにより、アクセ
ル開度センサ7の出力(アクセル開度Accp )が時刻t
0 で立ち上がったとする。するとECU6により過渡判
定有と判断され、なまし制御が実行される。このとき本
装置では(d) 図に示すように初回の燃料噴射量をQTRAN
SSとし、初回噴射量を一気に立ち上げ、従来((c) 図)
よりも多量の燃料を噴射するようにしている。
When the accelerator pedal is depressed, the output of the accelerator opening sensor 7 (accelerator opening Accp) changes at time t.
Suppose you start up at 0 . Then, the ECU 6 determines that there is a transient determination, and executes the smoothing control. At this time, in this system, the initial fuel injection amount is
With SS, the initial injection amount was started at once, and the conventional (Fig. (C))
More fuel is injected.

【0019】このQTRANSSは過渡運転時初期噴射量と称
され、図示しない2次元マップから各エンジン回転速度
毎に定められる値である。また同時に、いかなる吸気量
であってもスモークを発生させないようなできるだけ大
きな値である。このようなQTRANSSを初回に噴射すると
スモークの発生を防止しつつ加速レスポンスを向上でき
る。
This QTRANSS is referred to as a transient operation initial injection amount, and is a value determined for each engine speed from a two-dimensional map (not shown). At the same time, the value is as large as possible so that smoke is not generated regardless of the amount of intake air. When such QTRANSS is injected for the first time, it is possible to improve the acceleration response while preventing the generation of smoke.

【0020】こうして初回の噴射を終えたら、従来同
様、燃料噴射量Qを基本噴射量QDESに向けて徐々に
(所定の変化率で)増量させる制御を行う。このとき燃
料は各回毎にDELQTRA ずつ増量される。基本噴射量QDE
S はエンジン運転状態、即ちエンジン回転速度NEとアク
セル開度Accp とから主に定まり、図示しない3次元マ
ップから与えられる。
After the first injection is completed, control is performed to gradually increase (at a predetermined rate) the fuel injection amount Q toward the basic injection amount QDES, as in the conventional case. At this time, the fuel is increased by DELQTRA each time. Basic injection quantity QDE
S is mainly determined from the engine operating state, that is, the engine speed NE and the accelerator opening Accp, and is given from a three-dimensional map (not shown).

【0021】一方、DELQTRA はなまし変化量と称し、エ
ンジン回転速度NEと、吸気状態を示す値(ここでは吸気
圧PIM)とをパラメータとする図示しない3次元マップ
から与えられる値である。このようにここでは吸気状態
を考慮して増量値ないし燃料噴射量の変化率を決めるよ
うにしている。
On the other hand, DELQTRA is called a smoothing change amount and is a value given from a three-dimensional map (not shown) using the engine rotation speed NE and a value indicating the intake state (intake pressure PIM in this case) as parameters. As described above, the increase value or the change rate of the fuel injection amount is determined in consideration of the intake state.

【0022】このような(d) 図に示す制御は、過渡判定
直前の燃料噴射量QFIN -1がQTRANSSより小さい場合の
制御である。これに対し運転状態によってはその直前の
噴射量QFIN -1がQTRANSSより大きいときもある。これ
を示したのが(e) 図で、このときはその直前噴射量QFI
N -1をそのまま初回の噴射量として加速レスポンスを向
上すると共に、制御の容易化を図っている。
The control shown in FIG. 3D is a control in the case where the fuel injection amount QFIN -1 immediately before the transient determination is smaller than QTRANSS. On the other hand, the injection quantity QFIN -1 immediately before that may be larger than QTRANSS depending on the operation state. This is shown in (e) of FIG.
N- 1 is used as it is as the initial injection quantity to improve the acceleration response and facilitate control.

【0023】以上が本発明の制御の概要である。以下、
図2のフローチャートに従って本制御の詳細を説明す
る。
The above is the outline of the control of the present invention. Less than,
Details of this control will be described with reference to the flowchart of FIG.

【0024】まずECU6はステップ201で過渡判定
の有無を判断する。即ち、今回のアクセル開度Accp i
と前回のアクセル開度Accp i-1 との差(Accp i −A
ccpi-1 )を求め、これが予め定められた過渡判定しき
い値ΔAccp より大きければ過渡判定有と判断する。図
1の例では、時刻t0 で(Accp 0 −Accp -1)>ΔA
ccp が成立しており、エンジンの過渡運転が発生してい
る。過渡判定有のときはステップ202に、過渡判定無
しのときはステップ210に進む。
First, at step 201, the ECU 6 determines whether or not there is a transient determination. That is, the current accelerator opening Accp i
And the difference between the previous accelerator opening Accp i-1 (Accp i -A
ccp i-1 ) is determined, and if this is greater than a predetermined transient determination threshold value ΔAccp, it is determined that transient determination is present. In the example of FIG. 1, at time t 0 , (Accp 0 −Accp −1 )> ΔA
ccp is established, and the engine is in transient operation. The process proceeds to step 202 when there is a transient determination, and proceeds to step 210 when there is no transient determination.

【0025】過渡判定有のとき、ステップ202におい
て、エンジン回転速度NEの値からマップに従って過渡運
転時初期噴射量QTRANSSを求める。次に203におい
て、このQTRANSSと前回の最終目標噴射量QFIN i-1
を比較する。図1の時刻t0 の時点では前回の最終目標
噴射量はQFIN -1である。QTRANSS≧QFIN i-1 のとき
はステップ204に進んでQTRANSSをそのまま今回のな
まし噴射量QTRANS に置き換え、QTRANSS<QFIN i-1
のときはステップ205に進んでQFIN i-1 を今回のな
まし噴射量QTRANS とする。これにより図1(d) 又は
(e) に示すような初回噴射量の切換えを行うことができ
る。
When the transient judgment is made, in step 202, the transient operation initial injection amount QTRANSS is obtained from the value of the engine speed NE according to the map. Next, at step 203, this QTRANSS is compared with the last final target injection amount QFIN i-1 . Preceding the final target injection quantity at time t 0 in FIG. 1 is a QFIN -1. If QTRANSS ≧ QFIN i−1 , the routine proceeds to step 204, where QTRANSS is directly replaced with the present smooth injection quantity QTRANS, and QTRANSS <QFIN i−1
In step 205, the routine proceeds to step 205, where QFIN i-1 is set as the current smooth injection amount QTRANS. As a result, FIG. 1 (d) or
Switching of the initial injection amount as shown in (e) can be performed.

【0026】こうして今回のなまし噴射量QTRANS が求
まったらステップ206に進んでQTRANS を今回の最終
目標噴射量QFIN i とし、ステップ207でなまし制御
実行フラグFlagをON(1)にし、ステップ217でQFI
N i による燃料噴射を実行し、ステップ218で今回の
最終目標噴射量QFIN i を前回の最終目標噴射量QFIN
i-1 に置き換える。こうしてなまし制御初回の燃料噴射
が終了したらステップ201に戻って2回目の燃料噴射
のための演算を実行する。
When the current smooth injection quantity QTRANS is obtained in this way, the routine proceeds to step 206, where QTRANS is set to the current final target injection quantity QFIN i. QFI
Run the fuel injection by N i, the last time this final target injection amount QFIN i at step 218 the final target injection amount QFIN
Replace with i-1 . When the first fuel injection of the annealing control is completed in this way, the process returns to step 201 to execute the calculation for the second fuel injection.

【0027】図1の時刻t+1の時点で示されるように、
2回目の制御ではもはやアクセル開度差がなくなってい
るため、ステップ201で過渡判定無と判断される。こ
のときはステップ210に進み、エンジン回転速度NEと
アクセル開度Accp との値からマップに従って基本噴射
量QDES を求める。次に、ステップ211でなまし制御
実行フラグFlagがON(1)か否かを判断する。ここでは
初回の制御で既にONとなっているのでステップ212に
進む。
As shown at time t + 1 in FIG.
In the second control, since the accelerator opening difference is no longer present, it is determined in step 201 that there is no transient determination. In this case, the routine proceeds to step 210, where the basic injection amount QDES is obtained from the values of the engine speed NE and the accelerator opening Accp according to a map. Next, in step 211, it is determined whether or not the smoothing control execution flag Flag is ON (1). Here, since it is already ON in the first control, the process proceeds to step 212.

【0028】ステップ212においては、エンジン回転
速度NEと吸気圧PIMとの値からマップに従ってなまし変
化量DELQTRA を求める。そして次にステップ213に進
み、今回のなまし噴射量QTRANS を式QTRANS =QFIN
i-1 +DELQTRA に従って算出する。なお時刻t+1の時点
でQFIN i-1 は時刻t0 の時点での初回燃料噴射量を意
味し、図1(d) の例ではQFIN i-1 =QTRANSS、図1
(e) の例ではQFIN i-1=QFIN -1である。
In step 212, a smoothing variation DELQTRA is obtained from the values of the engine speed NE and the intake pressure PIM according to a map. Next, the routine proceeds to step 213, where the smooth injection amount QTRANS of this time is calculated by the equation QTRANS = QFIN.
Calculate according to i-1 + DELQTRA. Note QFIN i-1 at time t +1 means first fuel injection amount at time t 0, QFIN in the example of FIG. 1 (d) i-1 = QTRANSS, 1
In the example of (e), QFIN i-1 = QFIN -1 .

【0029】こうしてQTRANS が求まったらステップ2
14に進み、QTRANS とQDES とを比較する。これはQ
TRANS が、アクセル開度Accp に基づく値であるQDES
に到達したか否かを判断し、なまし制御を終了すべきか
否かを判断するためである。図1(d),(e) に示されるよ
うに2回目の制御ではまだQTRANS <QDES である。よ
ってこのときはステップ206以降へと進み、QTRANS
を今回の最終目標噴射量QFIN i としてこれによる燃料
噴射を実行する。
When QTRANS is obtained in this way, step 2
Proceed to 14 to compare QTRANS and QDES. This is Q
TRANS is QDES which is a value based on accelerator opening Accp.
Is determined, and it is determined whether or not the smoothing control should be terminated. As shown in FIGS. 1D and 1E, in the second control, QTRANS <QDES still holds. Therefore, in this case, the process proceeds to step 206 and thereafter, where QTRANS
Is set as the final target injection amount QFIN i of this time, and fuel injection by this is executed.

【0030】以上のルートを繰り返すと各回毎にDELQTR
A ずつ燃料噴射量が増量されていく。そしてやがてステ
ップ214でQTRANS ≧QDES が成立したら、ステップ
215に進み、なまし制御実行フラグFlagをOFF (0)
にし、ステップ216で基本噴射量QDES を今回の最終
目標噴射量QFIN i に置き換えてステップ217でこれ
による燃料噴射を実行する。このようになまし噴射量Q
TRANS が基本噴射量QDES に到達した時点でなまし制御
は終了する。
When the above route is repeated, each time the DELQTR
The fuel injection amount is increased by A. Then, if QTRANS ≧ QDES is satisfied in step 214, the process proceeds to step 215, where the smoothing control execution flag Flag is turned off (0).
Then, in step 216, the basic injection amount QDES is replaced with the current final target injection amount QFIN i , and in step 217, fuel injection based on this is executed. Thus, the injection amount Q
The smoothing control ends when TRANS reaches the basic injection amount QDES.

【0031】以降、ステップ218、201、210と
いうルートを経てステップ211に至る。ここでは既に
なまし制御実行フラグFlagがOFF となっているのでステ
ップ216に進み、基本噴射量QDES を今回の最終目標
噴射量QFIN i として通常の燃料噴射制御に戻る。これ
によりアクセル開度Accp に従った燃料噴射制御が実行
されることになる。
Thereafter, the process proceeds to the step 211 via the routes of the steps 218, 201 and 210. Here, since the smoothing control execution flag Flag has already been turned off, the routine proceeds to step 216, where the basic injection amount QDES is set as the current final target injection amount QFIN i , and the routine returns to normal fuel injection control. Thus, the fuel injection control according to the accelerator opening Accp is executed.

【0032】このように、本装置によれば、初回の燃料
噴射量を、エンジン回転速度NEに応じて定まる過渡運転
時初期噴射量QTRANSSを用いて決定するようにしたの
で、初回の噴射量を従来に比し適度に増量することがで
き、スモークの発生を防止しつつ加速レスポンスを向上
することができる。また初回噴射量を増量した分、なま
し制御に要する全体時間も短縮することができ、これに
よっても加速レスポンスを向上できる。
As described above, according to the present apparatus, the initial fuel injection amount is determined by using the transient operation initial injection amount QTRANSS determined according to the engine speed NE. The amount can be increased appropriately as compared with the related art, and the acceleration response can be improved while preventing generation of smoke. In addition, the total time required for smoothing control can be shortened by the increase in the initial injection amount, whereby the acceleration response can be improved.

【0033】一方、2回目以降の制御において、燃料噴
射量の変化率を規定するなまし変化量DELQTRA を吸気状
態、ここでは吸気圧Pに基づいて決定するようにしたた
め、図1(b) のように吸気状態の変化があった場合でも
これに追従して最適な増量を行える。これにより燃料過
多によるスモーク発生や、燃料不足による加速レスポン
スの悪化を防止することができる。
On the other hand, in the control after the second time, the smooth change amount DELQTRA that defines the change rate of the fuel injection amount is determined based on the intake state, here, the intake pressure P. Thus, even when the intake state changes, the optimal increase can be performed by following the change. As a result, it is possible to prevent generation of smoke due to excessive fuel and deterioration of acceleration response due to insufficient fuel.

【0034】なお、過剰な燃料噴射が防止される結果燃
費が改善されると共に、白煙の発生も防止できる。なま
し制御を行っているので当然加速ショックの心配はな
い。
In addition, as a result of preventing excessive fuel injection, fuel efficiency is improved and generation of white smoke can be prevented. Since the smoothing control is performed, there is no worry about acceleration shock.

【0035】ここで、なまし変化量DELQTRA の算出マッ
プにおいて、なまし変化量DELQTRAは吸気圧PIMが大き
い程多量の値が入力されている。これは吸気圧PIMが大
きい程吸気量も多く、多量の燃料噴射を行ってもスモー
クが発生しないからである。また当該算出マップにおい
て、なまし変化量DELQTRA はエンジン回転速度NEが大き
い程多量の値が入力されている。これは高回転程必要空
気のリカバリーが早く、言い換えれば吸気圧の立上がり
が早く、多量ずつ増量しても問題ないからである。
Here, in the calculation map of the smoothing variation DELQTRA, a larger value is input as the smoothing variation DELQTRA increases as the intake pressure PIM increases. This is because the larger the intake pressure PIM, the larger the intake air amount, and no smoke is generated even if a large amount of fuel injection is performed. Further, in the calculation map, as the smoothing change amount DELQTRA, a larger value is input as the engine speed NE increases. This is because the higher the rotation speed, the quicker the recovery of required air, in other words, the faster the rise of the intake pressure, and there is no problem even if the amount is increased by a large amount.

【0036】一方、過渡運転時初期噴射量QTRANSSの算
出マップにおいて、過渡運転時初期噴射量QTRANSSの値
はエンジン回転速度が中高回転域の場合より低回転域の
場合の方が多量の値が入力されている。これは、低回転
域では発進のため高トルクが必要で燃料量も多く必要だ
からであり、中高回転域は車両を走行する上で常用領域
となるためスモークを確実に防止しなければならないか
らである。
On the other hand, in the calculation map of the initial injection amount QTRANSS during transient operation, a larger value of the initial injection amount QTRANSS during transient operation is input when the engine rotation speed is in the low rotation speed range than in the middle and high rotation speed range. Have been. This is because high torque is required for starting and a large amount of fuel is required in the low rotation range, and smoke must be reliably prevented because the middle and high rotation range is a normal range for running the vehicle. is there.

【0037】本装置を実際に実施してみたところ、過渡
運転時のPHSメータによるスモークは10%だったも
のが全回転域5%に改善できた。またスモークが減少し
た分燃費も向上した。
When this apparatus was actually implemented, smoke from the PHS meter during transient operation was improved from 10% to 5% in the entire rotation range. In addition, fuel consumption has improved due to reduced smoke.

【0038】以上、本発明の実施の形態は上述のものに
限られない。例えば吸気圧PIMでなく吸気量を直接検出
してこれによりなまし変化量DELQTRA を決定してもよ
い。ステップ201の過渡判定の有無はアクセル開度差
のほか、燃料噴射量の今回値と前回値との差等によって
も判断できる。本実施形態は加速の場合を示したが、減
速の場合にも本発明は適用できるものである。
As described above, the embodiments of the present invention are not limited to those described above. For example, the amount of intake air may be directly detected instead of the intake air pressure PIM to thereby determine the smoothing variation DELQTRA. The presence / absence of the transient determination in step 201 can be determined based on the difference between the accelerator opening degree and the difference between the current value and the previous value of the fuel injection amount. Although this embodiment has shown the case of acceleration, the present invention is also applicable to the case of deceleration.

【0039】[0039]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0040】(1) 過渡運転時においてスモークと加
速レスポンスとを両立できる。
(1) Both smoke and acceleration response can be achieved during transient operation.

【0041】(2) 燃費を改善でき、白煙の発生を防
止できる。
(2) The fuel efficiency can be improved and the generation of white smoke can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る燃料噴射制御の内容を示すタイ
ムチャートである。
FIG. 1 is a time chart showing the contents of fuel injection control according to an embodiment.

【図2】同フローチャートである。FIG. 2 is the same flowchart.

【図3】実施形態に係る過給式ディーゼルエンジンの燃
料噴射制御装置の構成図である。
FIG. 3 is a configuration diagram of a fuel injection control device for a supercharged diesel engine according to the embodiment.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン 2 ターボチャージャ 6 電子制御ユニット 7 アクセル開度センサ 8 エンジン回転速度センサ 9 吸気圧センサ Accp アクセル開度 ΔAccp 過渡判定しきい値 NE エンジン回転速度 PIM 吸気圧 Q 燃料噴射量 QDES 基本噴射量 QFIN -1 なまし制御実行直前の燃料噴射量 QTRANSS 過渡運転時初期噴射量DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Turbocharger 6 Electronic control unit 7 Accelerator opening sensor 8 Engine rotation speed sensor 9 Intake pressure sensor Accp Accelerator opening ΔAccp Transient judgment threshold NE Engine rotation speed PIM Intake pressure Q Fuel injection amount QDES Basic injection amount QFIN -1 Fuel injection amount immediately before execution of smoothing control QTRANSS Initial injection amount during transient operation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 信夫 神奈川県藤沢市土棚8番地 いすゞ自動車 株式会社藤沢工場内 (72)発明者 若松 俊告 神奈川県藤沢市土棚8番地 いすゞ自動車 株式会社藤沢工場内 (72)発明者 名倉 武博 神奈川県藤沢市土棚8番地 いすゞ自動車 株式会社藤沢工場内 Fターム(参考) 3G092 AA02 AA18 BB01 DB03 EA01 EA08 EA11 EA21 EA22 EB01 EC09 FA04 FA10 FA18 FA24 GA12 GA14 HA05Z HA16Z HB01X HE01Z HF09Z 3G301 HA02 HA11 JA03 JA24 KA11 KA12 KA24 KA25 MA26 NA01 NE01 PA07Z PE01Z PF03Z ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuo Aoki Eighteen Tsuchiya, Fujisawa City, Kanagawa Prefecture Inside Isuzu Motors Fujisawa Plant (72) Inventor Toshiaki Wakamatsu Eighth Tsuchiya, Fujisawa City, Kanagawa Prefecture Isuzu Motors Fujisawa Co., Ltd. Inside the factory (72) Inventor Takehiro Nakura No.8, Tsuchiya, Fujisawa-shi, Kanagawa F-term (reference) 3G092 AA02 AA18 BB01 DB03 EA01 EA08 EA11 EA21 EA22 EB01 EC09 FA04 FA10 FA18 FA24 GA12 GA14 HA05Z HA16Z HB01X HE01Z HF09Z 3G301 HA02 HA11 JA03 JA24 KA11 KA12 KA24 KA25 MA26 NA01 NE01 PA07Z PE01Z PF03Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エンジン過渡運転時に燃料噴射量を基本
噴射量に向けて徐々に変化させるなまし制御を実行する
過給式ディーゼルエンジンの燃料噴射制御装置におい
て、上記なまし制御の初回の燃料噴射量を、エンジン回
転速度に応じた値である過渡運転時初期噴射量を用いて
決定するようにしたことを特徴とする過給式ディーゼル
エンジンの燃料噴射制御装置。
In a fuel injection control apparatus for a supercharged diesel engine which executes smoothing control for gradually changing a fuel injection amount toward a basic injection amount during an engine transient operation, the first fuel injection of the smoothing control is performed. A fuel injection control device for a supercharged diesel engine, wherein the amount is determined by using an initial injection amount during transient operation, which is a value corresponding to an engine rotation speed.
【請求項2】 上記なまし制御の初回の燃料噴射量を、
なまし制御実行直前の燃料噴射量と上記過渡運転時初期
噴射量とのいずれか大きい方とする請求項1記載の過給
式ディーゼルエンジンの燃料噴射制御装置。
2. An initial fuel injection amount of the smoothing control,
2. The fuel injection control device for a supercharged diesel engine according to claim 1, wherein the fuel injection amount immediately before execution of the smoothing control or the initial injection amount during the transient operation is larger.
【請求項3】 上記過渡運転時初期噴射量は、エンジン
中高回転域のときに比べ低回転域のときの方が多量であ
る請求項1又は2記載の過給式ディーゼルエンジンの燃
料噴射制御装置。
3. The fuel injection control device for a supercharged diesel engine according to claim 1, wherein the initial injection amount during the transient operation is larger in a low rotation region than in a middle and high rotation region of the engine. .
【請求項4】 上記なまし制御における燃料噴射量の変
化率をエンジン吸気状態に基づき決定する請求項1乃至
3いずれかに記載の過給式ディーゼルエンジンの燃料噴
射制御装置。
4. The fuel injection control device for a supercharged diesel engine according to claim 1, wherein a change rate of the fuel injection amount in the smoothing control is determined based on an engine intake state.
【請求項5】 上記エンジン吸気状態が吸気圧である請
求項4記載の過給式ディーゼルエンジンの燃料噴射制御
装置。
5. The fuel injection control device for a supercharged diesel engine according to claim 4, wherein the engine intake state is an intake pressure.
JP34525799A 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine Expired - Fee Related JP4055312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34525799A JP4055312B2 (en) 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34525799A JP4055312B2 (en) 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine

Publications (2)

Publication Number Publication Date
JP2001159356A true JP2001159356A (en) 2001-06-12
JP4055312B2 JP4055312B2 (en) 2008-03-05

Family

ID=18375381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34525799A Expired - Fee Related JP4055312B2 (en) 1999-12-03 1999-12-03 Fuel injection control device for supercharged diesel engine

Country Status (1)

Country Link
JP (1) JP4055312B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652233B2 (en) 2002-01-14 2003-11-25 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6732521B2 (en) 2002-08-16 2004-05-11 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6837225B1 (en) 2003-07-29 2005-01-04 Toyota Jidosha Kabushiki Kaisha Fuel supply control device for a turbo-charged diesel aircraft engine
US6883316B2 (en) 2003-06-23 2005-04-26 Toyota Uidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
JP2006138265A (en) * 2004-11-12 2006-06-01 Toyota Motor Corp Torque control device for vehicle
JP2007263096A (en) * 2006-03-30 2007-10-11 Toyota Motor Corp Torque control device of internal combustion engine
US9008951B2 (en) 2008-05-08 2015-04-14 Mitsubishi Heavy Industries, Ltd. Fuel admission control unit to control a diesel engine
EP3015694A1 (en) 2014-10-27 2016-05-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10364771B2 (en) 2016-04-11 2019-07-30 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652233B2 (en) 2002-01-14 2003-11-25 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6732521B2 (en) 2002-08-16 2004-05-11 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6883316B2 (en) 2003-06-23 2005-04-26 Toyota Uidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
US6837225B1 (en) 2003-07-29 2005-01-04 Toyota Jidosha Kabushiki Kaisha Fuel supply control device for a turbo-charged diesel aircraft engine
JP2006138265A (en) * 2004-11-12 2006-06-01 Toyota Motor Corp Torque control device for vehicle
JP4701683B2 (en) * 2004-11-12 2011-06-15 トヨタ自動車株式会社 Vehicle torque control device
JP2007263096A (en) * 2006-03-30 2007-10-11 Toyota Motor Corp Torque control device of internal combustion engine
JP4692353B2 (en) * 2006-03-30 2011-06-01 トヨタ自動車株式会社 Torque control device for internal combustion engine
US9008951B2 (en) 2008-05-08 2015-04-14 Mitsubishi Heavy Industries, Ltd. Fuel admission control unit to control a diesel engine
EP3015694A1 (en) 2014-10-27 2016-05-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US9745914B2 (en) 2014-10-27 2017-08-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10364771B2 (en) 2016-04-11 2019-07-30 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine

Also Published As

Publication number Publication date
JP4055312B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
KR100263221B1 (en) Apparatus for controlling negative pressure of internal combustion engine
JP3003528B2 (en) Negative pressure control device for internal combustion engine
KR100233421B1 (en) Apparatus for controlling negative pressure of internal combustion engine
KR100263223B1 (en) Apparatus for controlling negative pressure of internal combustion engine
KR101226313B1 (en) Engine speed stabilization using fuel rate control
US11225923B2 (en) Controller and control method for internal combustion engine
JP2001159356A (en) Fuel injection control device for supercharged diesel engine
JPH1182090A (en) Internal combustion engine control system
JPH10196432A (en) Air-fuel ratio controller for engine
US6308698B1 (en) Method and apparatus for controlling fuel injection in diesel engine
JP2000018074A (en) Fuel injection system of internal combustion engine
JPH0777089A (en) Smoke reducing device for diesel engine
JP3858622B2 (en) Control device for internal combustion engine
JP2006258106A (en) Control device for internal combustion engine
JPH07166931A (en) Fuel injection controller of engine
JP2003312318A (en) Driving force control device of vehicle
JP3006637B2 (en) Throttle control device for internal combustion engine
JP7480875B1 (en) Power determining device and power determining method
JP2007107406A (en) Drive control device for vehicle
JP2002317684A (en) Operating condition discriminating device of internal combustion engine
JPS5999029A (en) Air supercharging apparatus for engine with turbocharger
JP6614751B2 (en) Fuel injection control method and common rail fuel injection control device
KR100394656B1 (en) A method for controlling fuel supply of a diesel engine and a system thereof
JP3271853B2 (en) Equipment control device
JP3131744B2 (en) Engine fuel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees